Helicobacter pylori in a poultry slaughterhouse: Prevalence, genotyping and antibiotic resistance pattern. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
133901.0000Helicobacter pylori in a poultry slaughterhouse: Prevalence, genotyping and antibiotic resistance pattern. Although Helicobacter pylori (H. pylori) is a highly significant pathogen, its source remains unclear. Many people consume chicken daily as a source of animal protein worldwide; thus, hygienic methods of supplying chickens for consumption are critical for public health. Therefore, our study examined the distribution of the glmM (ureC), babA2, vacA and cagA virulence genes in H. pylori strains in chicken meat and giblets (gizzards and livers) and the resistance of the strains to various antibiotics. Ninety chicken meat, gizzard and liver samples were obtained from a semi-automatic abattoir in Sadat City, Egypt, and were cultured and preliminarily analyzed using biochemical tests. The presence of the ureC, babA2, vacA and cagA genotypes was tested for in samples positive for H. pylori by multiplex polymerase chain reaction (Multiplex-PCR). The resistance of H. pylori to various antimicrobial drugs was tested using the disc diffusion method. In total, 7 of the 90 chicken samples were positive for H. pylori (7.78%); in 3/7 (42.85%) samples, the bacteria were found in the chicken liver, while the bacteria were found in the meat in 2/7 (28.57%) and in the gizzard in 2/7 (28.57%) samples. The total prevalence of both the ureC and babA2 genes in the isolated H. pylori strains was 100%, while the prevalence of the vacA and cagA genes was 57.1% and 42.9%, respectively. The resistance of H. pylori to the antibiotics utilized in our study was 100% for streptomycin; 85.7% for amoxicillin and penicillin; 71.4% for oxytetracycline, nalidixic acid and ampicillin; 57.1% for sulfamethoxazole and erythromycin; and 42.9% for neomycin, chloramphenicol and norfloxacin. In conclusion, the chicken meat and giblets were tainted by H. pylori, with a higher occurrence of the ureC, babA2, vacA and cagA genotypes. Future investigations should investigate the resistance of H. pylori to various antimicrobial agents in Egypt.201830174504
270910.9996Isolation, genotyping and antibiotic resistance analysis in Salmonella species isolated from turkey meat in Isfahan, Iran. Salmonella is one of the mainzoonotic bacteria in the poultry industry.The knowledge about biological characteristics and antibiotic resistance pattern can help medication in poultry and human. This research aimed to study Salmonella spp contamination and its antibiotic resistance in turkey meat in Isfahan province, Iran.400 samples were collected from the turkey meat in slaughter line (May 2021 to May 2022). The conventional microbiological and biochemical tests were applied for isolation and typing of Salmonella spp. The polymerase chain reaction (PCR) was utilized for detection and typing of Salmonella strains. The antibiotic sensitivity test was achieved and all strains were evaluated for resistance genes of Act (3)-IV, Sul1 and qnrA. In microbiological examination, 32 Salmonella strains (8 %) were identified. All tested strains were positive for invA gene. By amplifying the FlicC and Prot6E genes, 28 and 4 strains had genes related to enteritidis and typhimurium, respectively. In disc diffusion test, the highest antibiotic resistance was to oxytetracycline (50 %) and the lowest was to gentamicin, amoxiclavulanic acid, cefotaxime and ceftriaxone. The results showed that 6 (18.75 %) and 10 (31.25 %) of the Salmonella spp were able to amplify Sul1 and qnrA genes, respectively. No Salmonella strain could amplify Act (3)-IV gene. 100 % of the strains carried the Sul1 and qnrA genes were resistant to sulfonamide, and enrofloxacin. Furthermore, 3 sulfonamide resistant strains (75 %) and 5 enrofloxacin resistant strains (83.33 %) were harbored Sul1 and qnrA genes, respectively. The prevalence and antibiotic resistance of Salmonella spp in turkey meat can induce health risk concern. However, the wide spectrum antibiotic resistance complicates the proper treatment of Salmonella infection in human.202539944349
270820.9996Occurrence, Virulence and Antimicrobial Resistance-Associated Markers in Campylobacter Species Isolated from Retail Fresh Milk and Water Samples in Two District Municipalities in the Eastern Cape Province, South Africa. Campylobacter species are among the major bacteria implicated in human gastrointestinal infections and are majorly found in faeces of domestic animals, sewage discharges and agricultural runoff. These pathogens have been implicated in diseases outbreaks through consumption of contaminated milk and water in some parts of the globe and reports on this is very scanty in the Eastern Cape Province. Hence, this study evaluated the occurrence as well as virulence and antimicrobial-associated makers of Campylobacter species recovered from milk and water samples. A total of 56 water samples and 72 raw