Dissemination of Trimethoprim-Sulfamethoxazole Drug Resistance Genes Associated with Class 1 and Class 2 Integrons Among Gram-Negative Bacteria from HIV Patients in South India. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
135801.0000Dissemination of Trimethoprim-Sulfamethoxazole Drug Resistance Genes Associated with Class 1 and Class 2 Integrons Among Gram-Negative Bacteria from HIV Patients in South India. The antibiotic, trimethoprim-sulfamethoxazole (TMP-SMX), is generally used for prophylaxis in HIV individuals to protect them from Pneumocystis jiroveci infection. Long-term use of TMP-SMX develops drug resistance among bacteria in HIV patients. The study was aimed to detect the TMP-SMX resistance genes among gram-negative bacteria from HIV patients. TMP-SMX-resistant isolates were detected by the Kirby-Bauer disc diffusion method. While TMP resistance genes such as dfrA1, dfrA5, dfrA7, and dfrA17 and SMX resistance genes such as sul1 and sul2 were detected by multiplex PCR, class 1 and class 2 integrons were detected by standard monoplex PCR. Of the 151 TMP-SMX-resistant bacterial isolates, 3 were positive for sul1 alone, 48 for sul2 alone, 11 for dfrA7 alone, 21 for sul1 and sul2, 1 for sul1 and dfrA7, 23 for sul2 and dfrA7, 2 for sul2 and dfrA5, 41 for sul1, sul2, and dfrA7, and 1 for sul2, dfrA5, and dfrA7. Of 60 TMP-SMX-resistant isolates positive for integrons, 44 had class 1 and 16 had class 2 integrons. It was found that the prevalence of sul genes (n = 202; p < 0.001) was higher compared with dfr genes (n = 80; p < 0.001), and 87.4% (n = 132; p < 0.001) of TMP-SMX-resistant isolates also were positive for β-lactamase production. This type of study is reported for the first time from HIV patients in India. Therefore, this study indicates that dissemination of TMP-SMX resistance genes and class 1 and class 2 integrons along with β-lactamase production among gram-negative bacteria in HIV patients will certainly make their treatment to bacterial infections more complicated in clinical settings.201727854149
136110.9997Multi-drug resistance and diversity of mobile genetic elements in Escherichia coli isolated from migratory bird in Poyang Lake. With the spread of antibiotic resistance genes such as blaCTX-M-2, dfrA1 and blaNDM-1, the problem of drug resistance in E. coli is becoming increasingly serious [1]. This study aimed to identify integrons genes and MGEs in E. coli isolated from migratory birds' feces at Poyang Lake, Jiangxi Province, focusing on their role in antimicrobial resistance (AMR). The 114 isolated E. coli strains were tested by standard disk diffusion method and genetic testing method. Results showed 64.04 % (73/114) of isolates were multi-drug resistance (MDR), mainly resistant to 3-6 antibiotics. Common resistances included neomycin (50 %) and streptomycin (48.25 %). We detected 21 mobile genetic elements, including IS903 (92.11 %), traA (72.81 %), ISCR3 (64.91 %), and ISpa7 (50 %). These elements were present in all isolates, forming 112 combinations. Significant differences in resistance rates were found between class I integron-positive and negative strains for doxycycline, tetracycline, bacitracin, and streptomycin (P < 0.01), and for neomycin (P < 0.05). Class II integron-positive bacteria showed higher resistance to doxycycline (P < 0.01) and ceftizoxime (P < 0.05). No significant differences were observed for class III integron-positive strains. This study underscores the prevalence of multidrug-resistant and the diversity of mobile genetic elements in E. coli, emphasizing the need for continuous monitoring.202540651621
276920.9997Occurrences and Characterization of Antibiotic-Resistant Bacteria and Genetic Determinants of Hospital Wastewater in a Tropical Country. Wastewater discharged from clinical isolation and general wards at two hospitals in Singapore was examined to determine the emerging trends of antibiotic resistance (AR). We quantified the concentrations of 12 antibiotic compounds by analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS), antibiotic-resistant bacteria (ARB), the class 1 integrase gene (intI1), and 16 antibiotic resistance genes (ARGs) that confer resistance to 10 different clinically relevant antibiotics. A subset of 119 antibiotic-resistant isolates were phylogenetically classified and tested for the presence of ARGs encoding resistance to β-lactam antibiotics (bla(NDM), bla(KPC), bla(SHV), bla(CTX-M)), amikacin [aac(6')-Ib], co-trimoxazole (sul1, sul2, dfrA), ciprofloxacin (qnrA, qnrB), and the intI1 gene. Among these resistant isolates, 80.7% were detected with intI1 and 66.4% were found to carry at least 1 of the tested ARGs. Among 3 sampled locations, the clinical isolation ward had the highest concentrations of ARB and the highest levels of ARGs linked to resistance to β-lactam (bla(KPC)), co-trimoxazole (sul1, sul2, dfrA), amikacin [aac(6')-Ib], ciprofloxacin (qnrA), and intI1 We found strong positive correlations (P < 0.05) between concentrations of bacteria resistant to meropenem, ceftazidime, amikacin, co-trimoxazole, and ciprofloxacin and abundances of bla(KPC), aac(6')-Ib, sul1, sul2, dfrA, qnrA, and intI1 genes.201627736769
