Bacteria with a Potential for Multidrug Resistance in Hospital Material. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
127701.0000Bacteria with a Potential for Multidrug Resistance in Hospital Material. The objective of this research was to determine the antimicrobial resistance of bacteria isolated from items related to hygiene and antisepsis, equipment, and instruments used in different hospital wards. Bacterial isolation and identification, phenotypic antimicrobial susceptibility assays, mecA gene detection, and multiple antimicrobial resistance index analysis were performed. In total, 105 bacteria were isolated from 138 items. Of these, 49.52% bacteria were collected from instruments, 43.80% from equipment, and 6.66% from items related to hygiene and antisepsis. All gram-positive bacteria (88 isolates) were identified as coagulase-negative Staphylococcus. Five species of gram-negative bacilli (17 isolates) were isolated, and the prevalence of Enterobacter agglomerans (29.41%), Escherichia coli (11.76%), and Serratia liquefaciens (11.76%) was high. Antimicrobial resistance was reported for 93.33% of the isolates. Gram-positive bacteria were resistant to sulfazotrim (88.64%) and penicillin (82.95%), while gram-negative bacteria showed resistance to sulfazotrim (70.59%) and ampicillin (64.71%). Analysis of multiple antibiotic resistance index showed that 73.33% of the isolates were a high risk to public health. The mecA gene was detected in 23 (71.88%) isolates. The evaluation of microorganisms isolated in the hospital environment revealed their high multidrug resistance index. Thus our study presses the need to pay more attention to the cleanliness of frequently used instruments, which may be potential sources of infections.202133232623
128610.9998High prevalence of antibiotic resistance in pathogenic foodborne bacteria isolated from bovine milk. This study aimed to investigate the prevalence of foodborne pathogenic bacteria in bovine milk, their antibiogram phenotype, and the carriage of antibiotic resistance genes. Raw bovine milk samples (n = 100) were randomly collected from different suppliers in the northwest of Iran. Antibiotic-resistant patterns and the presence of antibiotic resistance genes were evaluated in the isolates. Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, and Salmonella spp. were isolated from 78%, 47%, 25%, and 21% of samples, respectively. All isolates showed high rates of resistance to amoxicillin, penicillin, and cefalexin. The bla(TEM) and bla(SHV) genes were detected in 50.0% and 6.4% of E. coli isolates, respectively. Also, 28.5% and 19.0% of Salmonella isolates were positive for bla(TEM) and bla(SHV). The frequency of mecA and bla(Z) in S. aureus isolates was 20.0% and 12.0%, respectively. The high prevalence of bovine milk contamination with antimicrobial-resistant species in this study necessitates precise control on antibiotic prescription in veterinary medicine.202235264647
268120.9997Determination of the Prevalence and Antimicrobial Resistance of Enterococcus faecalis and Enterococcus faecium Associated with Poultry in Four Districts in Zambia. The presence of antimicrobial-resistant Enterococci in poultry is a growing public health concern worldwide due to its potential for transmission to humans. The aim of this study was to determine the prevalence and patterns of antimicrobial resistance and to detect drug-resistant genes in Enterococcus faecalis and E. faecium in poultry from four districts in Zambia. Identification of Enterococci was conducted using phenotypic methods. Antimicrobial resistance was determined using the disc diffusion method and antimicrobial resistance genes were detected using polymerase chain reaction and gene-specific primers. The overall prevalence of Enterococci was 31.1% (153/492, 95% CI: 27.1-35.4). Enterococcus faecalis had a significantly higher prevalence at 37.9% (58/153, 95% CI: 30.3-46.1) compared with E. faecium, which had a prevalence of 10.5% (16/153, 95% CI: 6.3-16.7). Most of the E. faecalis and E. faecium isolates were resistant to tetracycline (66/74, 89.2%) and ampicillin and erythromycin (51/74, 68.9%). The majority of isolates were susceptible to vancomycin (72/74, 97.3%). The results show that poultry are a potential source of multidrug-resistant E. faecalis and E. faecium strains, which can be transmitted to humans. Resistance genes in the Enterococcus species can also be transmitted to pathogenic bacteria if they colonize the same poultry, thus threatening the safety of poultry production, leading to significant public health concerns.202337107019
