Bacterial tellurite resistance. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
13401.0000Bacterial tellurite resistance. Tellurium compounds are used in several industrial processes, although they are relatively rare in the environment. Genes associated with tellurite resistance (TeR) are found in many pathogenic bacteria. Tellurite can be detoxified through interactions with cellular thiols, such as glutathione, or a methyltransferase-catalyzed reaction, although neither process appears involved in plasmid-mediated TeR.199910203839
13610.9997Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Mercury is present in the environment as a result of natural processes and from anthropogenic sources. The amount of mercury mobilized and released into the biosphere has increased since the beginning of the industrial age. Generally, mercury accumulates upwards through aquatic food chains, so that organisms at higher trophic levels have higher mercury concentrations. Some bacteria are able to resist heavy metal contamination through chemical transformation by reduction, oxidation, methylation and demethylation. One of the best understood biological systems for detoxifying organometallic or inorganic compounds involves the mer operon. The mer determinants, RTPCDAB, in these bacteria are often located in plasmids or transposons and can also be found in chromosomes. There are two classes of mercury resistance: narrow-spectrum specifies resistance to inorganic mercury, while broad-spectrum includes resistance to organomercurials, encoded by the gene merB. The regulatory gene merR is transcribed from a promoter that is divergently oriented from the promoter for the other mer genes. MerR regulates the expression of the structural genes of the operon in both a positive and a negative fashion. Resistance is due to Hg2+ being taken up into the cell and delivered to the NADPH-dependent flavoenzyme mercuric reductase, which catalyzes the two-electron reduction of Hg2+ to volatile, low-toxicity Hg0. The potential for bioremediation applications of the microbial mer operon has been long recognized; consequently, Escherichia coli and other wild and genetically engineered organisms for the bioremediation of Hg2+-contaminated environments have been assayed by several laboratories.200312917805
932120.9997Copper resistance determinants in bacteria. Copper is an essential trace element that is utilized in a number of oxygenases and electron transport proteins, but it is also a highly toxic heavy metal, against which all organisms must protect themselves. Known bacterial determinants of copper resistance are plasmid-encoded. The mechanisms which confer resistance must be integrated with the normal metabolism of copper. Different bacteria have adopted diverse strategies for copper resistance, and this review outlines what is known about bacterial copper resistance mechanisms and their genetic regulation.19921741459
13530.9997Resistance to arsenic compounds in microorganisms. Arsenic ions, frequently present as environmental pollutants, are very toxic for most microorganisms. Some microbial strains possess genetic determinants that confer resistance. In bacteria, these determinants are often found on plasmids, which has facilitated their study at the molecular level. Bacterial plasmids conferring arsenic resistance encode specific efflux pumps able to extrude arsenic from the cell cytoplasm thus lowering the intracellular concentration of the toxic ions. In Gram-negative bacteria, the efflux pump consists of a two-component ATPase complex. ArsA is the ATPase subunit and is associated with an integral membrane subunit, ArsB. Arsenate is enzymatically reduced to arsenite (the substrate of ArsB and the activator of ArsA) by the small cytoplasmic ArsC polypeptide. In Gram-positive bacteria, comparable arsB and arsC genes (and proteins) are found, but arsA is missing. In addition to the wide spread plasmid arsenic resistance determinant, a few bacteria confer resistance to arsenite with a separate determinant for enzymatic oxidation of more-toxic arsenite to less-toxic arsenate. In contrast to the detailed information on the mechanisms of arsenic resistance in bacteria, little work has been reported on this subject in algae and fungi.19947848659
932240.9997Copper uptake and resistance in bacteria. Copper ions are essential for bacteria but can cause a number of toxic cellular effects if levels of free ions are not controlled. Investigations of copper-resistant bacteria have revealed several mechanisms, mostly plasmid-determined, that prevent cellular uptake of high levels of free copper ions. However, these studies have also revealed that bacteria apparently have efficient chromosomally encoded systems for uptake and management of trace levels of copper. This review will explore the relationship of copper uptake systems to resistance mechanisms and the possibility that copper resistance has evolved directly through modification of chromosomal copper uptake genes.19938437513