136030.9997First Report on a Randomized Investigation of Antimicrobial Resistance in Fecal Indicator Bacteria from Livestock, Poultry, and Humans in Tanzania. This study provides an estimate of antimicrobial resistance in intestinal indicator bacteria from humans (n = 97) and food animals (n = 388) in Tanzania. More than 70% of all fecal samples contained tetracycline (TE), sulfamethoxazole (STX), and ampicillin (AMP)-resistant coliforms, while cefotaxime (CTX)-resistant coliforms were observed in 40% of all samples. The average Log(10) colony forming units/g of CTX-resistant coliforms in samples from humans were 2.20. Of 390 Escherichia coli tested, 66.4% were resistant to TE, 54.9% to STX, 54.9% to streptomycin, and 36.4% to CTX. Isolates were commonly (65.1%) multiresistant. All CTX-resistant isolates contained bla(CTX-M) gene type. AMP- and vancomycin-resistant enterococci were rare, and the average concentrations in positive samples were low (log(10) 0.9 and 0.4, respectively). A low-to-moderate resistance (2.1-15%) was detected in 240 enterococci isolates to the drugs tested, except for rifampicin resistance (75.2% of isolates). The average number of sulII gene copies varied between Log(10) 5.37 and 5.68 with no significant difference between sample source, while cattle had significantly higher number of tetW genes than humans. These findings, based on randomly obtained samples, will be instrumental in designing antimicrobial resistance (AMR) intervention strategies for Tanzania.201828759321
135940.9997Assessment of Bacterial Contamination and Antimicrobial Resistance of Escherichia coli Isolates from Slovak Dairy Farms. The conditions in livestock housing are suitable for the survival of airborne microorganisms, mainly due to high temperatures, humidity, and the presence of organic material. The total count of airborne bacteria concentrations in cattle farms ranged from 3.01 log(10) CFU/mL to 6.90 log(10) CFU/mL; for coliform bacteria, they were from 2.18 log(10) CFU/mL to 3.34 log(10) CFU/mL; and for molds, they ranged from 3.00 log(10) CFU/mL to 4.57 log(10) CFU/mL. Bacteria resistant to antimicrobial substances and resistance genes can be spread on animal farms. Antimicrobial resistance in ubiquitous Escherichia coli isolated from cattle feces was investigated. Minimum inhibitory concentration (MIC) testing was utilized to identify phenotypic resistance profiles, and the PCR method was employed to detect the presence of resistant genes. A higher percentage of resistance was found to amikacin (65%), tetracycline (61%), streptomycin (56%), ampicillin (55%), and nalidixic acid (45%). Multidrug resistance was determined in up to 64.3% of the isolates studied. The most widespread resistance genes were bla(TEM) (85.7%), sul2 (66.7%), tetB (52.38%), and sul1 (47.6%). We found that 4.8% of the E. coli isolates had the bla(CMY) gene. We found that, despite phenotypic resistance, E. coli isolates do not necessarily carry genes conferring resistance to that particular antimicrobial agent.202439518818
277650.9997Isolation and genotypic characterization of extended-spectrum beta-lactamase-producing Escherichia coli O157:H7 and Aeromonas hydrophila from selected freshwater sources in Southwest Nigeria. The proliferation of antibiotic-resistant bacteria and antimicrobial resistance is a pressing public health challenge because of their possible transfer to humans via contact with polluted water sources. In this study, three freshwater resources were assessed for important physicochemical characteristics as well as heterotrophic and coliform bacteria and as potential reservoirs for extended-spectrum beta-lactamase (ESBL) strains. The physicochemical characteristics ranged from 7.0 to 8.3; 25 to 30 °C, 0.4 to 93 mg/L, 0.53 to 8.80 mg/L and 53 to 240 mg/L for pH, temperature, dissolved oxygen (DO), biological oxygen demand (BOD(5)) and total dissolved solids, respectively. The physicochemical characteristics mostly align with guidelines except for the DO