237730.9997Multidrug-resistant and enterotoxigenic methicillin-resistant Staphylococcus aureus isolated from raw milk of cows at small-scale production units. OBJECTIVE: Staphylococcus aureus (S. aureus) has evolved as one of the most significant bacteria causing food poisoning outbreaks worldwide. This study was carried out to investigate the prevalence, antibiotic sensitivity, virulence, and enterotoxin production of S. aureus in raw milk of cow from small-scale production units and house-raised animals in Damietta governorate, Egypt. MATERIAL AND METHODS: The samples were examined bacteriologically, and antimicrobial sensitivity testing was carried out. Moreover, isolates were characterized by the molecular detection of antimicrobial resistance, virulence, and enterotoxin genes. RESULTS: Out of 300 milk samples examined, S. aureus was isolated from 50 samples (16.7%). Antibiotic sensitivity testing revealed that isolates were resistant to β-lactams (32%), tetracycline (16%), and norfloxacin (16%); however, they showed considerable sensitivity to ceftaroline and amikacin (72%). Multidrug-resistance (MDR) has been observed in eight isolates (16%), with a MDR index (0.5) in all of them. Of the total S. aureus isolates obtained, methicillin-resistant S. aureus (MRSA) has been confirmed molecularly in 16/50 (32%) and was found to carry mecA and coa genes, while virulence genes; hlg (11/16, 68.75%) and tsst (6/16, 37.5%) were amplified at a lower percentage, and they showed a significant moderate negative correlation (r = -0.59, p-value > 0.05). Antibiotic resistance genes have been detected in resistant isolates relevant to their phenotypic resistance: blaZ (100%), tetK (50%), and norA (50%). Fifty percent of MRSA isolates carried the seb enterotoxin gene. CONCLUSION: High detection rate of MRSA and MDR isolates from milk necessitates the prompt implementation of efficient antimicrobial stewardship guidelines, especially at neglected small-scale production units.202235445112
128740.9997Frequently used therapeutic antimicrobials and their resistance patterns on Staphylococcus aureus and Escherichia coli in mastitis affected lactating cows. Mastitis is one of the most frequent and costly production diseases of dairy cattle. It is frequently treated with broad-spectrum antimicrobials. The objectives of this work were to investigate the prevalence of Staphylococcus aureus and Escherichia coli, find out the antimicrobials used in mastitis treatment, and explore the antimicrobial resistance profile including detection of resistance genes. Bacterial species and antimicrobial resistance genes were confirmed by the polymerase-chain reaction. A total of 450 cows were screened, where 23 (5.11%) and 173 (38.44%) were affected with clinical and sub-clinical mastitis, respectively. The prevalence of S. aureus was 39.13% (n = 9) and 47.97%(n = 83) while, E. coli was 30.43% (n = 7) and 15.60% (n = 27) in clinical and sub-clinical mastitis affected cows, respectively. The highest antimicrobials used for mastitis treatment were ciprofloxacin (83.34%), amoxycillin (80%) and ceftriaxone (76.67%). More than, 70% of S. aureus showed resistance against ampicillin, oxacillin, and tetracycline and more than 60% of E. coli exhibited resistance against oxacillin and sulfamethoxazole-trimethoprim. Selected antimicrobial resistance genes (mecA, tetK, tetL, tetM, tetA, tetB, tetC, sul1, sul2 and sul3) were identified from S. aureus and E. coli. Surprisingly, 7 (7.61%) S. aureus carried the mecA gene and were confirmed as methicillin-resistant S. aureus (MRSA). The most prevalent resistance genes were tetK 18 (19.57%) and tetL 13 (14.13%) for S. aureus, whereas sul1 16 (47.06%), tetA 12 (35.29%), sul2 11 (32.35%) and tetB 7 (20.59%) were the most common resistance genes in E. coli. Indiscriminate use of antimicrobials and the presence of multidrug-resistant bacteria suggest a potential threat to public health.202235291582
