High prevalence of antibiotic resistance in commensal Escherichia coli among children in rural Vietnam. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
135601.0000High prevalence of antibiotic resistance in commensal Escherichia coli among children in rural Vietnam. BACKGROUND: Commensal bacteria represent an important reservoir of antibiotic resistance genes. Few community-based studies of antibiotic resistance in commensal bacteria have been conducted in Southeast Asia. We investigated the prevalence of resistance in commensal Escherichia coli in preschool children in rural Vietnam, and factors associated with carriage of resistant bacteria. METHODS: We tested isolates of E. coli from faecal samples of 818 children aged 6-60 months living in FilaBavi, a demographic surveillance site near Hanoi. Daily antibiotic use data was collected for participating children for three weeks prior to sampling and analysed with socioeconomic and demographic characteristics extracted from FilaBavi's re-census survey 2007. Descriptive statistics were generated, and a logistic regression model was used to identify contributions of the examined factors. RESULTS: High prevalences of resistance were found to tetracycline (74%), co-trimoxazole (68%), ampicillin (65%), chloramphenicol (40%), and nalidixic acid (27%). Two isolates were resistant to ciprofloxacin. Sixty percent of isolates were resistant to three or more antibiotics. Recent sulphonamide use was associated with co-trimoxazole resistance [OR 3.2, 95% CI 1.8-5.7], and beta-lactam use with ampicillin resistance [OR 1.8, 95% CI 1.3-2.4]. Isolates from children aged 6-23 months were more likely to be resistant to ampicillin [OR 1.8, 95% CI 1.3-2.4] and co-trimoxazole [OR 1.5, 95% CI 1.1-2.0]. Associations were identified between geographical areas and tetracycline and ampicillin resistance. CONCLUSIONS: We present high prevalence of carriage of commensal E. coli resistant to commonly used antibiotics. The identified associations with recent antibiotic use, age, and geographical location might contribute to our understanding of carriage of antibiotic resistant commensal bacteria.201222512857
296810.9999The phenotypic and genotypic characteristics of antibiotic resistance in Escherichia coli populations isolated from farm animals with different exposure to antimicrobial agents. The aim of the study was to determine the influence of the presence or the absence of antibiotic input on the emergence and maintenance of resistance in commensal bacteria from food producing animals. The research material constituted E. coli isolates from two animal species: swine at different age from one conventional pig farm with antibiotic input in young pigs and from beef and dairy cattle originated from organic breeding farm. The sensitivity to 16 antimicrobial agents was tested, and the presence of 15 resistance genes was examined. In E. coli from swine, the most prevalent resistance was resistance to streptomycin (88.3%), co-trimoxazole (78.8%), tetracycline (57.3%) ampicillin (49.3%) and doxycycline (44.9%) with multiple resistance in the majority. The most commonly observed resistance genes were: bla(TEM) (45.2%), tetA (35.8%), aadA1 (35.0%), sul3 (29.5%), dfrA1 (20.4%). Differences in phenotypes and genotypes of E. coli between young swine undergoing prevention program and the older ones without the antibiotic pressure occurred. A disparate resistance was found in E. coli from cattle: cephalothin (36.9%), cefuroxime (18.9%), doxycycline (8.2%), nitrofurantoin (7.7%), and concerned mainly dairy cows. Among isolates from cattle, multidrug resistance was outnumbered by resistance to one or two antibiotics and the only found gene markers were: bla(SHV), (3.4%), tetA (1.29%), bla(TEM) (0.43%) and tetC (0.43%). The presented outcomes provide evidence that antimicrobial pressure contributes to resistance development, and enteric microflora constitutes an essential reservoir of resistance genes.201324053020
135720.9999Faecal carriage of antibiotic resistant Escherichia coli in asymptomatic children and associations with primary care antibiotic prescribing: a systematic review and meta-analysis. BACKGROUND: The faecal reservoir provides optimal conditions for the transmission of resistance genes within and between bacterial species. As key transmitters of infection within communities, children are likely important contributors to endemic community resistance. We sought to determine the prevalence of antibiotic-resistant faecal Escherichia coli from asymptomatic children aged between 0 and 17 years worldwide, and investigate the impact of routinely prescribed primary care antibiotics to that resistance. METHODS: A systematic search of Medline, Embase, Cochrane and Web of Knowledge databases from 1940 to 2015. Pooled resistance prevalence for common primary care antibiotics, stratified by study country OECD status. Random-effects meta-analysis to explore the association between antibiotic exposure and resistance. RESULTS: Thirty-four studies were included. In OECD countries, the pooled resistance prevalence to tetracycline was 37.7 % (95 % CI: 25.9-49.7 %); ampicillin 37.6 % (24.9-54.3 %); and trimethoprim 28.6 % (2.2-71.0 %). Resistance in non-OECD countries was uniformly higher: tetracycline 80.0 % (59.7-95.3 %); ampicillin 67.2 % (45.8-84.9 %); and trimethoprim 81.3 % (40.4-100 %). We found evidence of an association between primary care prescribed antibiotics and resistance lasting for up to 3 months post-prescribing (pooled OR: 1.65, 1.36-2.0). CONCLUSIONS: Resistance to many primary care prescribed antibiotics is common among faecal E. coli carried by asymptomatic children, with higher resistance rates in non-OECD countries. Despite tetracycline being contra-indicated in children, tetracycline resistance rates were high suggesting children could be important recipients and transmitters of resistant bacteria, or that use of other antibiotics is leading to tetracycline resistance via inter-bacteria resistance transmission.201627456093
296630.9998Determination of antibiotic resistance patterns and genotypes of Escherichia coli isolated from wild birds. BACKGROUND: Curbing the potential negative impact of antibiotic resistance, one of our era's growing global public health crises, requires regular monitoring of the resistance situations, including the reservoir of resistance genes. Wild birds, a possible bioindicator of antibiotic resistance, have been suggested to play a role in the dissemination of antibiotic-resistant bacteria. Therefore, this study was conducted with the objective of determining the phenotypic and genotypic antibiotic resistance profiles of 100 Escherichia coli isolates of gull and pigeon origin by using the Kirby-Bauer disk diffusion method and PCR. Furthermore, the genetic relationships of the isolates were determined by RAPD-PCR. RESULTS: Phenotypic antibiotic susceptibility testing revealed that 63% (63/100) and 29% (29/100) of E. coli isolates were resistant to at least one antibiotic and multidrug-resistant (MDR), respectively. With the exception of cephalothin, to which the E. coli isolates were 100% susceptible, tetracycline (52%), kanamycin (38%), streptomycin (37%), ampicillin (28%), chloramphenicol (21%), trimethoprim/sulfamethoxazole (19%), gentamicin (13%), enrofloxacin (12%) and ciprofloxacin (12%) resistances were detected at varying degrees. Among the investigated resistance genes, tet(B) (66%), tet(A) (63%), aphA1 (48%), sul3 (34%), sul2 (26%), strA/strB (24%) and sul1 (16%) were detected. Regarding the genetic diversity of the isolates, the RAPD-PCR-based dendrograms divided both pigeon and gull isolates into five different clusters based on a 70% similarity threshold. Dendrogram analysis revealed 47-100% similarities among pigeon-origin strains and 40-100% similarities among gull-origin E.coli strains. CONCLUSIONS: This study revealed that gulls and pigeons carry MDR E. coli isolates, which may pose a risk to animal and human health by contaminating the environment with their feces. However, a large-scale epidemiological study investigating the genetic relationship of the strains from a "one health" point of view is warranted to determine the possible transmission patterns of antibiotic-resistant bacteria between wild birds, the environment, humans, and other hosts. Video Abstract.202438191447
296740.9998Antibiotic susceptibility and prevalence of foodborne pathogens in poultry meat in Romania. INTRODUCTION: The occurrence of pathogenic strains in poultry meat is of growing concern in Romania. Another problem found on a global level is the continuous increase of antimicrobial resistance in bacteria isolated from food. This study aimed to evaluate the prevalence of pathogenic bacteria in poultry carcasses obtained in Romania in 2012-2013 and to reveal the most prevalent patterns of antimicrobial resistance in the isolated strains. METHODOLOGY: A total of 144 broiler chicken carcasses were evaluated according to classical microbiological methods. The DNA was extracted from the bacterial colonies and the resistance genes were identified by PCR. RESULTS: In 2012, 47.2% of the samples revealed at least one of the following bacteria: Campylobacter jejuni (9.72%; n = 7), Salmonella enterica serotype Enteritidis (4.17%; n = 3), Listeria monocytogenes (15.28%; n = 11), and Escherichia coli (16.67%; n = 12). In 2013, the number of positive samples of pathogenic bacteria decreased, although Campylobacter jejuni was isolated in a higher percentage (20.8% vs. 9.72%). The percentage of multidrug-resistant (MDR) bacteria was high (23%); the most prevalent pattern included resistance to tetracycline, sulfonamides, and quinolones/fluoroquinolones. All the resistant Salmonella and E. coli strains were tested for the presence of characteristic resistance genes (Kn, bla(TEM), tetA, tetB, tetG, DfrIa, aadA1a, Sul) and revealed that these isolates represent an important reservoir in the spread of this phenomenon. CONCLUSIONS: Our findings suggest that Romania urgently needs an integrated surveillance system within the entire chain, for drug-resistant pathogens isolated from poultry meat.201525596569