and BOD(5) in some instances. Seventy-six (76) Aeromonas hydrophila and 65 Escherichia coli O157: H7 isolates were identified by preliminary biochemical analysis and PCR from the three sites. Among these, A. hydrophila displayed higher frequencies of antimicrobial resistance, with all 76 (100%) isolates completely resistant to cefuroxime and cefotaxime and with MARI ≥ 0.61. The test isolates showed more than 80% resistance against five of the ten test antimicrobials, with resistance against cefixime, a cephalosporin antibiotic being the highest at 95% (134/141). The frequency of the detection of the resistance genes in the A. hydrophila isolates generally ranged between 0% (bla(SHV)) and 26.3% (bla(CTX-M)), while the frequency of detection among the E. coli O157:H7 isolates ranged between 4.6% (bla(CTX-M)) and 58.4% (bla(TEM)). Our findings indicate that the distribution of antibiotic-resistant bacteria with diverse ESBL-producing capabilities and virulence genes in freshwater sources potentially threatens public health and the environment.202337400612
217860.9997Antimicrobial resistance patterns and their encoding genes among clinical isolates of Acinetobacter baumannii in Ahvaz, Southwest Iran. Acinetobacter baumannii is one of the most important organisms in nosocomial infections. Antibiotic resistance in this bacterium causes many problems in treating patients. This study aimed to investigate antibiotic resistance patterns and resistance-related, genes in clinical isolates of Acinetobacter baumannii. This descriptive study was conducted on 124 isolates of Acinetobacter baumannii collected from clinical samples in two teaching hospitals in Ahvaz. The antibiotic resistance pattern was determined by disk diffusion. The presence of genes coding for antibiotic resistance was determined using the polymerase chain reaction method. Out of 124 isolates, the highest rate of resistance was observed for rifampin (96.8%). The resistance rate for imipenem, meropenem, colistin, and polymyxin-B were 78.2%, 73.4%, 0.8% and 0.8%, respectively. The distribution of qnrA, qnrB, qnrS, Tet A, TetB, and Sul1genes were 52.6%, 0%, 3.2%, 93.5% 69.2%, and 6.42%, respectively. High prevalence of tetA, tetB, and qnrA genes among Acinetobacter baumannii isolated strains in this study indicate the important role of these genes in multidrug resistance in this bacteria. • Acinetobacter baumannii is an important human pathogen that has attracted the attention of many researchers Antibiotic resistance in this bacterium causes many problems in treating patients. • The resistance rate for imipenem, meropenem, colistin, and polymyxin-B were 78.2%, 73.4%, 0.8% and 0.8%, respectively. The distribution of qnrA, qnrB, qnrS, Tet A, TetB, and Sul1genes were 52.6%, 0%, 3.2%, 93.5% 69.2%, and 6.42%, respectively.202032983919
293270.9997Resistance to Sulfonamides and Dissemination of sul Genes Among Salmonella spp. Isolated from Food in Poland. Antimicrobial resistance of pathogenic bacteria, including Salmonella spp., is an emerging problem of food safety. Antimicrobial use can result in selection of resistant organisms. The food chain is considered a route of transmission of resistant pathogens to humans. In many European countries, sulfonamides are one of the most commonly used antimicrobials. The aim of our investigation was to assess the prevalence of sul genes and plasmid occurrence among sulfonamide-resistant Salmonella spp. Eighty-four sulfonamide-resistant isolates were collected in 2008 and 2013 from retail products in Poland. Minimal inhibitory concentration of all of these isolates was ≥1024 μg/mL. Resistant isolates were tested for the presence of sul1, sul2, sul3, and int1 genes by using multiplex polymerase chain reaction. In total, 44.0% (37/84) isolates carried the sul1 gene, 46.4% (39/84) were sul2 positive, while the sul3 gene was not detected in any of the sulfonamide-resistant isolates tested. It was found that 3.6% (3/84) of resistant Salmonella spp. contained sul1, sul2, and intI genes. All 33 intI-positive isolates carried the sul1 gene. Eleven of the sulfonamide-resistant isolates were negative for all the sul genes. Most of the sulfonamide-resistant Salmonella spp. harbored plasmids; only in eight isolates were no plasmids detected. Generally, the size of the plasmids ranged from approximately 2 kb to ≥90 kb. Our results revealed a relatively a high prevalence of sulfonamides-resistant Salmonella spp. isolated from retail food. Additionally, we have detected a high dissemination of plasmids and class 1 integrons that may enhance the spread of resistance genes in the food chain.201525785781