217850.9997Antimicrobial resistance patterns and their encoding genes among clinical isolates of Acinetobacter baumannii in Ahvaz, Southwest Iran. Acinetobacter baumannii is one of the most important organisms in nosocomial infections. Antibiotic resistance in this bacterium causes many problems in treating patients. This study aimed to investigate antibiotic resistance patterns and resistance-related, genes in clinical isolates of Acinetobacter baumannii. This descriptive study was conducted on 124 isolates of Acinetobacter baumannii collected from clinical samples in two teaching hospitals in Ahvaz. The antibiotic resistance pattern was determined by disk diffusion. The presence of genes coding for antibiotic resistance was determined using the polymerase chain reaction method. Out of 124 isolates, the highest rate of resistance was observed for rifampin (96.8%). The resistance rate for imipenem, meropenem, colistin, and polymyxin-B were 78.2%, 73.4%, 0.8% and 0.8%, respectively. The distribution of qnrA, qnrB, qnrS, Tet A, TetB, and Sul1genes were 52.6%, 0%, 3.2%, 93.5% 69.2%, and 6.42%, respectively. High prevalence of tetA, tetB, and qnrA genes among Acinetobacter baumannii isolated strains in this study indicate the important role of these genes in multidrug resistance in this bacteria. • Acinetobacter baumannii is an important human pathogen that has attracted the attention of many researchers Antibiotic resistance in this bacterium causes many problems in treating patients. • The resistance rate for imipenem, meropenem, colistin, and polymyxin-B were 78.2%, 73.4%, 0.8% and 0.8%, respectively. The distribution of qnrA, qnrB, qnrS, Tet A, TetB, and Sul1genes were 52.6%, 0%, 3.2%, 93.5% 69.2%, and 6.42%, respectively.202032983919
235760.9997Prevalence of Methicillin and β-Lactamase Resistant Pathogens Associated with Oral and Periodontal Disease of Children in Mymensingh, Bangladesh. Oral and periodontal diseases (OPD) is considered one of the main problems of dentistry worldwide. This study aimed to estimate the prevalence of oral and periodontal pathogenic bacteria along with their antimicrobial resistance pattern in 131 children patients aged between 4-10 years who attended in Mymensingh Medical College Hospital during October 2019 to March 2020. OPD pathogens were identified through isolation, cultural and biochemical properties, and nucleic acid detection. The isolates were subjected to antimicrobial susceptibility to 12 antibiotics commonly used in dentistry. In addition, the isolates were analyzed molecularly for the presence of six virulence and three antibacterial resistance genes. Five pathogens were identified, of which Staphylococcus aureus (S. aureus) (49%) and S. salivarius (46%) were noticed frequently; other bacteria included S. mutans (16.8%), S. sobrinus (0.8%) and L. fermentum (13.7%). The virulence genes-clumping factor A (clfA) was detected in 62.5% isolates of S. aureus, and gelatinase enzyme E (gelE) gene was detected in 5% isolates of S. salivarius, while other virulence genes were not detected. All the tested isolates were multidrug-resistant. The overall prevalence of MDR S. aureus, Streptococcus spp. and L. fermentum was 92.2%, 95.1% and 100%, respectively. It was observed that a high proportion of isolates were found resistant to 5-8 antibiotics. A majority of S. aureus, Streptococcus spp., and L. fermentum isolates tested positive for the β-lactamase resistance genes blaTEM and cfxA, as well as the methicillin resistance gene mecA. Phylogenetically, the resistance genes showed variable genetic character among Bangladeshi bacterial pathogens. In conclusion, S. aureus and S. salivarius were major OPD pathogens in patients attended in Mymensingh Medical College Hospital of Bangladesh, and most were Beta-lactam and methicillin resistant.202236015011
127870.9997Multidrug-resistant enterococci in the hospital environment: detection of novel vancomycin-resistant E. faecium clone ST910. INTRODUCTION: The role of the hospital environment as a reservoir of resistant bacteria in Tunisia has been poorly investigated; however, it could be responsible for the transmission of multidrug-resistant bacteria. The objective was to study the prevalence of Enterococcus in the environment of a Tunisian hospital and the antibiotic resistance phenotype/genotype in recovered isolates, with special reference to vancomycin resistance. METHODOLOGY: A total of 300 samples were taken (March-June, 2013) and inoculated in Slanetz-Bartley agar plates supplemented or not supplemented with 8 µg/mL of vancomycin. Antibiotic resistance genes were tested by polymerase chain reaction (PCR). The clonal relatedness of the vanA isolates was assessed using pulsed-field gel electrophoresis (PFGE) and multilocus sequence testing (MLST). RESULTS: Enterococci were recovered in 33.3% of tested