milk samples were collected and the samples were processed for enrichment in Bolton broth and incubated for 48 h in 10% CO(2) at 42 °C under microaerobic condition. Thereafter, the enriched cultures were further processed and purified. After which, presumptive Campylobacter colonies were isolated and later confirmed by PCR using specific primers for the detection of the genus Campylobacter, target species and virulence associated genes. Antimicrobial resistance profiles of the isolates were determined by disk diffusion method against a panel of 12 antibiotics and relevant genotypic resistance genes were assessed by PCR assay. A total of 438 presumptive Campylobacter isolates were obtained; from which, 162 were identified as belonging to the genus Campylobacter of which 36.92% were obtained from water samples and 37.11% from milk samples. The 162 confirmed isolates were further delineated into four species, of which, 7.41%, 27.16% and 8.64% were identified as C. fetus, C. jejuni and C. coli respectively. Among the virulence genes screened for, the iam (32.88%) was most prevalent, followed by flgR (26.87%) gene and cdtB and cadF (5.71% each) genes. Of the 12 antibiotics tested, the highest phenotypic resistance displayed by Campylobacter isolates was against clindamycin (95.68%), while the lowest was observed against imipenem (21.47%). Other high phenotypic resistance displayed by the isolates were against erythromycin (95.06%), followed by ceftriaxone (93.21%), doxycycline (87.65%), azithromycin and ampicillin (87.04% each), tetracycline (83.33%), chloramphenicol (78.27%), ciprofloxacin (77.78%), levofloxacin (59.88%) and gentamicin (56.17%). Relevant resistance genes were assessed in the isolates that showed high phenotypic resistance, and the highest resistance gene harbored by the isolates was catII (95%) gene while VIM, KPC, Ges, bla-(OXA)-48-like, tetC, tetD, tetK, IMI and catI genes were not detected. The occurrence of this pathogen and the detection of virulence and antimicrobial resistance-associated genes in Campylobacter isolates recovered from milk/water samples position them a risk to human health.202032708075
128930.9995Virulence factors and antibiotic resistance properties of Streptococcus species isolated from hospital cockroaches. Hospital cockroaches are probable sources of pathogenic bacteria. The present investigation was performed to assess the antibiotic resistance properties and distribution of virulence factors in the Streptococcus spp. isolated from hospital cockroaches. Six hundred and sixty cockroach samples were collected. Cockroaches were washed with normal saline, and the achieved saline was used for bacterial culture. Isolated Streptococcus spp. were subjected to disk diffusion. The distribution of virulence factors and antibiotic resistance genes were assessed using a polymerase chain reaction. The prevalence of S. pyogenes, S. agalactiae, and S. pneumonia amongst examined samples was 4.82%, 1.66%, and 6.96%, respectively. Cfb (53.93%), cyl (52.8%), scaa (51.68%) and glna (50.56%) were the most commonly detected virulence factors. Pbp2b (71.91%), pbp2x (58.42%), mefA (46.06%), ermB (46.06%) and tetM (46.06%) were the most commonly detected antibiotic resistance genes. Streptococcal spp. harbored the highest prevalence of resistance against tetracycline (80.89%), trimethoprim (65.16%), and penicillin (56.17%). To the best of our knowledge, this is the first prevalence report of virulence factors and antibiotic resistance genes in the Streptococcal spp. isolated from American, German, and oriental hospital cockroaches in Iran. Our findings indicated a certain role for cockroaches in nosocomial pathogens transmission in the hospital environment.202134194905
271140.9995Antibiotic-resistant Escherichia coli and Salmonella spp. associated with dairy cattle and farm environment having public health significance. AIM: The present study was carried out to determine load of total bacteria, Escherichia coli and Salmonella spp. in dairy farm and its environmental components. In addition, the antibiogram profile of the isolated bacteria having public health impact was also determined along with identification of virulence and resistance genes by polymerase chain reaction (PCR) under a one-health approach. MATERIALS AND METHODS: A total of 240 samples of six types (cow dung - 15, milk - 10, milkers' hand wash - 10, soil - 10 water - 5, and vegetables - 10) were collected from four dairy farms. For enumeration, the samples were cultured onto plate count agar, eosin methylene blue, and xylose-lysine deoxycholate agar and the isolation and identification of the E. coli and Salmonella spp. were performed based on morphology, cultural, staining, and biochemical properties followed by PCR.The pathogenic strains of E. coli stx1, stx2, and rfbO157 were also identified through PCR. The isolates were subjected to antimicrobial susceptibility test against 12 commonly used antibiotics by disk diffusion method. Detection