117980.9997Detection of 5 Kinds of Genes Related to Plasmid-Mediated Quinolone Resistance in Four Species of Nonfermenting Bacteria with 2 Drug Resistant Phenotypes. OBJECTIVE: This study aimed to detect 5 kinds of genes related to plasmid-mediated quinolone resistance in four species of nonfermenting bacteria with 2 drug resistance phenotypes (multidrug resistance and pandrug resistance), which were Acinetobacter baumannii (Ab), Pseudomonas aeruginosa (Pa), Stenotrophomonas maltophilia (Sm), and Elizabethkingia meningoseptica (Em). METHODS: The Phoenix NMIC/ID-109 panel and API 20NE panel were applied to 19 isolated strains, including 6 Ab strains (2 strains with multidrug resistance and 4 strains with pandrug resistance), 6 Pa strains (3 strains with multidrug resistance and 3 strains with pandrug resistance), 4 Sm strains (2 strains with multidrug resistance and 2 strains with pandrug resistance), and 3 Cm strains (2 strains with multidrug resistance and 1 strain with pandrug resistance). After strain identification and drug susceptibility test, PCR was applied to detect 5 genes related to plasmid-mediated quinolone resistance. The genes detected were quinolone resistance A (qnrA), aminoglycoside acetyltransferase ciprofloxacin resistance variant, acc(6')-Ib-cr, and 3 integrons (intI1, intI2, and intI3). The amplified products were analyzed by 1% agarose gel electrophoresis and sequenced. Sequence alignment was carried out using the bioinformatics technique. RESULTS: Of 19 strains tested, 8 strains carried acc(6')-Ib-cr and 6 of them were of pandrug resistance phenotype (3 Ab strains, 2 Pa strains, and 1 Sm strain). The carrying rate of acc(6')-Ib-cr was 60.0% for strains of pandrug resistance (6/10). Two strains were of multidrug resistance (1 Ab strain and 1 Pa strain), and the carrying rate of acc(6')-Ib-cr was 22.0% (2/9). The carrying rate was significantly different between strains of multidrug resistance and pandrug resistance (P < 0.05). The class 1 integron was detected in 11 strains, among which 6 strains were of pandrug resistance (3 Ab strains, 2 Pa strains, and 1 Sm strain). The carrying rate of the class 1 integron was 60.0% (6/10). Five strains were of multidrug resistance (3 Pa strains, 1 Ab strain, and 1 Em strain), and the carrying rate was 55.6% (5/9). The carrying rate of the class 1 integron was not significantly different between strains of multidrug resistance and pandrug resistance (P > 0.05). Both acc(6')-Ib-cr and intI1 were detected in 6 strains, which were negative for qnrA, intI2, and intI3. CONCLUSION: Quinolone resistance of isolated strains was related to acc(6')-Ib-cr and intI1 but not to qnrA, intI2, or intI3. The carrying rate of acc(6')-Ib-cr among the strains of pandrug resistance was much higher than that among the strains of multidrug resistance. But, the strains of two drug resistant phenotypes were not significantly different in the carrying rate of intI1. The detection rates of the two genes were high and similar in Ab and Pa strains. 1 Em strain carried the class 1 integron.202032351636
202590.9997Diverse Gene Cassette Arrays Prevail in Commensal Escherichia coli From Intensive Farming Swine in Four Provinces of China. Multiple-drug resistance bacteria containing antimicrobial resistance genes (ARGs) are a concern for public health. Integrons are bacterial genetic elements that can capture, rearrange, and express mobile gene cassettes responsible for the spread of ARGs. Few studies link genotype and phenotype of swine-related ARGs in the context of mobile gene cassette arrays among commensal Escherichia coli (E. coli) in nonclinical livestock isolates from intensive farms. In the present study, a total of 264 isolates were obtained from 330 rectal swabs to determine the prevalence and characteristics of antibiotic-resistant gene being carried by commensal E. coli in the healthy swine from four intensive farms at Anhui, Hebei, Shanxi, and Shaanxi, in China. Antimicrobial resistance phenotypes of the recovered isolates were determined for 19 antimicrobials. The E. coli isolates were commonly nonsusceptible to doxycycline (75.8%), tetracycline (73.5%), sulfamethoxazole-trimethoprim (71.6%), amoxicillin (68.2%), sulfasalazine (67.1%), ampicillin (58.0%), florfenicol (56.1%), and streptomycin (53.0%), but all isolates were susceptible to imipenem (100%). Isolates [184 (69.7%)] exhibited multiple drug resistance with 11 patterns. Moreover, 197 isolates (74.6%) were detected carrying the integron-integrase gene (intI1) of class 1 integrons. A