samples inoculated in SB medium. E faecium was the most prevalent species, followed by E. faecalis and E. casseliflavus. Antimicrobial resistance genes detected were as follows (number of isolates): erm(B) (71), tet(M) (18), aph(3')-IIIa (27), ant(6)-Ia (15), cat(A) (4), and van(C2) (6). Vancomycin-resistant-enterococci (VRE) were recovered from 14 samples (4.7%), when tested in SB-VAN. The 14 VRE (one per positive sample) were identified as E. faecium and contained the van(A),erm(B), tet(M), ant(6)-Ia, and aph(3')-IIIa genes. Thirteen of the VRE strains were ascribed by PFGE and MLST to a novel clone (new ST910), and only one VRE strain was typed as ST80 included in CC17. CONCLUSIONS: The emergence and spread of new clones of VRE, especially in the hospital environment in this country, could become particularly problematic.201627580324
215780.9997Prevalence and antibiotic resistance pattern of bacteria isolated from urinary tract infections in Northern Iran. BACKGROUND: This study aimed to investigate the bacteria associated with urinary tract infection (UTI) and antibiotic susceptibility pattern of the isolates during 2013-2015 in Northern Iran. MATERIALS AND METHODS: Overall 3798 patients with clinical symptoms of UTI were subjected as samples, and they were cultured and pure isolated bacteria were identified using biochemical tests and subjected to antibiogram assessment using disc diffusion method. RESULTS: Totally, 568 (14.96%) from 3798 patients had positive UTI. Four hundred and ninety-seven (87.5%) from 568 isolated bacteria were resistant to at least one antibiotic. Escherichia coli, Staphylococcus spp., and Pseudomonas spp. were the most prevalent bacteria. Isolated bacteria indicated the highest antibiotic resistance to methicillin (76.06%) and ampicillin (89.29%) and also revealed the most sensitivity to imipenem (99.1%) and amikacin (91.57%). Statistical analysis of the resistance pattern trend during 3 years indicated the insignificant increase (P > 0.05) in antibiotic resistance of the isolates. CONCLUSION: The results of this study revealed a great concern for emerging UTI-related multidrug-resistant strains of bacteria causing UTI in Iran.201729026424
216590.9997Distribution and analysis of the resistance profiles of bacteria isolated from blood cultures in the intensive care unit. PURPOSE: To investigate the distribution characteristics and drug resistance of pathogenic bacteria in bloodstream infections, providing a basis for rational clinical treatment. PATIENTS AND METHODS: Retrospective analysis of 1,282 pathogenic strains isolated from blood cultures in the intensive care unit (ICU) of the Second Affiliated Hospital of Xi'an Jiaotong University from January 1, 2019, to December 31, 2022. RESULTS: Gram-positive bacteria (52.0%) slightly predominated over gram-negative bacteria (48.0%). The top three gram-positive bacteria were Coagulase-negative Staphylococcus (28.0%), Enterococcus faecium (7.4%), and Staphylococcus aureus (6.6%). Staphylococci exhibited a high resistance rate to penicillin, oxacillin, and erythromycin; no strains resistant to vancomycin or linezolid were found. Among the Enterococci, Enterococcus faecium had a high resistance rate to penicillin, ampicillin, and erythromycin. Two strains of Enterococcus faecalis were resistant to linezolid, but none to vancomycin. The top three gram-negative bacteria were Escherichia coli (14.7%), Klebsiella pneumoniae (14.0%), and Acinetobacter baumannii (4.8%). The resistance rate of Escherichia coli to carbapenems increased from 0.0 to 2.3%. Acinetobacter baumannii reached 100% carbapenem resistance (up from 75.0%), while Klebsiella pneumoniae demonstrated 21.1-80.4% resistance to various carbapenems. CONCLUSION: The isolation rate of gram-positive bacteria in patients with bloodstream infection in the ICU of the Second Affiliated Hospital of Xi'an Jiaotong University was slightly higher than that of gram-negative bacteria. The alarming carbapenem resistance among gram-negative pathogens and emerging linezolid resistance in Enterococci demand urgent clinical interventions, including enhanced surveillance, antimicrobial stewardship, and novel therapeutic strategies.202540727562