of antibiotic resistance genes ereA, tetA, tetB, and SHV were performed by PCR. RESULTS: The mean total bacterial count, E. coli and Salmonella spp. count in the samples ranged from 4.54±0.05 to 8.65±0.06, 3.62±0.07 to 7.04±0.48, and 2.52±0.08 to 5.87±0.05 log colony-forming unit/g or ml, respectively. Out of 240 samples, 180 (75%) isolates of E. coli and 136 (56.67%) isolates of Salmonella spp. were recovered through cultural and molecular tests. Among the 180 E. coli isolates, 47 (26.11%) were found positive for the presence of all the three virulent genes, of which stx1 was the most prevalent (13.33%). Only three isolates were identified as enterohemorrhagic E. coli. Antibiotic sensitivity test revealed that both E. coli and Salmonella spp. were found highly resistant to azithromycin, tetracycline, erythromycin, oxytetracycline, and ertapenem and susceptible to gentamycin, ciprofloxacin, and imipenem. Among the four antibiotic resistance genes, the most observable was tetA (80.51-84.74%) in E. coli and Salmonella spp. and SHV genes were the lowest one (22.06-25%). CONCLUSION: Dairy farm and their environmental components carry antibiotic-resistant pathogenic E. coli and Salmonella spp. that are potential threat for human health which requires a one-health approach to combat the threat.201931528022
271050.9995Isolation and molecular characterization of multidrug‑resistant Escherichia coli from chicken meat. Antibiotics in animal farms play a significant role in the proliferation and spread of antibiotic-resistant genes (ARGs) and antibiotic-resistant bacteria (ARB). The dissemination of antibiotic resistance from animal facilities to the nearby environment has become an emerging concern. The present study was focused on the isolation and molecular identification of Escherichia coli (E. coli) isolates from broiler chicken meat and further access their antibiotic-resistant profile against different antibiotics. Broiler chicken meat samples were collected from 44 retail poultry slaughter shops in Prayagraj district, Uttar Pradesh, India. Standard bacteriological protocols were followed to first isolate the E. coli, and molecular characterization was performed with genus-specific PCR. Phenotypic and genotypic antibiotic-resistant profiles of all confirmed 154 E. coli isolates were screened against 09 antibiotics using the disc diffusion and PCR-based method for selected resistance genes. In antibiotic sensitivity testing, the isolates have shown maximum resistance potential against tetracycline (78%), ciprofloxacin (57.8%), trimethoprim (54.00%) and erythromycin (49.35%). E. coli bacterial isolates have shown relative resistant to amoxicillin-clavulanic acid (43.00%) and against ampicillin (44.15%). Notably, 64.28% E. coli bacteria were found to be multidrug resistant. The results of PCR assays exposed that tetA and blaTEM genes were the most abundant genes harboured by 83 (84.0%) and 82 (82.0%) out of all 99 targeted E. coli isolates, followed by 48.0% for AmpC (CITM) gene and cmlA (23.00%) for chloramphenicol resistance. It is notable that most of the isolates collected from chicken meat samples were multidrug resistant (> 3 antibiotics), with more than 80% of them carrying tetracycline (tetA) and beta-lactam gene (blaTEM). This study highlights the high risk associated with poultry products due to MDR-E. coli and promote the limited use of antibiotics in poultry farms. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-024-03950-7.202438476645
128760.9995Frequently used therapeutic antimicrobials and their resistance patterns on Staphylococcus aureus and Escherichia coli in mastitis affected lactating cows. Mastitis is one of the most frequent and costly production diseases of dairy cattle. It is frequently treated with broad-spectrum antimicrobials. The objectives of this work were to investigate the prevalence of Staphylococcus aureus and Escherichia coli, find out the antimicrobials used in mastitis treatment, and explore the antimicrobial resistance profile including detection of resistance genes. Bacterial species and antimicrobial resistance genes were confirmed by the polymerase-chain reaction. A total of 450 cows were screened, where 23 (5.11%) and 173 (38.44%) were affected with clinical and sub-clinical mastitis, respectively. The prevalence of S. aureus was 39.13% (n = 9) and 47.97%(n = 83) while, E. coli was 30.43% (n = 7) and 15.60% (n = 27) in clinical and sub-clinical mastitis affected cows, respectively. The highest antimicrobials used for mastitis treatment were ciprofloxacin (83.34%), amoxycillin (80%) and ceftriaxone (76.67%). More than, 70% of S. aureus showed resistance against ampicillin, oxacillin, and tetracycline and more than 60% of E. coli exhibited resistance against oxacillin and sulfamethoxazole-trimethoprim. Selected antimicrobial resistance genes (mecA, tetK, tetL, tetM, tetA, tetB, tetC, sul1, sul2 and sul3) were identified from S. aureus and E. coli. Surprisingly, 7 (7.61%) S. aureus carried the mecA gene and were confirmed as methicillin-resistant S. aureus (MRSA). The most prevalent resistance genes were tetK 18 (19.57%) and tetL 13 (14.13%) for S. aureus, whereas sul1 16 (47.06%), tetA 12 (35.29%), sul2 11 (32.35%) and tetB 7 (20.59%) were the most common resistance genes in E. coli. Indiscriminate use of antimicrobials and the presence of multidrug-resistant bacteria suggest a potential threat to public health.202235291582