higher incidence of antimicrobial resistance was observed in the intI1-positive E. coli isolates than in the intI1-negative E. coli isolates. Furthermore, there were 17 kinds of gene cassette arrays in the 70 integrons as detected by sequencing amplicons of variable regions, with 66 isolates (94.3%) expressing their gene cassettes encoding for multiple drug resistance phenotypes for streptomycin, neomycin, gentamicin, kanamycin, amikacin, sulfamethoxazole-trimethoprim, sulfasalazine, and florfenicol. Notably, due to harboring multiple, hybrid, and recombination cassettes, complex cassette arrays were attributed to multiple drug resistance patterns than simple arrays. In conclusion, we demonstrated that the prevalence of multiple drug resistance and the incidence of class 1 integrons were 69.7 and 74.6% in commensal E. coli isolated from healthy swine, which were lower in frequency than that previously reported in China.202033154738
2775100.9997Co-occurrence of multidrug resistance, β-lactamase and plasmid mediated AmpC genes in bacteria isolated from river Ganga, northern India. Wastewater effluents released in surface water provides suitable nutrient rich environment for the growth and proliferation of antibiotic resistant bacteria (ARB) and genes (ARG). Consequently, bacterial resistance has highly evolved over the recent years and diversified that each antibiotic class is inhibited by a distinct mechanism. In the present study, the prevalence of Multidrug resistant (MDR), extended spectrum β-lactamases (ESBL) and plasmid mediated Amp-C producing strains was analyzed in 28 surface water samples collected near domestic effluent discharge sites in river Ganga located across 11 different geographical indices of Uttar Pradesh, India. A total of 243 bacterial strains with different phenotypes were isolated. Among 243 isolates, 206 (84.77%) exhibited MDR trait displaying maximum resistance towards β-lactams (P = 78.19%; AMX = 72.84%), glycopeptides (VAN = 32.92%; TEI = 79.42%), cephalosporins (CF = 67.90%; CFX = 38.27%), and lincosamides (CD = 78.18%) followed by sulfonamide, macrolide and tetracycline. ESBL production was confirmed in 126 (51.85%) isolates that harbored the genes: blaTEM (95.24%), blaSHV (22.22%), blaOXA (11.90%) and blaCTX-M group (14.28%). The presence of plasmid mediated AmpC was detected only in 6.17% of isolates. The existence of such pathogenic strains in the open environment generates an urgent need for incorporating stringent measures to reduce the antibiotic consumption and hence its release.202032892014
1368110.9997Prevalence and characterisation of antimicrobial resistance genes and class 1 and 2 integrons in multiresistant Escherichia coli isolated from poultry production. A global increase in the populations of drug resistant bacteria exerts negative effects on animal production and human health. Our study has been focused on the assessment of resistance determinants in relation to phenotypic resistance of the 74 commensal E. coli isolates present in different ecological environments. The samples were collected from poultry litter, feces, and neck skin. Among the microorganisms isolated from the poultry litter (group A), the highest resistance was noted against AMP and DOX (100%). In the E. coli extracts from the cloacal swabs (group B), the highest resistance was observed against AMP (100%) and CIP (92%). The meat samples (group C) were characterized by resistance to AMP (100%) and STX (94.7%). Genes encoding resistance to β-lactams (bla(TEM), bla(CTX-M)), fluoroquinolones (qnrA, qnrB, qnrS), aminoglycosides (strA-strB, aphA1, aac(3)-II), sulfonamides (sul1, sul2, sul3), trimethoprim (dfr1, dfr5, dfr7/17) and tetracyclines (tetA, tetB) were detected in the studied bacterial isolates. The presence of class 1 and 2 integrons was confirmed in 75% of the MDR E. coli isolates (plasmid DNA), of which 60% contained class 1 integrons, 15% contained class 2 integrons, and 11.7% carried integrons of both classes. Thus, it may be concluded that integrons are the common mediators of antimicrobial resistance among commensal multidrug resistant Escherichia coli at important stages of poultry production.202235410349