2678100.9997Phenotypic and molecular characterization of multidrug-resistant mastitis causing pathogens in dairy cattle. This study focused on isolating antibiotic-resistant mastitogens from cow milk; 57% of 100 samples tested positive by California mastitis test. Bacterial species from each milk sample were isolated and identified using Vitek® 2 automated system. Out of the 167 bacterial strains isolated, 14 were multidrug-resistant (MDR) and were further identified as belonging to Staphylococcus spp. Enterobacter spp. Morganella spp. and Elizabethkingia spp. Staphylococcus strains showed the highest resistance by phenotypic and genotypic screening, with 8% of mastitis isolates identified as MDR. These MDR bacterial strains were also found to harbour antibiotic resistance genes such as mecA (21%), blaZ (43%), gyrA (50%), and gyrB (59%). The tissue culture plate assay showed 11 multidrug-resistant bacteria as strong biofilm formers and the biofilm-related atlE gene was analysed from Staphylococcal strain M33.1. The findings highlight a public health risk from resistant dairy bacteria, emphasizing prophylactic measures and responsible antimicrobial use to prevent zoonotic transmission.202541115007
2359110.9997Virulence Factor Genes and Antimicrobial Susceptibility of Staphylococcus aureus Strains Isolated from Blood and Chronic Wounds. Staphylococcus aureus is one of the predominant bacteria isolated from skin and soft tissue infections and a common cause of bloodstream infections. The aim of this study was to compare the rate of resistance to various antimicrobial agents and virulence patterns in a total of 200 S. aureus strains isolated from patients with bacteremia and chronic wounds. Disk diffusion assay and in the case of vancomycin and teicoplanin-microdilution assay, were performed to study the antimicrobial susceptibility of the isolates. The prevalence of genes encoding six enterotoxins, two exfoliative toxins, the Panton-Valentine leukocidin and the toxic shock syndrome toxin was determined by PCR. Of the 100 blood strains tested, the highest percentage (85.0%, 31.0%, and 29.0%) were resistant to benzylpenicillin, erythromycin and clindamycin, respectively. Out of the 100 chronic wound strains, the highest percentage (86.0%, 32.0%, 31.0%, 31.0%, 30.0%, and 29.0%) were confirmed as resistant to benzylpenicillin, tobramycin, amikacin, norfloxacin, erythromycin, and clindamycin, respectively. A significantly higher prevalence of resistance to amikacin, gentamicin, and tobramycin was noted in strains obtained from chronic wounds. Moreover, a significant difference in the distribution of sea and sei genes was found. These genes were detected in 6.0%, 46.0% of blood strains and in 19.0%, and 61.0% of wound strains, respectively. Our results suggest that S. aureus strains obtained from chronic wounds seem to be more often resistant to antibiotics and harbor more virulence genes compared to strains isolated from blood.202134357963
2668120.9997Genotyping and distribution of putative virulence factors and antibiotic resistance genes of Acinetobacter baumannii strains isolated from raw meat. BACKGROUND: Acinetobacter baumannii strains with multiple antimicrobial resistance are primarily known as opportunistic nosocomial bacteria but they may also be regarded as emerging bacterial contaminants of food samples of animal origin. Here we aimed to study the molecular characteristics of the A. baumanni strains isolated from raw meat samples. METHODS: A total of 22 A. baumanni strains were isolated from 126 animal meat samples and were genotyped by ERIC-PCR method and by PCR detection of their virulence and antimicrobial resistance determinants. A. baumannii strains with 80% and more similarities were considered as one cluster. RESULTS: Sixteen different genetic clusters were found amongst the 22 A. baumanni strains. Of the 22 strains, 12 (54.54%) had similar genetic cluster. A. baumannii strains exhibited the highest percentage of resistance against tetracycline (90.90%), trimethoprim (59.09%), cotrimoxazole (54.54%) and gentamicin (50.00%). TetA (81.81%), tetB (72.72%), dfrA1 (63.63%), aac(3)-IV (63.63%), sul1 (63.63%) and aadA1 (45.45%) were the most commonly detected antibiotic resistance genes. FimH (81.81%), afa/draBC (63.63%), csgA (63.63%), cnf1 (59.09%), cnf2 (54.54%) and iutA (50.00%) were the most commonly detected virulence factors. A. baumannii strains isolated from the chicken meat samples had the highest similarities in the genetic cluster. CONCLUSIONS: A. baumannii strains with similar genetic cluster (ERIC-Type) had the same prevalence of antibiotic resistance, antibiotic resistance genes and virulence factors. Genetic cluster of the A. baumannii strains is the main factor affected the similarities in the genotypic and phenotypic properties of the A. baumannii strains.201830323923