271970.9995Antimicrobial resistance and virulence signatures of Listeria and Aeromonas species recovered from treated wastewater effluent and receiving surface water in Durban, South Africa. BACKGROUND: Treated wastewater effluent has been found to contain high levels of contaminants, including disease-causing bacteria such as Listeria and Aeromonas species. The aim of this study was to evaluate the antimicrobial resistance and virulence signatures of Listeria and Aeromonas spp. recovered from treated effluents of two wastewater treatment plants and receiving rivers in Durban, South Africa. METHODS: A total of 100 Aeromonas spp. and 78 Listeria spp. were positively identified based on biochemical tests and PCR detection of DNA region conserved in these genera. The antimicrobial resistance profiles of the isolates were determined using Kirby Bauer disc diffusion assay. The presence of important virulence genes were detected via PCR, while other virulence determinants; protease, gelatinase and haemolysin were detected using standard assays. RESULTS: Highest resistance was observed against penicillin, erythromycin and nalidixic acid, with all 78 (100%) tested Listeria spp displaying resistance, followed by ampicillin (83.33%), trimethoprim (67.95%), nitrofurantoin (64.10%) and cephalosporin (60.26%). Among Aeromonas spp., the highest resistance (100%) was observed against ampicillin, penicillin, vancomycin, clindamycin and fusidic acid, followed by cephalosporin (82%), and erythromycin (58%), with 56% of the isolates found to be resistant to naladixic acid and trimethoprim. Among Listeria spp., 26.92% were found to contain virulence genes, with 14.10, 5.12 and 21% harbouring the actA, plcA and iap genes, respectively. Of the 100 tested Aeromonas spp., 52% harboured the aerolysin (aer) virulence associated gene, while lipase (lip) virulence associated gene was also detected in 68% of the tested Aeromonas spp. CONCLUSIONS: The presence of these organisms in effluents samples following conventional wastewater treatment is worrisome as this could lead to major environmental and human health problems. This emphasizes the need for constant evaluation of the wastewater treatment effluents to ensure compliance to set guidelines.201526498595
128880.9995Assessment of virulence factors and antimicrobial resistance among the Pseudomonas aeruginosa strains isolated from animal meat and carcass samples. BACKGROUND: Pseudomonas aeruginosa bacteria are emerging causes of food spoilage and foodborne diseases. Raw meat of animal species may consider a reservoir of P. aeruginosa strains. OBJECTIVES: The present survey was done to assess the prevalence, antibiotic resistance properties and distribution of virulence factors among the P. aeruginosa strains isolated from raw meat and carcass surface swab samples of animal species. METHODS: Five hundred and fifty raw meat and carcass surface swab samples were collected from cattle and sheep species referred to as slaughterhouses. P. aeruginosa bacteria were identified using culture and biochemical tests. The pattern of antibiotic resistance was determined by disk diffusion. The distribution of virulence and antibiotic resistance genes was determined using polymerase chain reaction. RESULTS: Forty-seven of 550 (8.54%) examined samples were contaminated with P. aeruginosa. The prevalence of P. aeruginosa in raw meat and carcass surface swab samples were 6.57 and 12%, respectively. P. aeruginosa isolates showed the maximum resistance rate toward penicillin (87.23%), ampicillin (85.10%), tetracycline (85.10%), gentamicin (65.95%) and trimethoprim (57.44%). The most commonly detected antibiotic resistance genes were BlaCTX-M (53.19%), blaDHA (42.55%) and blaTEM (27.65%). The most commonly detected virulence factors was ExoS (42.55%), algD (31.91%), lasA (31.91%), plcH (31.91%) and exoU (25.53%). CONCLUSIONS: Meat and carcass surface swab samples may be sources of resistant and virulent P. aeruginosa, which pose a hygienic threat in their consumption. However, further investigations are required to identify additional epidemiological features of P. aeruginosa in meat and carcass surface samples.202336418165