297750.9998Molecular Detection of Antibiotic Resistance Genes in Shiga Toxin-Producing E. coli Isolated from Different Sources. Shiga toxin-producing Escherichia coli (STEC) is an enteric pathogen associated with human gastroenteritis outbreaks. Extensive use of antibiotics in agriculture selects resistant bacteria that may enter the food chain and potentially causes foodborne illnesses in humans that are less likely to respond to treatment with conventional antibiotics. Due to the importance of antibiotic resistance, this study aimed to investigate the combination of phenotypic and genotypic antibiotic resistance in STEC isolates belonging to serogroups O26, O45, O103, O104, O111, O121, O145, and O157 using disc diffusion and polymerase chain reaction (PCR), respectively. All strains were phenotypically resistant to at least one antibiotic, with 100% resistance to erythromycin, followed by gentamicin (98%), streptomycin (82%), kanamycin (76%), and ampicillin (72%). The distribution of antibiotic resistance genes (ARGs) in the STEC strains was ampC (47%), aadA1 (70%), ere(A) (88%), bla(SHV) (19%), bla(CMY) (27%), aac(3)-I (90%), and tet(A) (35%), respectively. The results suggest that most of the strains were multidrug-resistant (MDR) and the most often observed resistant pattern was of aadA1, ere(A), and aac(3)-I genes. These findings indicate the significance of monitoring the prevalence of MDR in both animals and humans around the globe. Hence, with a better understanding of antibiotic genotypes and phenotypes among the diverse STEC strains obtained, this study could guide the administration of antimicrobial drugs in STEC infections when necessary.202133804818
271060.9998Isolation and molecular characterization of multidrug‑resistant Escherichia coli from chicken meat. Antibiotics in animal farms play a significant role in the proliferation and spread of antibiotic-resistant genes (ARGs) and antibiotic-resistant bacteria (ARB). The dissemination of antibiotic resistance from animal facilities to the nearby environment has become an emerging concern. The present study was focused on the isolation and molecular identification of Escherichia coli (E. coli) isolates from broiler chicken meat and further access their antibiotic-resistant profile against different antibiotics. Broiler chicken meat samples were collected from 44 retail poultry slaughter shops in Prayagraj district, Uttar Pradesh, India. Standard bacteriological protocols were followed to first isolate the E. coli, and molecular characterization was performed with genus-specific PCR. Phenotypic and genotypic antibiotic-resistant profiles of all confirmed 154 E. coli isolates were screened against 09 antibiotics using the disc diffusion and PCR-based method for selected resistance genes. In antibiotic sensitivity testing, the isolates have shown maximum resistance potential against tetracycline (78%), ciprofloxacin (57.8%), trimethoprim (54.00%) and erythromycin (49.35%). E. coli bacterial isolates have shown relative resistant to amoxicillin-clavulanic acid (43.00%) and against ampicillin (44.15%). Notably, 64.28% E. coli bacteria were found to be multidrug resistant. The results of PCR assays exposed that tetA and blaTEM genes were the most abundant genes harboured by 83 (84.0%) and 82 (82.0%) out of all 99 targeted E. coli isolates, followed by 48.0% for AmpC (CITM) gene and cmlA (23.00%) for chloramphenicol resistance. It is notable that most of the isolates collected from chicken meat samples were multidrug resistant (> 3 antibiotics), with more than 80% of them carrying tetracycline (tetA) and beta-lactam gene (blaTEM). This study highlights the high risk associated with poultry products due to MDR-E. coli and promote the limited use of antibiotics in poultry farms. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-024-03950-7.202438476645
269870.9998EHEC, EPEC, and ETEC strains and their antibiotic resistance in drinking and tap water samples. BACKGROUND: Investigating of the presence of Enterohemorrhagic E. coli (EHEC), Enterotoxigenic E. coli (ETEC), Enteropathogenic E. coli (EPEC) strains and their antibiotic resistance in natural spring waters and tap waters from two university hospitals, in Istanbul. METHODS: E. coli strains isolated from water samples were identified by polymerase chain reaction (PCR) method using stx-1, stx-2, eaeA genes specific for EHEC; eaeA, bfp genes specific for EPEC and lt, st genes specific for ETEC. Antibiotic susceptibility tests were done according to the Kirby-Bauer method using The Clinical and Laboratory Standards Institute (CLSI) criteria. RESULTS: E. coli strains were isolated from only five (2.7%) out of 184 water samples. Only one of the 36 E. coli strains isolated from these five water samples was found to be extended spectrum beta lactamase (ESBL) positive. According to PCR, ten E. coli strains isolated from one drinking water were identified as ETEC. Other than E. coli strains, coliforms and non-fermentative Gram negative bacteria were also isolated from waters. It was shown that 60 (81.1%) of these 74 strains isolated, other than E. coli, were found to be multiple resistant. CONCLUSIONS: Contrary to our expectations, it has been shown that natural spring waters (drinking waters) can be much more contaminated with fecal bacteria when compared with tap waters. The presence of pathogenic E. coli strains and antibiotic resistant Gram negative bacteria especially in drinking waters emphasize the importance of these types of studies.201525807645