932050.9996Bacterial resistance to arsenic protects against protist killing. Protists kill their bacterial prey using toxic metals such as copper. Here we hypothesize that the metalloid arsenic has a similar role. To test this hypothesis, we examined intracellular survival of Escherichia coli (E. coli) in the amoeba Dictyostelium discoideum (D. discoideum). Deletion of the E. coli ars operon led to significantly lower intracellular survival compared to wild type E. coli. This suggests that protists use arsenic to poison bacterial cells in the phagosome, similar to their use of copper. In response to copper and arsenic poisoning by protists, there is selection for acquisition of arsenic and copper resistance genes in the bacterial prey to avoid killing. In agreement with this hypothesis, both copper and arsenic resistance determinants are widespread in many bacterial taxa and environments, and they are often found together on plasmids. A role for heavy metals and arsenic in the ancient predator-prey relationship between protists and bacteria could explain the widespread presence of metal resistance determinants in pristine environments.201728210928
928960.9996Artificial Gene Amplification in Escherichia coli Reveals Numerous Determinants for Resistance to Metal Toxicity. When organisms are subjected to environmental challenges, including growth inhibitors and toxins, evolution often selects for the duplication of endogenous genes, whose overexpression can provide a selective advantage. Such events occur both in natural environments and in clinical settings. Microbial cells-with their large populations and short generation times-frequently evolve resistance to a range of antimicrobials. While microbial resistance to antibiotic drugs is well documented, less attention has been given to the genetic elements responsible for resistance to metal toxicity. To assess which overexpressed genes can endow gram-negative bacteria with resistance to metal toxicity, we transformed a collection of plasmids overexpressing all E. coli open reading frames (ORFs) into naive cells, and selected for survival in toxic concentrations of six transition metals: Cd, Co, Cu, Ni, Ag, Zn. These selections identified 48 hits. In each of these hits, the overexpression of an endogenous E. coli gene provided a selective advantage in the presence of at least one of the toxic metals. Surprisingly, the majority of these cases (28/48) were not previously known to function in metal resistance or homeostasis. These findings highlight the diverse mechanisms that biological systems can deploy to adapt to environments containing toxic concentrations of metals.201829356848
935770.9996The bifunctional enzymes of antibiotic resistance. The evolutionary union of two genes--each encoding proteins of complementary enzymatic activity--into a single gene so as to allow the coordinated expression of these activities as a fusion polypeptide, is an increasingly recognized biological occurrence. The result of this genetic union is the bifunctional enzyme. This fusion of separate catalytic activities into a single protein, whose gene is regulated by a single promoter, is seen especially where the coordinated expression of the separate activities is highly desirable. Increasingly, a circumstance driving the evolution of the bifunctional enzyme in bacteria is the resistance response of bacteria to antibiotic chemotherapy. We summarize the knowledge on bifunctional antibiotic-resistance enzymes, as possible harbingers of clinically significant resistance mechanisms of the future.200919615931
931980.9996A role for copper in protozoan grazing - two billion years selecting for bacterial copper resistance. The Great Oxidation Event resulted in integration of soft metals in a wide range of biochemical processes including, in our opinion, killing of bacteria by protozoa. Compared to pressure from anthropologic copper contamination, little is known on impacts of protozoan predation on maintenance of copper resistance determinants in bacteria. To evaluate the role of copper and other soft metals in predatory mechanisms of protozoa, we examined survival of bacteria mutated in different transition metal efflux or uptake systems in the social amoeba Dictyostelium discoideum. Our data demonstrated a strong correlation between the presence of copper/zinc efflux as well as iron/manganese uptake, and bacterial survival in amoebae. The growth of protozoa, in turn, was dependent on bacterial copper sensitivity. The phagocytosis of bacteria induced upregulation of Dictyostelium genes encoding the copper uptake transporter p80 and a triad of Cu(I)-translocating P(IB) -type ATPases. Accumulated Cu(I) in Dictyostelium was monitored using a copper biosensor bacterial strain. Altogether, our data demonstrate that Cu(I) is ultimately involved in protozoan predation of bacteria, supporting our hypothesis that protozoan grazing selected for the presence of copper resistance determinants for about two billion years.201627528008