126990.9995Prevalence of Resistance Genes Among Multidrug-Resistant Gram-Negative Bacteria Isolated from Waters of Rivers Swat and Kabul, Pakistan. The waters of rivers Swat and Kabul are the main water source for domestic and irrigation purposes in the northwestern part of Pakistan. However, this water has been contaminated due to human activities. This study aimed to analyze the water of these rivers for occurrence of antibiotic resistance genes among Gram-negative bacteria. Samples were collected from 10 different locations of these rivers. The samples were processed for the isolation of Gram-negative bacteria. Isolated bacteria were checked against 12 different antibiotics for susceptibility. The isolates were also analyzed for the presence of seven antibiotic resistance genes. A total of 50 bacterial isolates were recovered that belonged to five different bacterial genera, that is, Escherichia coli, Klebsiella oxytoca, Pseudomonas aeruginosa, Raoultella terrigena (Klebsiella terrigena), and Pseudomonas fluorescens. Antibiotic resistance pattern was cefixime 72%, cephalothin 72%, ampicillin 68%, nalidixic acid 68%, kanamycin 54%, streptomycin 42%, sulfamethoxazole-trimethoprim 28%, chloramphenicol 28%, meropenem 8%, gentamicin 8%, amikacin 2%, and tobramycin 2%. The prevalence of bla-TEM gene was 72% (n = 36), aadA gene 34% (n = 17), sul gene 32% (n = 16), bla-CTXM gene 12% (n = 6), int gene 66% (n = 33), and int1 gene 6% (n = 3). This information highlights the need for controlling and monitoring the release of domestic wastes to rivers.202539435695
2144100.9995Antimicrobial resistance and prevalence of resistance genes in intestinal Bacteroidales strains. OBJECTIVE: This study examined the antimicrobial resistance profile and the prevalence of resistance genes in Bacteroides spp. and Parabacteroides distasonis strains isolated from children's intestinal microbiota. METHODS: The susceptibility of these bacteria to 10 antimicrobials was determined using an agar dilution method. β-lactamase activity was assessed by hydrolysis of the chromogenic cephalosporin of 114 Bacteriodales strains isolated from the fecal samples of 39 children, and the presence of resistance genes was tested using a PCR assay. RESULTS: All strains were susceptible to imipenem and metronidazole. The following resistance rates were observed: amoxicillin (93%), amoxicillin/clavulanic acid (47.3%), ampicillin (96.4%), cephalexin (99%), cefoxitin (23%), penicillin (99%), clindamycin (34.2%) and tetracycline (53.5%). P-lactamase production was verified in 92% of the evaluated strains. The presence of the cfiA, cepA, ermF, tetQ and nim genes was observed in 62.3%, 76.3%, 27%, 79.8% and 7.8% of the strains, respectively. CONCLUSIONS: Our results indicate an increase in the resistance to several antibiotics in intestinal Bacteroides spp. and Parabacteroides distasonis and demonstrate that these microorganisms harbor antimicrobial resistance genes that may be transferred to other susceptible intestinal strains.201121655744
1286110.9995High prevalence of antibiotic resistance in pathogenic foodborne bacteria isolated from bovine milk. This study aimed to investigate the prevalence of foodborne pathogenic bacteria in bovine milk, their antibiogram phenotype, and the carriage of antibiotic resistance genes. Raw bovine milk samples (n = 100) were randomly collected from different suppliers in the northwest of Iran. Antibiotic-resistant patterns and the presence of antibiotic resistance genes were evaluated in the isolates. Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, and Salmonella spp. were isolated from 78%, 47%, 25%, and 21% of samples, respectively. All isolates showed high rates of resistance to amoxicillin, penicillin, and cefalexin. The bla(TEM) and bla(SHV) genes were detected in 50.0% and 6.4% of E. coli isolates, respectively. Also, 28.5% and 19.0% of Salmonella isolates were positive for bla(TEM) and bla(SHV). The frequency of mecA and bla(Z) in S. aureus isolates was 20.0% and 12.0%, respectively. The high prevalence of bovine milk contamination with antimicrobial-resistant species in this study necessitates precise control on antibiotic prescription in veterinary medicine.202235264647
2667120.9995Prevalence, virulence and antimicrobial resistance patterns of Aeromonas spp. isolated from children with diarrhea. BACKGROUND: Aeromonas spp. cause various intestinal and extraintestinal diseases. These bacteria are usually isolated from fecal samples, especially in children under five years old. The aim of this study was to assess the prevalence of Aeromonas spp. and their antimicrobial resistance profile in children with diarrhea referred to the Children Medical Center in Tehran, between 2013 and 2014. METHODS: A total number of 391 stool samples were collected from children with ages between 1 day and 14 years old, with diarrhea (acute or chronic), referred to the Children Hospital, Tehran, Iran, between 2013 and 2014. Samples were enriched in alkaline peptone water broth for 24 hours at 37 °C and then cultured. Suspicious colonies were analyzed through biochemical tests. Furthermore, antimicrobial susceptibility tests were carried out for the isolates. Isolates were further studied for act, ast, alt, aerA and hlyA virulence genes using polymerase chain reaction. RESULTS: In total, 12 isolates (3.1%) were