271280.9998Antibiotic Resistance Profiles of Bacteria Isolated from Hotspot Environments in Bahir Dar City, Northwestern Ethiopia. BACKGROUND: Wastes generated from hotspot environments contain a wide range of antibiotics and pathogens that play a significant role in the dissemination of antibiotic-resistant bacteria in the environment. This study was carried out to isolate bacteria from hotspot environments and determine their resistance profiles to commonly used antibiotics in Bahir Dar city, Ethiopia. METHODS: A cross-sectional study was conducted from October 2020 to June 2021 in Bahir Dar City. A total of 126 waste and wastewater samples were aseptically collected, transported, and processed for bacteriological isolation and susceptibility testing following standard procedures. RESULTS: A total of 411 bacterial isolates were recovered and the highest value of 122 (29.7%) bacterial isolates were obtained from medical wastewater samples, and the most frequently isolated bacteria were assigned to the species Escherichia coli with 82 strains (19.5%). The results revealed that the highest resistance profile of 69 (95.8%) was obtained in Staphylococcus aureus against ampicillin and 46 (86.8%) Citrobacter spp. against tetracycline. Two hundred and sixteen (52.6%) of bacteria showed multi-drug resistance and the highest multi-drug resistance was observed in Pseudomonas spp. 47 (65.3%), followed by Escherichia coli 51 (62.2%). The highest resistance profile of 12 (85.7%) and 60 (74.1%) for tetracycline were obtained from beef waste and wastewater and medical wastewater samples. The highest multi-drug resistance was recorded in isolates isolated from beef waste and wastewater samples 11 (64.7%), followed by medical wastewater samples 84 (64.1%). Even though a higher (>0.2) multi-antibiotic resistance index was found in all hotspot environments, the highest multi-antibiotic resistance index (0.477) was recorded in bacteria isolated from medical wastewater. CONCLUSION: It was concluded that wastes generated from hotspot environments and released in the environment contain large numbers of antibiotic-resistant, multidrug, extensively, and pan-drug-resistant bacteria. Proper waste management strategies should be established.202235785260
195590.9998Phenotypic & genotypic study of antimicrobial profile of bacteria isolates from environmental samples. BACKGROUND & OBJECTIVES: The resistance to antibiotics in pathogenic bacteria has increased at an alarming rate in recent years due to the indiscriminate use of antibiotics in healthcare, livestock and aquaculture. In this context, it is necessary to monitor the antibiotic resistance patterns of bacteria isolated from the environmental samples. This study was conducted to determine the phenotypic and genotypic profile of antimicrobial resistance in Gram-negative bacteria isolated from environmental samples. METHODS: Two hundred and fifty samples were collected from different sources, viz. fish and fishery products (99), livestock wastes (81) and aquaculture systems (70), in and around Mangaluru, India. Isolation, identification and antimicrobial profiling were carried out as per standard protocols. The isolates were screened for the presence of resistance genes using PCR. RESULTS: A total of 519 Gram-negative bacteria comprising Escherichia coli (116), Salmonella spp. (14), Vibrio spp. (258), Pseudomonas spp. (56), Citrobacter spp. (26) and Proteus spp. (49) were isolated and characterized from 250 samples obtained from different sources. A total of 12 antibiotics were checked for their effectiveness against the isolates. While 31.6 per cent of the isolates were sensitive to all the antibiotics used, 68.4 per cent of the isolates showed resistance to at least one of the antibiotics used. One-third of the isolates showed multidrug resistance. Maximum resistance was observed for ampicillin (43.4%), followed by nitrofurantoin (20.8%). Least resistance was seen for carbapenems and chloramphenicol. PCR profiling of the resistant isolates confirmed the presence of resistance genes corresponding to their antibiotic profile. INTERPRETATION & CONCLUSIONS: This study results showed high rate of occurrence of antimicrobial resistance and their determinants in Gram-negative bacteria isolated from different environmental sources.201931219088