1306120.9997Escherichia coli from healthy farm animals: Antimicrobial resistance, resistance genes and mobile genetic elements. The use of antibiotics in agriculture and subsequent environmental pollution are associated with the emergence and spread of multidrug-resistant (MDR) bacteria including Escherichia coli. The aim of this study was to detect antimicrobial resistance, resistance genes and mobile genetic elements of 72 E. coli strains isolated from faeces of healthy farm animals. Disk diffusion test showed resistance to ampicillin (59.7%), tetracycline (48.6%), chloramphenicol (16.7%), cefoperazone and ceftriaxone (13.9%), cefepime and aztreonam (12.5%), norfloxacin and ciprofloxacin (8.3%), levofloxacin (6.9%), gentamicin and amikacin (2.8%) among the studied strains. Antibiotic resistance genes (ARGs) were detected by polymerase chain reaction: the prevalence of blaTEM was the highest (59.7% of all strains), followed by tetA (30.6%), blaCTX-M (11.1%), catA1 (9.7%), less than 5% strains contained blaSHV, cmlA, floR, qnrB, qnrS, tetM. 26.4% of E. coli strains had a MDR phenotype. MDR E. coli more often contained class 1 integrons, bacteriophages, conjugative F-like plasmids, than non-MDR strains. ARGs were successfully transferred from faecal E. coli strains into the E. coli Nissle 1917 N4i strain by conjugation. Conjugation frequencies varied from (1.0 ± 0.1) * 10-5 to (7.9 ± 2.6) * 10-4 per recipient. Monitoring mobile genetic elements of E. coli for antibiotic resistance is important for farm animal health, as well as for public health and food safety.202439259602
1305130.9997Characterization of antibiotic resistance in Escherichia coli isolated from shrimps and their environment. Antimicrobial resistance in bacteria associated with food and water is a global concern. To survey the risk, 312 Escherichia coli isolates from shrimp farms and markets in Thailand were examined for susceptibility to 10 antimicrobials. The results showed that 17.6% of isolates (55 of 312) were resistant to at least one of the tested drugs, and high resistance rates were observed to tetracycline (14.4%; 45 of 312), ampicillin (8.0%; 25 of 312), and trimethroprim (6.7%; 21 of 312); 29.1% (16 of 55) were multidrug resistant. PCR assay of the tet (A), tet (B), tet (C), tet (D), tet (E), and tet (G) genes detected one or more of these genes in 47 of the 55 resistant isolates. Among these genes, tet (A) (69.1%; 38 of 55) was the most common followed by tet (B) (56.4%; 31 of 55) and tet (C) (3.6%; 2 of 55). The resistant isolates were further investigated for class 1 integrons. Of the 55 resistant isolates, 16 carried class 1 integrons and 7 carried gene cassettes encoding trimethoprim resistance (dfrA12 or dfrA17) and aminoglycosides resistance (aadA2 or aadA5). Two class 1 integrons, In54 (dfrA17-aadA5) and In27 (dfrA12-orfF-aadA2), were found in four and three isolates, respectively. These results indicate a risk of drug-resistant E. coli contamination in shrimp farms and selling places. The occurrence of multidrug-resistant E. coli carrying tet genes and class 1 integrons indicates an urgent need to monitor the emergence of drug-resistant E. coli to control the dissemination of drug-resistant strains and the further spread of resistance genes to other pathogenic bacteria.201425198603
2968140.9997The phenotypic and genotypic characteristics of antibiotic resistance in Escherichia coli populations isolated from farm animals with different exposure to antimicrobial agents. The aim of the study was to determine the influence of the presence or the absence of antibiotic input on the emergence and maintenance of resistance in commensal bacteria from food producing animals. The research material constituted E. coli isolates from two animal species: swine at different age from one conventional pig farm with antibiotic input in young pigs and from beef and dairy cattle originated from organic breeding farm. The sensitivity to 16 antimicrobial agents was tested, and the presence of 15 resistance genes was examined. In E. coli from swine, the most prevalent resistance was resistance to streptomycin (88.3%), co-trimoxazole (78.8%), tetracycline (57.3%) ampicillin (49.3%) and doxycycline (44.9%) with multiple resistance in the majority. The most commonly observed resistance genes were: bla(TEM) (45.2%), tetA (35.8%), aadA1 (35.0%), sul3 (29.5%), dfrA1 (20.4%). Differences in phenotypes and genotypes of E. coli between young swine undergoing prevention program and the older ones without the antibiotic pressure occurred. A disparate resistance was found in E. coli from cattle: cephalothin (36.9%), cefuroxime (18.9%), doxycycline (8.2%), nitrofurantoin (7.7%), and concerned mainly dairy cows. Among isolates from cattle, multidrug resistance was outnumbered by resistance to one or two antibiotics and the only found gene markers were: bla(SHV), (3.4%), tetA (1.29%), bla(TEM) (0.43%) and tetC (0.43%). The presented outcomes provide evidence that antimicrobial pressure contributes to resistance development, and enteric microflora constitutes an essential reservoir of resistance genes.201324053020