2358130.9997Genotypic and Phenotypic Evaluation of Biofilm Production and Antimicrobial Resistance in Staphylococcus aureus Isolated from Milk, North West Province, South Africa. Background: Biofilm formation in S. aureus may reduce the rate of penetration of antibiotics, thereby complicating treatment of infections caused by these bacteria. The aim of this study was to correlate biofilm-forming potentials, antimicrobial resistance, and genes in S. aureus isolates. Methods: A total of 64 milk samples were analysed, and 77 S. aureus were isolated. Results: Seventy (90.9%) isolates were biofilm producers. The ica biofilm-forming genes were detected among 75.3% of the isolates, with icaA being the most prevalent (49, 63.6%). The icaB gene was significantly (P = 0.027) higher in isolates with strong biofilm formation potentials. High resistance (60%-90%) of the isolates was observed against ceftriaxone, vancomycin, and penicillin, and 25 (32.5%) of S. aureus showed multidrug resistance (MDR) to at least three antibiotics. Five resistance genes, namely blaZ (29, 37.7%), vanC (29, 37.7%), tetK (24, 31.2%), tetL (21, 27.3%), and msrA/B (16, 20.8%) were detected. Most MDR phenotypes possessed at least one resistance gene alongside the biofilm genes. However, no distinct pattern was identified among the resistance and biofilm phenotypes. Conclusions: The high frequency of potentially pathogenic MDR S. aureus in milk samples intended for human consumption, demonstrates the public health relevance of this pathogen in the region.202032252278
2680140.9997Antimicrobial Resistance, Biofilm Formation, and Virulence Genes in Enterococcus Species from Small Backyard Chicken Flocks. Backyard birds are small flocks that are more common in developing countries. They are used for poultry meat and egg production. However, they are also implicated in the maintenance and transmission of several zoonotic diseases, including multidrug-resistant bacteria. Enterococci are one of the most common zoonotic bacteria. They colonize numerous body sites and cause a wide range of serious nosocomial infections in humans. Therefore, the objective of the present study was to investigate the diversity in Enterococcus spp. in healthy birds and to determine the occurrence of multidrug resistance (MDR), multi-locus sequence types, and virulence genes and biofilm formation. From March 2019 to December 2020, cloacal swabs were collected from 15 healthy backyard broiler flocks. A total of 90 enterococci strains were recovered and classified according to the 16S rRNA sequence into Enterococcus faecalis (50%); Enterococcus faecium (33.33%), Enterococcus hirae (13.33%), and Enterococcus avium (3.33%). The isolates exhibited high resistance to tetracycline (55.6%), erythromycin (31.1%), and ampicillin (30%). However, all of the isolates were susceptible to linezolid. Multidrug resistance (MDR) was identified in 30 (33.3%) isolates. The enterococci AMR-associated genes ermB, ermA, tetM, tetL, vanA, cat, and pbp5 were identified in 24 (26.6%), 11 (12.2%), 39 (43.3%), 34 (37.7%), 1 (1.1%), 4 (4.4%), and 23 (25.5%) isolates, respectively. Of the 90 enterococci, 21 (23.3%), 27 (30%), and 36 (40%) isolates showed the presence of cylA, gelE, and agg virulence-associated genes, respectively. Seventy-three (81.1%) isolates exhibited biofilm formation. A statistically significant correlation was obtained for biofilm formation versus the MAR index and MDR. Multi-locus sequence typing (MLST) identified eleven and eight different STs for E. faecalis and E. faecium, respectively. Seven different rep-family plasmid genes (rep1-2, rep3, rep5-6, rep9, and rep11) were detected in the MDR enterococci. Two-thirds (20/30; 66.6%) of the enterococci were positive for one or two rep-families. In conclusion, the results show that healthy backyard chickens could act as a reservoir for MDR and virulent Enterococcus spp. Thus, an effective antimicrobial stewardship program and further studies using a One Health approach are required to investigate the role of backyard chickens as vectors for AMR transmission to humans.202235326843