2970100.9998Plasmid-mediated quinolone resistance in Escherichia coli isolates from commercial broiler chickens in Semnan, Iran. BACKGROUND AND OBJECTIVES: Antibiotic resistance within the poultry sector presents a considerable health concern due to treatment inefficacy and resistance transmission to humans and the environment. The investigation of plasmid-mediated quinolone resistance (PMQR) in Escherichia coli, acknowledged for its role in advancing resistance, remains inadequately studied in Iranian poultry. This study aimed to evaluate PMQR gene prevalence as well as to determine correlation between resistance phenotype and genotype in E. coli obtained from poultry colibacillosis. MATERIALS AND METHODS: A collection of 100 E. coli isolates from the viscera of broilers suspected to colibacillosis was assessed. Using the Kirby-Bauer disk diffusion method, antimicrobial susceptibility tests were conducted for ofloxacin, nalidixic acid, levofloxacin, ciprofloxacin, and ampicillin. Additionally, PCR was employed to screen for qnrS, qnrB, and aac(6)Ib-cr genes. RESULTS: Among the analyzed E. coli isolates, 51% demonstrated resistance to at least one of the tested antibiotics, with 17% exhibiting resistance to four different antibiotics. Nalidixic acid displayed the highest resistance rate at 48%, while ampicillin had the lowest at 16%. PMQR genes were detected in 28% of the E. coli isolates, with aac(6')-Ib-cr being the most prevalent at 14%, followed by qnrB in 13%, and qnrS in 7%. CONCLUSION: The study underscores the vital need for careful antibiotic usage in poultry to curb the emergence of antibiotic-resistant bacteria. The results illuminate the prevalence of PMQR genes and their association with resistance trends in Iranian poultry, forming a pivotal basis for forthcoming approaches to combat antibiotic resistance within the poultry sector.202438854977
2611110.9998Prevalence of antimicrobial-resistant bacteria in conventional vs. organic livestock farms in Egypt: a cross-sectional comparative study. The silent pandemic of antimicrobial resistance (AR) has been on the rise for the past decades. It is essential to determine the burden of AR in animal farms that spreads leading to human exposure. A total of 100 samples including soil, litter, animal excreta, and wastewater were collected from seven conventional and one organic farm in Egypt. The prevalence of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-producing E. coli), fluoroquinolone-resistant E. coli, fluoroquinolone-resistant Salmonella, and vancomycin-resistant enterococci (VRE) was determined in studied farms. Conventional farms had a higher prevalence of antimicrobial-resistant bacteria than the organic farm (73.81% vs. 18.75%, P < .001). In conventional farms 21.43% of samples yielded mixed isolates; however, in the organic farm, only single isolates of ESBL-producing E. coli were detected. The most prevalent ESBL-production gene was blaTEM (82.14%), followed by blaCTX-M (48.22%), and blaSHV (19.64%), either alone or in combination with another gene. The most prevalent fluoroquinolone-resistance genes were qnrS (82.69%) and qnrB (42.30%), either alone or in combination with another gene(s). A total of five VRE isolates harbored vanA gene (83.33%), none carried vanB gene, and one isolate was negative for both genes. The studied conventional livestock farms had significantly higher rates of serious AR threats than the organic farm.202336688777
2973120.9998An evaluation of multidrug-resistant Escherichia coli isolates in urinary tract infections from Aguascalientes, Mexico: cross-sectional study. BACKGROUND: Uropathogenic Escherichia coli (UPEC) are one of the main bacteria causing urinary tract infections (UTIs). The rates of UPEC with high resistance towards antibiotics and multidrug-resistant bacteria have increased dramatically in recent years and could difficult the treatment. METHODS: The aim of the study was to determine multidrug-resistant bacteria, antibiotic resistance profile, virulence traits, and genetic background of 110 E. coli isolated from community (79 isolates) and hospital-acquired (31 isolates) urinary tract infections. The plasmid-mediated quinolone resistance genes presence was also investigated. A subset of 18 isolates with a quinolone-resistance phenotype was examined for common virulence genes encoded in diarrheagenic and extra-intestinal pathogenic E. coli by a specific E. coli microarray. RESULTS: Female children were the group most affected by UTIs, which were mainly community-acquired. Resistance to trimethoprim-sulfamethoxazole, ampicillin, and ampicillin-sulbactam was most prevalent. A frequent occurrence of resistance toward ciprofloxacin (47.3%), levofloxacin (43.6%) and cephalosporins (27.6%) was observed. In addition, 63% of the strains were multidrug-resistant (MDR). Almost all the fluoroquinolone (FQ)-resistant strains showed MDR-phenotype. Isolates from male patients were associated to FQ-resistant and MDR-phenotype. Moreover, hospital-acquired infections were correlated to third generation cephalosporin and nitrofurantoin resistance and the presence of kpsMTII gene. Overall, fimH (71.8%) and fyuA (68.2%), had the highest prevalence as virulence genes among isolates. However, the profile of virulence genes displayed a great diversity, which included the presence of genes related to diarrheagenic E. coli. Out of 110 isolates, 25 isolates (22.7%) were positive to qnrA, 23 (20.9%) to qnrB, 7 (6.4%) to qnrS1, 7 (6.4%) to aac(6')lb-cr, 5 (4.5%) to qnrD, and 1 (0.9%) to qnrC genes. A total of 12.7% of the isolates harbored bla(CTX-M) genes, with bla(CTX-M-15) being the most prevalent. CONCLUSIONS: Urinary tract infection due to E. coli may be difficult to treat empirically due to high resistance to commonly used antibiotics. Continuous surveillance of multidrug resistant organisms and patterns of drug resistance are needed in order to prevent treatment failure and reduce selective pressure. These findings may help choosing more suitable treatments of UTI patients in this region of Mexico.201830041652