1363150.9997Comparison of antimicrobial resistance and molecular characterization of Escherichia coli isolates from layer breeder farms in Korea. In Korea, 4 big layer companies that possess one grandparent and 3 parent stocks are in charge of 100% of the layer chicken industry. In this study, we investigated the antimicrobial resistance of commensal 578 E. coli isolated from 20 flocks of 4-layer breeder farms (A, B, C, and D), moreover, compared the characteristics of their resistance and virulence genes. Isolates from farms B and D showed significantly higher resistance to the β-lactam antimicrobials (amoxicillin, ampicillin, and 1st-, 2nd-, and 3rd-generation cephalosporins). However, resistance to ciprofloxacin, nalidixic acid, and tetracycline was significantly higher in the isolates from farm A (P < 0.05). Interestingly, the isolates from farm C showed significantly lower resistance to most antimicrobials tested in this study. The isolates from farms B, C, and D showed the high multiple resistance to the 3 antimicrobial classes. Furthermore, the isolates from farm A showed the highest multiple resistance against the 5 classes. Among the 412 β-lactam-resistant isolates, 123 (29.9%) carried bla(TEM-1), but the distribution was significantly different among the farms from 17.5% to 51.4% (P < 0.05). Similarly, the most prevalent tetracycline resistance gene in the isolates from farms B, C, and D was tetA (50.0-77.0%); however, the isolates from farm A showed the highest prevalence in tetB (70.6%). The distribution of quinolone (qnrB, qnrD, and qnrS) and sulfonamide (su12)-resistant genes were also significantly different among the farms but that of chloramphenicol (catA1)- and aminoglycoside (aac [3]-II, and aac [6']-Ib)-resistant genes possessed no significant difference among the farms. Moreover, the isolates from farm C showed significantly higher prevalence in virulence genes (iroN, ompT, hlyF, and iss) than the other 3 farms (P < 0.05). Furthermore, the phenotypic and genotypic characteristics of E. coli isolates were significantly different among the farms, and improved management protocols are required to control of horizontal and vertical transmission of avian disease, including the dissemination of resistant bacteria in breeder flocks.202234844113
2920160.9997The tetracycline resistance determinant Tet 39 and the sulphonamide resistance gene sulII are common among resistant Acinetobacter spp. isolated from integrated fish farms in Thailand. OBJECTIVES: To determine the genetic basis for tetracycline and sulphonamide resistance and the prevalence of class I and II integrons in oxytetracycline-resistant Acinetobacter spp. from integrated fish farms in Thailand. METHODS: A total of 222 isolates were screened for tetracycline resistance genes [tet(A), tet(B), tet(H), tet(M) and tet(39)] and class II integrons by PCR. One hundred and thirty-four of these isolates were also sulphonamide resistant and these isolates were screened for sulphonamide resistance genes (sulII and sulIII) as well as class I integrons. Plasmid extraction and Southern blots with sulII and tet(39) probes were performed on selected isolates. RESULTS: The recently identified tetracycline resistance gene tet(39) was demonstrated in 75% (166/222) of oxytetracycline-resistant Acinetobacter spp. from integrated fish farms in Thailand. Isolates that were also sulfamethoxazole-resistant contained sulII (96%; 129/134) and/or sulI (14%; 19/134) (as part of class I integrons). sulII and tet(39) were located on plasmids differing in size in the isolates tested. CONCLUSIONS: The study shows tet(39) and sulII to be common resistance genes among clonally distinct Acinetobacter spp. from integrated fish farms and these bacteria may constitute reservoirs of resistance genes that may increase owing to a selective pressure caused by the use of antimicrobials in the overlaying animal production.200717095527