935490.9996Chemical anatomy of antibiotic resistance: chloramphenicol acetyltransferase. The evolution of mechanisms of resistance to natural antimicrobial substances (antibiotics) was almost certainly concurrent with the development in microorganisms of the ability to synthesise such agents. Of the several general strategies adopted by bacteria for defence against antibiotics, one of the most pervasive is that of enzymic inactivation. The vast majority of eubacteria that are resistant to chloramphenicol, an inhibitor of prokaryotic protein synthesis, owe their resistance phenotype to genes for chloramphenicol acetyltransferase (CAT), which catalyses O-acetylation of the antibiotic, using acetyl-CoA as the acyl donor. The structure of CAT is known, as are many of the properties of the enzyme which explain its remarkable specificity and catalytic efficiency. Less clear is the evolutionary pathway which has produced the different members of the CAT 'family' of enzymes. Hints come from other acetyltransferases which share structure and mechanistic features with CAT, while not being strictly 'homologous' at the level of amino acid sequence. The 'super-family' of trimeric acetyltransferases appears to have in common a chemical mechanism based on a shared architecture.19921364583
9328100.9996Man-made cell-like compartments for molecular evolution. Cellular compartmentalization is vital for the evolution of all living organisms. Cells keep together the genes, the RNAs and proteins that they encode, and the products of their activities, thus linking genotype to phenotype. We have reproduced this linkage in the test tube by transcribing and translating single genes in the aqueous compartments of water-in-oil emulsions. These compartments, with volumes close to those of bacteria, can be recruited to select genes encoding catalysts. A protein or RNA with a desired catalytic activity converts a substrate attached to the gene that encodes it to product. In other compartments, substrates attached to genes that do not encode catalysts remain unmodified. Subsequently, genes encoding catalysts are selectively enriched by virtue of their linkage to the product. We demonstrate the linkage of genotype to phenotype in man-made compartments using a model system. A selection for target-specific DNA methylation was based on the resistance of the product (methylated DNA) to restriction digestion. Genes encoding HaeIII methyltransferase were selected from a 10(7)-fold excess of genes encoding another enzyme.19989661199
9327110.9996Detection of the merA gene and its expression in the environment. Bacterial transformation of mercury in the environment has received much attention owing to the toxicity of both the ionic form and organomercurial compounds. Bacterial resistance to mercury and the role of bacteria in mercury cycling have been widely studied. The genes specifying the required functions for resistance to mercury are organized on the mer operon. Gene probing methodologies have been used for several years to detect specific gene sequences in the environment that are homologous to cloned mer genes. While mer genes have been detected in a wide variety of environments, less is known about the expression of these genes under environmental conditions. We combined new methodologies for recovering specific gene mRNA transcripts and mercury detection with a previously described method for determining biological potential for mercury volatilization to examine the effect of mercury concentrations and nutrient availability on rates of mercury volatilization and merA transcription. Levels of merA-specific transcripts and Hg(II) volatilization were influenced more by microbial activity (as manipulated by nutrient additions) than by the concentration of total mercury. The detection of merA-specific transcripts in some samples that did not reduce Hg(II) suggests that rates of mercury volatilization in the environment may not always be proportional to merA transcription.19968849424