1200130.9998Virulence and Antimicrobial Resistance Patterns of Salmonella spp. Recovered From Migratory and Captive Wild Birds. BACKGROUND: Salmonella spp., especially those are resistant to extended-spectrum β-lactamase (ESBL), are considered as major concern to global health due to their emergence and dissemination. AIM: The aim of this study was to investigate the virulence and antimicrobial resistance (AMR) profile of Salmonella spp. from migratory and captive wild birds. METHOD: A total 262 faecal samples were collected, and the identification of Salmonella spp. was carried out using a standard culture and PCR as well as molecular detection of virulence and AMR genes. RESULTS: The overall prevalence of Salmonella was determined to be 30.92% (95% CI = 25.63-36.75). Migratory birds exhibited highest prevalence (38.10%), whereas wild birds in captivity showed a lower prevalence (23.40%). The agfA gene was detected at a higher rate at 24.69%. Salmonella spp. exhibited 100% resistance to tetracycline, followed by 58% ampicillin and 46% streptomycin. In addition, there was a resistance rate to ceftriaxone of 17% and to colistin sulphate of 25%. Interestingly, levofloxacin alone displayed 100% sensitivity across all isolates, while ciprofloxacin and azithromycin showed 73% and 64% sensitivity, respectively. The MAR index was 0.25 and 0.42, and 74.07% of all isolates showed multidrug resistance (MDR). It was shown that migratory and captive wild birds contained ESBL genes blaTEM (94.34% and 49.06%) and blaSHV (13.33% and 10%), respectively. Genes responsible for sulphonamide (sul1) resistance were detected in 13.33% and 79% of wild and migratory birds, respectively. CONCLUSION: Salmonella has been found in captive wild and migratory birds and could act as reservoirs for the transmission of MDR and ESBL bacteria.202439494993
2931140.9998Molecular characterization of antibiotic resistance in Escherichia coli strains from a dairy cattle farm and its surroundings. BACKGROUND: This study describes the phenotypic and genotypic characteristics of 78 genetically different Escherichia coli recovered from air and exudate samples of a dairy cattle farm and its surroundings in Spain, in order to gain insight into the flow of antimicrobial resistance through the environment and food supply. RESULTS: Antimicrobial resistance was detected in 21.8% of the 78 E. coli isolates analyzed (resistance for at least one of the 14 agents tested). The highest resistance rates were recorded for ampicillin, nalidixic acid, trimethoprim/sulfamethoxazole and tetracycline. The resistance genes detected were as follows (antibiotic (number of resistant strains), gene (number of strains)): ampicillin (9), bla(TEM-1) (6); tetracycline (15), tet(A) (7), tet(B) (4), tet(A) + tet(B) (1); chloramphenicol (5), cmlA (2), floR (2); trimethoprim/sulfamethoxazole (10), sul2 (4), sul1 (3), sul3 (2), sul1 + sul2 (1); gentamicin-tobramycin (1), ant(2″) (1). About 14% of strains showed a multidrug-resistant phenotype and, of them, seven strains carried class 1 integrons containing predominantly the dfrA1-aadA1 array. One multidrug-resistant strain was found in both inside and outside air, suggesting that the airborne spread of multidrug-resistant bacteria from the animal housing facilities to the surroundings is feasible. CONCLUSIONS: This study gives a genetic background of the antimicrobial resistance problem in a dairy cattle farm and shows that air can act as a source for dissemination of antimicrobial-resistant bacteria. © 2016 Society of Chemical Industry.201726969806
1360150.9998First Report on a Randomized Investigation of Antimicrobial Resistance in Fecal Indicator Bacteria from Livestock, Poultry, and Humans in Tanzania. This study provides an estimate of antimicrobial resistance in intestinal indicator bacteria from humans (n = 97) and food animals (n = 388) in Tanzania. More than 70% of all fecal samples contained tetracycline (TE), sulfamethoxazole (STX), and ampicillin (AMP)-resistant coliforms, while cefotaxime (CTX)-resistant coliforms were observed in 40% of all samples. The average Log(10) colony forming units/g of CTX-resistant coliforms in samples from humans were 2.20. Of 390 Escherichia coli tested, 66.4% were resistant to TE, 54.9% to STX, 54.9% to streptomycin, and 36.4% to CTX. Isolates were commonly (65.1%) multiresistant. All CTX-resistant isolates contained bla(CTX-M) gene type. AMP- and vancomycin-resistant enterococci were rare, and the average concentrations in positive samples were low (log(10) 0.9 and 0.4, respectively). A low-to-moderate resistance (2.1-15%) was detected in 240 enterococci isolates to the drugs tested, except for rifampicin resistance (75.2% of isolates). The average number of sulII gene copies varied between Log(10) 5.37 and 5.68 with no significant difference between sample source, while cattle had significantly higher number of tetW genes than humans. These findings, based on randomly obtained samples, will be instrumental in designing antimicrobial resistance (AMR) intervention strategies for Tanzania.201828759321