1362170.9997Distribution of phenotypic and genotypic antimicrobial resistance and virulence genes in Vibrio parahaemolyticus isolated from cultivated oysters and estuarine water. A total of 594 Vibrio parahaemolyticus isolates from cultivated oysters (n = 361) and estuarine water (n = 233) were examined for antimicrobial resistance (AMR) phenotype and genotype and virulence genes. Four hundred forty isolates (74.1%) exhibited resistance to at least one antimicrobial agent and 13.5% of the isolates were multidrug-resistant strains. Most of the V. parahaemolyticus isolates were resistant to erythromycin (54.2%), followed by sulfamethoxazole (34.7%) and trimethoprim (27.9%). The most common resistance genes were qnr (77.8%), strB (27.4%) and tet(A) (22.1%), whereas blaTEM (0.8%) was rarely found. Four isolates (0.7%) from oysters (n = 2) and estuarine water (n = 2) were positive to tdh, whereas no trh-positive isolates were observed. Significantly positive associations among AMR genes were observed. The SXT elements and class 1, 2 and 3 integrons were absent in all isolates. The results indicated that V. parahaemolyticus isolates from oysters and estuarine water were potential reservoirs of resistance determinants in the environment. This increasing threat of resistant bacteria in the environment potentially affects human health. A 'One Health' approach involved in multidisciplinary collaborations must be implemented to effectively manage antimicrobial resistance.202032358958
2952180.9997Characterization of Integrons and Sulfonamide Resistance Genes among Bacteria from Drinking Water Distribution Systems in Southwestern Nigeria. BACKGROUND: The emergence of antibiotic resistance among pathogenic bacteria in clinical and environmental settings is a global problem. Many antibiotic resistance genes are located on mobile genetic elements such as plasmids and integrons, enabling their transfer among a variety of bacterial species. Water distribution systems may be reservoirs for the spread of antibiotic resistance. MATERIALS AND METHODS: Bacteria isolated from raw, treated, and municipal tap water samples from selected water distribution systems in south-western Nigeria were investigated using the point inoculation method with seeded antibiotics, PCR amplification, and sequencing for the determination of bacterial resistance profiles and class 1/2 integrase genes and gene cassettes, respectively. RESULTS: sul1,sul2, and sul3 were detected in 21.6, 27.8, and 0% of the isolates, respectively (n = 162). Class 1 and class 2 integrons were detected in 21.42 and 3.6% of the isolates, respectively (n = 168). Genes encoding resistance to aminoglycosides (aadA2, aadA1, and aadB), trimethoprim (dfrA15, dfr7, and dfrA1), and sulfonamide (sul1) were detected among bacteria with class 1 integrons, while genes that encodes resistance to strepthothricin (sat2) and trimethoprim (dfrA15) were detected among bacteria with class 2 integrons. CONCLUSIONS: Bacteria from these water samples are a potential reservoir of multidrug-resistant traits including sul genes and mobile resistance elements, i.e. the integrase gene.201727322615
2773190.9997Genotypic Characterization of Aminoglycoside Resistance Genes from Bacteria Isolates in Selected Municipal Drinking Water Distribution Sources in Southwestern Nigeria. BACKGROUND: Multi-drug Resistant (MDR) bacteria could lead to treatment failure of infectious diseases and could be transferred by non-potable water. Few studies have investigated occurrence of Antibiotic Resistance Genes (ARGs) among bacteria including Aminoglycoside Modifying Genes (AMGs) from Drinking Water Distribution Systems (DWDS) in Nigeria. Here, we aimed at characterization of AMGs from DWDS from selected states in southwestern Nigeria. METHODS: One hundred and eighty one (181) MDR bacteria that had been previously characterized using 16S rDNA and showed resistance to at least one aminoglycoside antibiotic were selected from treated and untreated six water distribution systems in southwestern Nigeria. MDR bacteria were PCR genotyped for three AMGs:aph (3″)(c), ant (3″)(b) and aph(6)-1d(d). RESULTS: Out of 181 MDR bacteria genotyped, 69(38.12%) tested positive for at least one of the genotyped AMGs. Highest (50, 27.62%) detected gene was ant (3″)(c) followed by aph (3″)(c)(33, 18.23%). Combination of aph(3″)(c) and ant (3″)(b) in a single bacteria was observed as the highest (14, 7.73%) among the detected gene combination. Alcaligenes sp showed the highest (10/20) occurrence of ant (3″)(b) while aph(3″)(c) was the highest detected among Proteus sp (11/22). Other bacteria that showed the presence of AMGs include: Acinetobacter, Aeromonas, Bordetella, Brevundimonas, Chromobacterium, Klebsiella, Leucobacter, Morganella, Pantoae, Proteus, Providencia, Psychrobacter and Serratia. CONCLUSIONS: High occurrence of ant (3″)(c) and aph (3″)(c) among these bacteria call for urgent attention among public health workers, because these genes can be easily disseminated to consumers of these water samples if present on mobile genetic elements like plasmids, integrons and transposons.201931447500