9344120.9996A comparative study indicates vertical inheritance and horizontal gene transfer of arsenic resistance-related genes in eukaryotes. Arsenic is a ubiquitous element in the environment, a source of constant evolutionary pressure on organisms. The arsenic resistance machinery is thoroughly described for bacteria. Highly resistant lineages are also common in eukaryotes, but evolutionary knowledge is much more limited. While the origin of the resistance machinery in eukaryotes is loosely attributed to horizontal gene transfer (HGT) from bacteria, only a handful of eukaryotes were deeply studied. Here we investigate the origin and evolution of the core genes in arsenic resistance in eukaryotes using a broad phylogenetic framework. We hypothesize that, as arsenic pressure is constant throughout Earth's history, resistance mechanisms are probably ancestral to eukaryotes. We identified homologs for each of the arsenic resistance genes in eukaryotes and traced their possible origin using phylogenetic reconstruction. We reveal that: i. an important component of the arsenic-resistant machinery originated before the last eukaryotic common ancestor; ii. later events of gene duplication and HGT generated new homologs that, in many cases, replaced ancestral ones. Even though HGT has an important contribution to the expansion of arsenic metabolism in eukaryotes, we propose the hypothesis of ancestral origin and differential retention of arsenic resistance mechanisms in the group. Key-words: Environmental adaptation; resistance to toxic metalloids; detoxification; comparative genomics; functional phylogenomics.202235533945
6314130.9996Identification of genes involved in the resistance of mycobacteria to killing by macrophages. The survival of M. leprae and M. tuberculosis in the human host is dependent upon their ability to produce gene products that counteract the bactericidal activities of macrophages. To identify such mycobacterial genes and gene products, recombinant DNA libraries of mycobacterial DNA in E. coli were passed through macrophages to enrich for clones carrying genes that endow the normally susceptible E. coli bacteria with an enhanced ability to survive within macrophages. Following three cycles of enrichment, 15 independent clones were isolated. Three recombinants were characterized in detail, and each confers significantly enhanced survival on E. coli cells carrying them. Two of the cloned genetic elements also confer enhanced survival onto M. smegmatis cells. Further characterization of these genes and gene products should provide insights into the survival of mycobacteria within macrophages and may identify new approaches of targets for combatting these important pathogens.19948080180
9356140.9996The expression of antibiotic resistance genes in antibiotic-producing bacteria. Antibiotic-producing bacteria encode antibiotic resistance genes that protect them from the biologically active molecules that they produce. The expression of these genes needs to occur in a timely manner: either in advance of or concomitantly with biosynthesis. It appears that there have been at least two general solutions to this problem. In many cases, the expression of resistance genes is tightly linked to that of antibiotic biosynthetic genes. In others, the resistance genes can be induced by their cognate antibiotics or by intermediate molecules from their biosynthetic pathways. The regulatory mechanisms that couple resistance to antibiotic biosynthesis are mechanistically diverse and potentially relevant to the origins of clinical antibiotic resistance.201424964724
9337150.9996Predation-resistant Pseudomonas bacteria engage in symbiont-like behavior with the social amoeba Dictyostelium discoideum. The soil amoeba Dictyostelium discoideum acts as both a predator and potential host for diverse bacteria. We tested fifteen Pseudomonas strains that were isolated from transiently infected wild D. discoideum for ability to escape predation and infect D. discoideum fruiting bodies. Three predation-resistant strains frequently caused extracellular infections of fruiting bodies but were not found within spores. Furthermore, infection by one of these species induces secondary infections and suppresses predation of otherwise edible bacteria. Another strain can persist inside of amoebae after being phagocytosed but is rarely taken up. We sequenced isolate genomes and discovered that predation-resistant isolates are not monophyletic. Many Pseudomonas isolates encode secretion systems and toxins known to improve resistance to phagocytosis in other species, as well as diverse secondary metabolite biosynthetic gene clusters that may contribute to predation resistance. However, the distribution of these genes alone cannot explain why some strains are edible and others are not. Each lineage may employ a unique mechanism for resistance.202337884792