1130150.9997The characteristic of antibiotic drug resistance of Salmonella Typhi isolated from tertiary care hospital in Faisalabad. Salmonella Typhi, a human-restricted pathogen, is demonstrating multi-drug resistance (MDR) due to widespread and inappropriate antibiotic use. This study aims to molecular identify the pattern of antibiotic resistance. Blood samples from 2456 suspected patients were assessed. Molecular identification of Salmonella Typhi was performed by amplifying the fliC gene. The Disc diffusion method was used to measure the susceptibility of antibiotics. 2456 patient samples, bacterial growth and Salmonella Typhi were 152 (6.2 %) positive. PCR analysis confirmed that all 152 isolated strains were Salmonella Typhi (100%) through the amplification of the fliC gene. Salmonella Typhi isolates showed resistance to trimethoprim (58%), ampicillin (63%), ciprofloxacin (79%) and chloramphenicol (58%). Fifty-eight percent of the isolates showed multi-drug resistance, whereas 26 percent had extensive drug resistance. Antibiotic resistance gene of quinolones was isolated as 44 (36.4%), whereas 88 (57.9 %) were positive for bla(CTX-M) gene were detected among cephalosporin-resistance bacteria 56 (36.8 %) resistance bla(IMP) and bla(OXA-48) were detected among carbapenem-resistance bacteria. For the azithromycin resistance, more genes were detected as a percentage 03 (50 %) from isolates. It concludes that several multidrug resistance and extensive drug-resistance Salmonella Typhi were found. The majority of isolates were sensitive to meropenem, Imipenem and Azithromycin.202540996203
1288160.9997Assessment of virulence factors and antimicrobial resistance among the Pseudomonas aeruginosa strains isolated from animal meat and carcass samples. BACKGROUND: Pseudomonas aeruginosa bacteria are emerging causes of food spoilage and foodborne diseases. Raw meat of animal species may consider a reservoir of P. aeruginosa strains. OBJECTIVES: The present survey was done to assess the prevalence, antibiotic resistance properties and distribution of virulence factors among the P. aeruginosa strains isolated from raw meat and carcass surface swab samples of animal species. METHODS: Five hundred and fifty raw meat and carcass surface swab samples were collected from cattle and sheep species referred to as slaughterhouses. P. aeruginosa bacteria were identified using culture and biochemical tests. The pattern of antibiotic resistance was determined by disk diffusion. The distribution of virulence and antibiotic resistance genes was determined using polymerase chain reaction. RESULTS: Forty-seven of 550 (8.54%) examined samples were contaminated with P. aeruginosa. The prevalence of P. aeruginosa in raw meat and carcass surface swab samples were 6.57 and 12%, respectively. P. aeruginosa isolates showed the maximum resistance rate toward penicillin (87.23%), ampicillin (85.10%), tetracycline (85.10%), gentamicin (65.95%) and trimethoprim (57.44%). The most commonly detected antibiotic resistance genes were BlaCTX-M (53.19%), blaDHA (42.55%) and blaTEM (27.65%). The most commonly detected virulence factors was ExoS (42.55%), algD (31.91%), lasA (31.91%), plcH (31.91%) and exoU (25.53%). CONCLUSIONS: Meat and carcass surface swab samples may be sources of resistant and virulent P. aeruginosa, which pose a hygienic threat in their consumption. However, further investigations are required to identify additional epidemiological features of P. aeruginosa in meat and carcass surface samples.202336418165
1289170.9997Virulence factors and antibiotic resistance properties of Streptococcus species isolated from hospital cockroaches. Hospital cockroaches are probable sources of pathogenic bacteria. The present investigation was performed to assess the antibiotic resistance properties and distribution of virulence factors in the Streptococcus spp. isolated from hospital cockroaches. Six hundred and sixty cockroach samples were collected. Cockroaches were washed with normal saline, and the achieved saline was used for bacterial culture. Isolated Streptococcus spp. were subjected to disk diffusion. The distribution of virulence factors and antibiotic resistance genes were assessed using a polymerase chain reaction. The prevalence of S. pyogenes, S. agalactiae, and S. pneumonia amongst examined samples was 4.82%, 1.66%, and 6.96%, respectively. Cfb (53.93%), cyl (52.8%), scaa (51.68%) and glna (50.56%) were the most commonly detected virulence factors. Pbp2b (71.91%), pbp2x (58.42%), mefA (46.06%), ermB (46.06%) and tetM (46.06%) were the most commonly detected antibiotic resistance genes. Streptococcal spp. harbored the highest prevalence of resistance against tetracycline (80.89%), trimethoprim (65.16%), and penicillin (56.17%). To the best of our knowledge, this is the first prevalence report of virulence factors and antibiotic resistance genes in the Streptococcal spp. isolated from American, German, and oriental hospital cockroaches in Iran. Our findings indicated a certain role for cockroaches in nosocomial pathogens transmission in the hospital environment.202134194905