identified as Aeromonas spp.; all were confirmed using the API-20E test. Of these isolates, five A. caviae (42%), four A. veronii (33%) and three A. hydrophila (25%) were identified in cases with gastroenteritis. Second to ampicillin (which was included in the growth medium used), the highest rate of antimicrobial resistance was seen against nalidixic acid and trimethoprim-sulfamethoxazole (5 isolates each, 41.6%) and the lowest rate of antimicrobial resistance was seen against gentamicin, amikacin and cefepime (none of the isolates). Results included 76.4% act, 64.7% ast, 71.5% alt, 83.3% aerA and 11.7% hlyA genes. CONCLUSION: Aeromonas spp. are important due to their role in diarrhea in children; therefore, isolation and identification of these fecal pathogens should seriously be considered in medical laboratories. Since virulence genes play a significant role in gastroenteritis symptoms caused by these bacteria, Aeromonas species that include virulence genes are potentially suspected to cause severe infections. Moreover, bacterial antimicrobial resistance is increasing, especially against trimethoprim-sulfamethoxazole and nalidixic acid.201627622161
2138130.9995Isolation and molecular identification of multidrug-resistant Escherichia coli strains isolated from mastitic cows in Egypt. BACKGROUND: Mastitis is a common disease that affects the dairy sector globally because it not only impacts animal welfare but can also lead to significant financial losses. AIM: This study examined the phenotypic and genotypic profiles of the multidrug-resistant (MDR) Escherichia coli (E. coli) strains that were isolated from mastitic cows in Egypt to detect their pattern of antibiotic resistance. METHODS: Four hundred native breed lactating cows were evaluated to identify clinical and subclinical mastitis. A total of 100 mastitic milk samples (64 from clinical mastitis and 36 from subclinical mastitis) were collected for phenotypic isolation and identification of coliform bacteria. Escherichia coli isolates were identified through their morphological features, Gram staining, and biochemical tests. The identified E. coli strains were examined against various antibiotics using disk diffusion methods. All E. coli strains were analyzed for the antibiotic resistance genes Streptomycin (aadA), blaTEM, Tetracycline (tetA), Sulfonamides, and qnrA using PCR. RESULTS: Among 400 examined dairy cows, the prevalences of clinical and subclinical mastitis were 16% and 9%, respectively. Bacteriological isolation of coliform bacteria from mastitic milk samples revealed that E. coli was the most prevalent bacterium. Among 10 isolates of biochemically verified E. coli strains, 8 (80%) were MDR across 6 distinct classes of antibiotics. All recovered E. coli strains exhibited higher resistance to Amoxicillin, Cefotaxime, Sulphamethaxzole/Trimethoprim, and Tetracycline. High susceptibility was noticed to Ciprofloxaccin, Amoxicillin+Clavulinic, Streptomycin, Gentamicin, Chloramphenicol, and Colistin. The blaTEM gene was among the most common antibiotic resistance genes found in E. coli isolates (100%). Furthermore, the genotypes encoding resistance to tetA, aadA, and Sulfonamides were 50%, 40%, and 50%, respectively. CONCLUSION: MDR pathogenic E. coli strains are common in mastitic dairy cows in Egypt, and preventive actions must be implemented to avoid serious public health concerns.202540557079
1290140.9995Acinetobacter baumannii in sheep, goat, and camel raw meat: virulence and antibiotic resistance pattern. Acinetobacter genus belongs to a group of Gram-negative coccobacillus. These bacteria are isolated from human and animal origins. Antimicrobial agents play a vital role in treating infectious diseases in both humans and animals, and Acinetobacter in this regard is defined as an organism of low virulence. The current study aimed to evaluate antibiotic resistance properties and virulence factor genes in Acinetobacter baumannii strains isolated from raw animal meat samples. Fresh meat samples from 124 sheep, 162 goat, and 95 camels were randomly collected from Isfahan and Shahrekord cities in Iran. Most A. baumannii strains isolated from sheep meat samples represented fimH (82.35%), aac(3)-IV (78.43%), sul1 (78.43%) and Integron Class I (96.07%) genes. Moreover, more than 50% of A. baumannii strains isolated from sheep samples were resistant to streptomycin (54.90%), gentamycin (74.50%), co-trimoxazole (70.58%), tetracycline (82.35%), and trimethoprim (62.74%). Current findings revealed significant association between the presence of fimH, cnfI, afa/draBC, dfrA1, sulI, aac(3)-IV genes in sheep samples. Furthermore, significant association was observed between fimH, cnfI, sfa/focDE and dfrA1genes in goat meat samples. In sheep meat samples, significant differences were identified in resistance to gentamicin, tetracycline, and co-trimoxazole in comparison with other antibiotics. Finally, there were statistically significant differences between the incidences of resistance to gentamicin, tetracycline, and co-trimoxazole in comparison with other antibiotics in all strains. In conclusion, the presence of virulence factors and antibiotic resistance in A. baumannii strains isolated from animal meat samples showed that animals should be considered as a potential reservoir of multidrug-resistant A. baumannii.201931663061