9324160.9996Role of horizontally transferred copper resistance genes in Staphylococcus aureus and Listeria monocytogenes. Bacteria have evolved mechanisms which enable them to control intracellular concentrations of metals. In the case of transition metals, such as copper, iron and zinc, bacteria must ensure enough is available as a cofactor for enzymes whilst at the same time preventing the accumulation of excess concentrations, which can be toxic. Interestingly, metal homeostasis and resistance systems have been found to play important roles in virulence. This review will discuss the copper homeostasis and resistance systems in Staphylococcus aureus and Listeria monocytogenes and the implications that acquisition of additional copper resistance genes may have in these pathogens.202235404222
9288170.9996Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance. Bacterial resistances to metals are heterogeneous in both their genetic and biochemical bases. Metal resistance may be chromosomally-, plasmid- or transposon-encoded, and one or more genes may be involved: at the biochemical level at least six different mechanisms are responsible for resistance. Various types of resistance mechanisms can occur singly or in combination and for a particular metal different mechanisms of resistance can occur in the same species. To understand better the diverse responses of bacteria to metal ion challenge we have constructed a qualitative model for the selection of metal resistance in bacteria. How a bacterium becomes resistant to a particular metal depends on the number and location of cellular components sensitive to the specific metal ion. Other important selective factors include the nature of the uptake systems for the metal, the role and interactions of the metal in the normal metabolism of the cell and the availability of plasmid (or transposon) encoded resistance mechanisms. The selection model presented is based on the interaction of these factors and allows predictions to be made about the evolution of metal resistance in bacterial populations. It also allows prediction of the genetic basis and of mechanisms of resistance which are in substantial agreement with those in well-documented populations. The interaction of, and selection for resistance to, toxic substances in addition to metals, such as antibiotics and toxic analogues, involve similar principles to those concerning metals. Potentially, models for selection of resistance to any substance can be derived using this approach.19957766205
9323180.9996Metal resistance and accumulation in bacteria. Recent research on the ecology, physiology and genetics of metal resistance and accumulation in bacteria has significantly increased the basic understanding of microbiology in these areas. Research has clearly demonstrated the versatility of bacteria to cope with toxic metal ions. For example, certain strains of bacteria can efficiently efflux toxic ions such as cadmium, that normally exert an inhibitory effect on bacteria. Some bacteria such as Escherichia coli and Staphylococcus sp. can volatilize mercury via enzymatic transformations. It is also noteworthy that many of these resistance mechanisms are encoded on plasmids or transposons. By expanding the knowledge on metal-resistance and accumulation mechanisms in bacteria, it may be possible to utilize certain strains to recover precious metals such as gold and silver, or alternatively remove toxic metal ions from environments or products where their presence is undesirable.198714543146
6339190.9996Novel acid resistance genes from the metagenome of the Tinto River, an extremely acidic environment. Microorganisms that thrive in acidic environments are endowed with specialized molecular mechanisms to survive under this extremely harsh condition. In this work, we performed functional screening of six metagenomic libraries from planktonic and rhizosphere microbial communities of the Tinto River, an extremely acidic environment, to identify genes involved in acid resistance. This approach has revealed 15 different genes conferring acid resistance to Escherichia coli, most of which encoding putative proteins of unknown function or previously described proteins not known to be related to acid resistance. Moreover, we were able to assign function to one unknown and three hypothetical proteins. Among the recovered genes were the ClpXP protease, the transcriptional repressor LexA and nucleic acid-binding proteins such as an RNA-binding protein, HU and Dps. Furthermore, nine of the retrieved genes were cloned and expressed in Pseudomonas putida and Bacillus subtilis and, remarkably, most of them were able to expand the capability of these bacteria to survive under severe acid stress. From this set of genes, four presented a broad-host range as they enhance the acid resistance of the three different organisms tested. These results expand our knowledge about the different strategies used by microorganisms to survive under extremely acid conditions.201323145860