2707160.9998Emergence of colistin resistance and characterization of antimicrobial resistance and virulence factors of Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae isolated from hybrid red tilapia cage culture. BACKGROUND: Tilapia is a primary aquaculture fish in Thailand, but little is known about the occurrence of antimicrobial resistance (AMR) in Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae colonizing healthy tilapia intended for human consumption and the co-occurrence of these AMR bacteria in the cultivation water. METHODS: This study determined the phenotype and genotype of AMR, extended-spectrum β-lactamase (ESBL) production, and virulence factors of A. hydrophila, Salmonella spp., and V. cholerae isolated from hybrid red tilapia and cultivation water in Thailand. Standard culture methods such as USFDA's BAM or ISO procedures were used for the original isolation, with all isolates confirmed by biochemical tests, serotyping, and species-specific gene detection based on PCR. RESULTS: A total of 278 isolates consisting of 15 A. hydrophila, 188 Salmonella spp., and 75 V. cholerae isolates were retrieved from a previous study. All isolates of A. hydrophila and Salmonella isolates were resistance to at least one antimicrobial, with 26.7% and 72.3% of the isolates being multidrug resistant (MDR), respectively. All A. hydrophila isolates were resistant to ampicillin (100%), followed by oxytetracycline (26.7%), tetracycline (26.7%), trimethoprim (26.7%), and oxolinic acid (20.0%). The predominant resistance genes in A. hydrophila were mcr-3 (20.0%), followed by 13.3% of isolates having floR, qnrS, sul1, sul2, and dfrA1. Salmonella isolates also exhibited a high prevalence of resistance to ampicillin (79.3%), oxolinic acid (75.5%), oxytetracycline (71.8%), chloramphenicol (62.8%), and florfenicol (55.3%). The most common resistance genes in these Salmonella isolates were qnrS (65.4%), tetA (64.9%), bla (TEM) (63.8%), and floR (55.9%). All V. cholerae isolates were susceptible to all antimicrobials tested, while the most common resistance gene was sul1 (12.0%). One isolate of A. hydrophila was positive for int1, while all isolates of Salmonella and V. cholerae isolates were negative for integrons and int (SXT). None of the bacterial isolates in this study were producing ESBL. The occurrence of mcr-3 (20.0%) in these isolates from tilapia aquaculture may signify a serious occupational and consumer health risk given that colistin is a last resort antimicrobial for treatment of Gram-negative bacteria infections. CONCLUSIONS: Findings from this study on AMR bacteria in hybrid red tilapia suggest that aquaculture as practiced in Thailand can select for ubiquitous AMR pathogens, mobile genetic elements, and an emerging reservoir of mcr and colistin-resistant bacteria. Resistant and pathogenic bacteria, such as resistance to ampicillin and tetracycline, or MDR Salmonella circulating in aquaculture, together highlight the public health concerns and foodborne risks of zoonotic pathogens in humans from cultured freshwater fish.202336855429
2980170.9998Risk of sharing resistant bacteria and/or resistance elements between dogs and their owners. BACKGROUND: The indiscriminate use and the similarity of prescribed antibiotics especially beta-lactams in human and small animal medicine, along with the close communication between pets and humans, increases the risk of the transfer of antibiotic-resistant bacteria and/or resistance elements especially integrons, between them. Therefore, we aimed to compare the frequencies of extended spectrum beta-lactamase (ESBL)-producing strains, major ESBL genes, classes 1 and 2 integrons, and antibiotic resistance patterns of fecal Escherichia coli (E. coli) isolates from dogs and their owners. METHODS: The present study was conducted on 144 commensal E. coli isolates from the feces of 28 healthy dog-owner pairs and 16 healthy humans who did not own pets. Phenotypic confirmatory test was used to identify the frequencies of ESBL-producing E. coli. Frequencies of bla(CTX-M), bla(SHV), and bla(TEM) genes, and also classes 1 and 2 integrons were determined by polymerase chain reaction. Resistance against 16 conventional antibiotics was determined by disk diffusion technique. RESULTS: ESBL-production status was similar between the E. coli isolates of 71.4% of dog-owner pairs. The E. coli isolates of 75, 60.7, and 85.7% of dog-owner pairs were similar in terms of the presence or absence of bla(CTX-M), bla(TEM), and bla(SHV) genes, respectively. The presence or absence of class 1 and class 2 integrons was the same in E. coli isolates of 57.1% of dog-owner pairs. Prevalence of resistance to chloramphenicol and tetracycline was significantly higher in E. coli isolates of dogs than owners, but for other 10 (83.3%) tested antibiotics, no statistically significant difference was found in prevalence of antibiotic resistance between dogs and owners isolates. Furthermore, the antibiotic-resistance profile was the same in the E. coli isolates of 14.3% of dog-owner pairs. CONCLUSIONS: The results of current research highlight the seriousness of the drug-resistance problem and the need to prevent further increases and spread of antibiotic-resistance to reduce treatment failure. Moreover, relatively similar characteristics of the E. coli isolates of dogs and their owners can show the risk of sharing resistant bacteria and/or resistance elements between them.202235624502