1299150.9995Prevalence, Drug Resistance, and Virulence Genes of Potential Pathogenic Bacteria in Pasteurized Milk of Chinese Fresh Milk Bar. Fresh Milk Bar (FMB), an emerging dairy retail franchise, is used to instantly produce and sell pasteurized milk and other dairy products in China. However, the quality and safety of pasteurized milk in FMB have received little attention. The objective of this study was to investigate the prevalence, antimicrobial resistance, and virulence genes of Escherichia coli, Staphylococcus aureus, and Streptococcus in 205 pasteurized milk samples collected from FMBs in China. Four (2.0%) isolates of E. coli, seven (3.4%) isolates of S. aureus, and three (1.5%) isolates of Streptococcus agalactiae were isolated and identified. The E. coli isolates were resistant to amikacin (100%), streptomycin (50%), and tetracycline (50%). Their detected resistance genes include aac(3)-III (75%), blaTEM (25%), aadA (25%), aac(3)-II (25%), catI (25%), and qnrB (25%). The S. aureus isolates were mainly resistant to penicillin G (71.4%), trimethoprim-sulfamethoxazole (71.4%), kanamycin (57.1%), gentamicin (57.1%), amikacin (57.1%), and clindamycin (57.1%). blaZ (42.9%), mecA (28.6%), ermB (14.3%), and ermC (14.3%) were detected as their resistance genes. The Streptococcus strains were mainly resistant to tetracycline (66.7%) and contained the resistance genes pbp2b (33.3%) and tetM (33.3%). The virulence genes eae and stx2 were only found in one E. coli strain (25%), sec was detected in two S. aureus strains (28.6%), and bca was detected in one S. agalactiae strain (33.3%). The results of this study indicate that bacteria with drug resistance and virulence genes isolated from the pasteurized milk of FMB are a potential risk to consumers' health.202134129676
2391160.9995Antimicrobial resistance and presence of virulence factor genes in Arcanobacterium pyogenes isolated from the uterus of postpartum dairy cows. Arcanobacterium pyogenes is considered the most significant bacterium involved in the pathogenesis of metritis in cattle. Infections caused by antimicrobial-resistant bacteria are a great challenge in both human and veterinary medicine. The purpose of this study was to present an overview of antimicrobial resistance in A. pyogenes isolated from the uteruses of postpartum Holstein dairy cows and to identify virulence factors. Seventy-two A. pyogenes isolates were phenotypically characterized for antimicrobial resistance to amoxicillin, ampicillin, ceftiofur, chloramphenicol, florfenicol, oxytetracycline, penicillin, spectinomycin, streptomycin and tetracycline by the broth microdilution method. Presence of virulence factor genes of A. pyogenes was investigated. Isolates exhibited resistance to all antimicrobial agents tested; high levels of resistance were found to amoxicillin (56.9%); ampicillin (86.1%), chloramphenicol (100%), florfenicol (59.7%), oxytetracycline (54.2%), penicillin (86.1%) and tetracycline (50%). Of all isolates, 69 (95.8%) were resistant to at least 2 of the antimicrobial agents tested and multidrug resistance (resistant to at least 3 antimicrobials) was observed in 64 (88.9%) of the A. pyogenes isolates. The major multidrug resistance profile was found for chloramphenicol-ampicillin-penicillin-florfenicol-amoxicillin-tetracycline, which was observed in 21 (29.2%) multidrug resistant isolates. No isolate was resistant to all nine antimicrobial agents tested but four isolates (5.6%) were resistant to eight antimicrobials. The information highlights the need for prudent use of specific antimicrobial agents. All four virulence factor genes occurred in isolates from normal puerperium and clinical metritis; however, the fimA gene was present in significantly higher frequency in isolates from metritis cows.201020346602
2668170.9995Genotyping and distribution of putative virulence factors and antibiotic resistance genes of Acinetobacter baumannii strains isolated from raw meat. BACKGROUND: Acinetobacter baumannii strains with multiple antimicrobial resistance are primarily known as opportunistic nosocomial bacteria but they may also be regarded as emerging bacterial contaminants of food samples of animal origin. Here we aimed to study the molecular characteristics of the A. baumanni strains isolated from raw meat samples. METHODS: A total of 22 A. baumanni strains were isolated from 126 animal meat samples and were genotyped by ERIC-PCR method and by PCR detection of their virulence and antimicrobial resistance determinants. A. baumannii strains with 80% and more similarities were considered as one cluster. RESULTS: Sixteen different