2180180.9997Isolation and characterization of multidrug-resistant Klebsiella pneumoniae from raw cow milk in Jiangsu and Shandong provinces, China. Antimicrobials are the most important therapy to bovine mastitis. Bacterial infection and antibiotic treatment of mastitis cycles frequently in dairy farms worldwide, giving rise to concerns about the emergence of multidrug-resistant (MDR) bacteria. In this study, we examined the microbial diversity and antibiotic resistance profiles of bacteria isolated from raw milk from dairy farms in Jiangsu and Shandong provinces, China. Raw milk samples were collected from 857 dairy cattle including 800 apparently healthy individuals and 57 cows with clinical mastitis (CM) and subjected to microbiological culture, antimicrobial susceptibility assay and detection of antibiotic-resistant genes by polymerase chain reaction (PCR) and sequencing. A total of 1,063 isolates belonging to 41 different bacterial genera and 86 species were isolated and identified, of which Pseudomonas spp. (256/1,063, 24.08%), Staphylococcus. spp. (136/1,063, 12.79%), Escherichia coli (116/1,063, 10.91%), Klebsiella spp. (104/1,063, 9.78%) and Bacillus spp. (84/1,063, 7.90%) were most frequently isolated. K. pneumoniae, one of the most prevalent bacteria, was more frequently isolated from the farms in Jiangsu (65/830, 7.83%) than Shandong (1/233, 0.43%) province, and showed a positive association with CM (p < .001). The antimicrobial susceptibility assay revealed that four of the K. pneumoniae isolates (4/66, 6.06%) were MDR bacteria (acquired resistance to ≥three classes of antimicrobials). Furthermore, among 66 isolates of K. pneumoniae, 21.21% (14/66), 13.64% (9/66) and 12.12% (8/66) were resistant to tetracycline, chloramphenicol and aminoglycosides, respectively. However, all K. pneumoniae isolates were sensitive to monobactams and carbapenems. The detection of antibiotic-resistant genes confirmed that the β-lactamase genes (bla(SHV) and bla(CTX-M) ), aminoglycoside modifying enzyme genes [aac(6')-Ib, aph(3')-I and ant(3″)-I], tetracycline efflux pump (tetA) and transposon genetic marker (intI1) were positive in MDR isolates. This study indicated that MDR K. pneumoniae isolates emerged in dairy farms in Jiangsu province and could be a potential threat to food safety and public health.202132780945
1043190.9997Antibiotic Susceptibility Profiles of Bacterial Isolates Recovered from Abscesses in Cattle and Sheep at a Slaughterhouse in Algeria. Abscesses represent the most prominent emerging problem in the red meat industry, leading to great economic constraints and public health hazards. Data on etiological agents present in these purulent lesions in Algeria are very scarce. The aim of this study was to identify the bacteria responsible for these abscesses and to determine their antibiotic susceptibility profiles. A total of 123 samples of abscesses from 100 slaughtered sheep and 23 slaughtered cattle were cultured in several media. A total of 114 bacterial isolates were cultured from 103 abscesses. Bacteria were identified using MALDI-TOF, and antibiotic susceptibility was determined by the disk diffusion method on Mueller-Hinton agar. A total of 73.6% (n = 84) corresponded to Enterobacterales, of which four were multidrug-resistant (MDR). These isolates, together with Staphylococcus aureus, coagulase negative Staphylococci, and seven randomly chosen susceptible Escherichia coli isolates, were further characterized using WGS. Resistome analysis of the four MDR Enterobacterales isolates revealed the presence of OXA-48 carbapenemase in two Klebsiella pneumoniae ST985 and one E. coli ST10 isolates and a CTX-M-15 ESBL in one E. coli isolate ST1706. Two coagulase-negative Staphylococci isolates were found to carry the mecA gene. WGS showed the presence of different resistance genes and virulence genes. Our study revealed 5% of MDR Enterobacterales (including ESBLs and carbapenemases) identified from abscesses, thus urging the need for abscess monitoring in slaughterhouses.202438543576