2962180.9998Prevalence of antimicrobial resistance in fecal Escherichia coli and Salmonella enterica in Canadian commercial meat, companion, laboratory, and shelter rabbits (Oryctolagus cuniculus) and its association with routine antimicrobial use in commercial meat rabbits. Antimicrobial resistance (AMR) in zoonotic (e.g. Salmonella spp.), pathogenic, and opportunistic (e.g. E. coli) bacteria in animals represents a potential reservoir of antimicrobial resistant bacteria and resistance genes to bacteria infecting humans and other animals. This study evaluated the prevalence of E. coli and Salmonella enterica, and the presence of associated AMR in commercial meat, companion, research, and shelter rabbits in Canada. Associations between antimicrobial usage and prevalence of AMR in bacterial isolates were also examined in commercial meat rabbits. Culture and susceptibility testing was conducted on pooled fecal samples from weanling and adult commercial meat rabbits taken during both summer and winter months (n=100, 27 farms), and from pooled laboratory (n=14, 8 laboratory facilities), companion (n=53), and shelter (n=15, 4 shelters) rabbit fecal samples. At the facility level, E. coli was identified in samples from each commercial rabbit farm, laboratory facility, and 3 of 4 shelters, and in 6 of 53 companion rabbit fecal samples. Seventy-nine of 314 (25.2%; CI: 20.7-30.2%) E. coli isolates demonstrated resistance to >1 antimicrobial agent. At least one E. coli isolate resistant to at least one antimicrobial agent was present in samples from 55.6% of commercial farms, and from 25% of each laboratory and shelter facilities, with resistance to tetracycline being most common; no resistance was identified in companion animal samples. Salmonella enterica subsp. was identified exclusively in pooled fecal samples from commercial rabbit farms; Salmonella enterica serovar London from one farm and Salmonella enterica serovar Kentucky from another. The S. Kentucky isolate was resistant to amoxicillin/clavulanic acid, ampicillin, cefoxitin, ceftiofur, ceftriaxone, streptomycin, and tetracycline, whereas the S. London isolate was pansusceptible. Routine use of antimicrobials on commercial meat rabbit farms was not significantly associated with the presence of antimicrobial resistant E. coli or S. enterica on farms; trends towards resistance were present when resistance to specific antimicrobial classes was examined. E. coli was widely prevalent in many Canadian domestic rabbit populations, while S. enterica was rare. The prevalence of AMR in isolated bacteria was variable and most common in isolates from commercial meat rabbits (96% of the AMR isolates were from commercial meat rabbit fecal samples). Our results highlight that domestic rabbits, and particularly meat rabbits, may be carriers of phenotypically antimicrobial-resistant bacteria and AMR genes, possibly contributing to transmission of these bacteria and their genes to bacteria in humans through food or direct contact, as well as to other co-housed animal species.201729254727
1621190.9998Antibiotic Resistance and Virulence Profiles of Escherichia coli Strains Isolated from Wild Birds in Poland. Wild animals are increasingly reported as carriers of antibiotic-resistant and pathogenic bacteria including Enterobacteriaceae. However, the role of free-living birds as reservoirs for potentially dangerous microbes is not yet thoroughly understood. In our work, we examined Escherichia coli strains from wild birds in Poland in relation to their antimicrobial agents susceptibility, virulence and phylogenetic affiliation. Identification of E. coli was performed using MALDI-TOF mass spectrometry. The antibiotic susceptibility of the isolates was determined by the broth microdilution method, and resistance and virulence genes were detected by PCR. E. coli bacteria were isolated from 32 of 34 samples. The strains were most often classified into phylogenetic groups B1 (50%) and A (25%). Resistance to tetracycline (50%), ciprofloxacin (46.8%), gentamicin (34.3%) and ampicillin (28.1%) was most frequently reported, and as many as 31.2% of E. coli isolates exhibited a multidrug resistance phenotype. Among resistance genes, sul2 (31.2% of isolates) and bla(TEM) (28.1%) were identified most frequently, while irp-2 (31.2%) and ompT (28.1%) were the most common virulence-associated genes. Five strains were included in the APEC group. The study indicates that wild birds can be carriers of potentially dangerous E. coli strains and vectors for the spread of resistant bacteria and resistance determinants in the environment.202134451523