genetic clusters were found amongst the 22 A. baumanni strains. Of the 22 strains, 12 (54.54%) had similar genetic cluster. A. baumannii strains exhibited the highest percentage of resistance against tetracycline (90.90%), trimethoprim (59.09%), cotrimoxazole (54.54%) and gentamicin (50.00%). TetA (81.81%), tetB (72.72%), dfrA1 (63.63%), aac(3)-IV (63.63%), sul1 (63.63%) and aadA1 (45.45%) were the most commonly detected antibiotic resistance genes. FimH (81.81%), afa/draBC (63.63%), csgA (63.63%), cnf1 (59.09%), cnf2 (54.54%) and iutA (50.00%) were the most commonly detected virulence factors. A. baumannii strains isolated from the chicken meat samples had the highest similarities in the genetic cluster. CONCLUSIONS: A. baumannii strains with similar genetic cluster (ERIC-Type) had the same prevalence of antibiotic resistance, antibiotic resistance genes and virulence factors. Genetic cluster of the A. baumannii strains is the main factor affected the similarities in the genotypic and phenotypic properties of the A. baumannii strains.201830323923
2705180.9994Antibiogram and molecular characterization of methicillin-resistant Staphylococcus aureus recovered from treated wastewater effluent and receiving surface water in Durban, South Africa. Municipal wastewater treatment plants (WWTPs) may serve as a reservoir for potentially pathogenic and antibiotic resistant bacteria. The discharge of improperly treated wastewater effluent may lead to the spread of these bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) which is responsible for causing pneumonia, septicaemia and skin and soft tissue infections, into the receiving surface waters. This study aimed to determine the antibiogram and virulence gene profiles of MRSA isolates recovered from treated wastewater effluent and receiving surface waters. Genetic fingerprinting of the isolates was also carried out to determine the phylogenetic relationship between the isolates and selected antibiogram profiles. Eighty MRSA isolates were obtained from treated effluent and receiving rivers of two WWTPs in Durban, KwaZulu-Natal. Antibiotic resistance was observed towards lincomycin (100%), oxacillin (98.75%), cefoxitin and penicillin (97.50%), and ampicillin (96.25%). In addition, 72.50%, 66.25%, 52.50%, 40% and 33.75% of isolates showed resistance against cefozolin, azithromycin, amoxicillin/clavulanic acid, erythromycin and vancomycin, respectively. Antibiotic resistance genes detected in the isolates tested in this study: aac(6')/aph(2″) (56.25%), ermC (62.50%), msrA (22.50%), and blaZ and tetK (70%). The frequency of virulence genes: hla and sea was 57.50%, hld was 1.25%, while lukS P/V was 0%. Pulse Field Gel Electrophoresis analysis generated 13 pulsotypes (designated A-M) showing a correlation to their respective antibiograms. Findings from this study showed the presence of potentially pathogenic, multi-drug resistant MRSA in the treated effluent and receiving surface waters. This may have detrimental effects on the health of individuals who come into contact with these water resources.201931463610
2671190.9994Toxinotyping and molecular characterization of antimicrobial resistance in Clostridium perfringens isolated from different sources of livestock and poultry. The present study was designed to understand the presence of antimicrobial resistance among the prevalent toxinotypes of Clostridium perfringens recovered from different animals of Tamil Nadu, India. A total of 75 (10.76%) C. perfringens were isolated from 697 multi-species fecal and intestinal content samples. C. perfringens type A (90.67%), type C (2.67%), type D (4%) and type F (2.67%) were recovered. Maximum number of isolates were recovered from dog (n = 20, 24.10%) followed by chicken (n = 19, 5.88%). Recovered isolates were resistant to gentamicin (44.00%), erythromycin (40.00%), bacitracin (40.00%), and tetracycline (26.67%), phenotypically and most of the isolates were found to be resistant to multiple antimicrobials. Genotypic characterization revealed that tetracycline (41.33%), erythromycin (34.66%) and bacitracin (17.33%) resistant genes were present individually or in combination among the isolates. Combined results of phenotypic and genotypic characterization showed the highest percentage of erythromycin resistance (26.66%) among the isolates. None of the isolates showed amplification for lincomycin resistance genes. The correlation matrix analysis of genotypic resistance showed a weak positive relationship between the tetracycline and bacitracin resistance while a weak negative relationship between the tetracycline and erythromycin resistance. The present study thus reports the presence of multiple-resistance genes among C. perfringens isolates that may be involved in the dissemination of resistance to other bacteria present across species. Further insights into the genome can help to understand the mechanism involved in gene transfer so that measures can be taken to prevent the AMR spread.202133220406