Prevalence of Resistance Genes Among Multidrug-Resistant Gram-Negative Bacteria Isolated from Waters of Rivers Swat and Kabul, Pakistan. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
126901.0000Prevalence of Resistance Genes Among Multidrug-Resistant Gram-Negative Bacteria Isolated from Waters of Rivers Swat and Kabul, Pakistan. The waters of rivers Swat and Kabul are the main water source for domestic and irrigation purposes in the northwestern part of Pakistan. However, this water has been contaminated due to human activities. This study aimed to analyze the water of these rivers for occurrence of antibiotic resistance genes among Gram-negative bacteria. Samples were collected from 10 different locations of these rivers. The samples were processed for the isolation of Gram-negative bacteria. Isolated bacteria were checked against 12 different antibiotics for susceptibility. The isolates were also analyzed for the presence of seven antibiotic resistance genes. A total of 50 bacterial isolates were recovered that belonged to five different bacterial genera, that is, Escherichia coli, Klebsiella oxytoca, Pseudomonas aeruginosa, Raoultella terrigena (Klebsiella terrigena), and Pseudomonas fluorescens. Antibiotic resistance pattern was cefixime 72%, cephalothin 72%, ampicillin 68%, nalidixic acid 68%, kanamycin 54%, streptomycin 42%, sulfamethoxazole-trimethoprim 28%, chloramphenicol 28%, meropenem 8%, gentamicin 8%, amikacin 2%, and tobramycin 2%. The prevalence of bla-TEM gene was 72% (n = 36), aadA gene 34% (n = 17), sul gene 32% (n = 16), bla-CTXM gene 12% (n = 6), int gene 66% (n = 33), and int1 gene 6% (n = 3). This information highlights the need for controlling and monitoring the release of domestic wastes to rivers.202539435695
218110.9998Molecular Characterization of Antibiotic Resistance Determinants in Klebsiella pneumoniae Isolates Recovered from Hospital Effluents in the Eastern Cape Province, South Africa. Klebsiella pneumoniae (K. pneumoniae) is an opportunistic bacteria responsible for many nosocomial and community-acquired infections. The emergence and spread of antibiotic resistances have resulted in widespread epidemics and endemic dissemination of multidrug-resistant pathogens. A total of 145 K. pneumoniae isolates were recovered from hospital wastewater effluents and subjected to antibiogram profiling. Furthermore, the antibiotic resistance determinants were assessed among phenotypic resistant isolates using polymerase chain reaction (PCR). The isolates showed a wide range of antibiotic resistance against 21 selected antibiotics under 11 classes, with the most susceptible shown against imipenem (94.5%) and the most resistant shown against ampicillin (86.2%). The isolates also showed susceptibility to piperacillin/tazobactam (89.0%), ertapenem (87.6%), norfloxacin (86.2%), cefoxitin (86.2%), meropenem (76.6%), doripenem (76.6%), gentamicin (76.6%), chloramphenicol (73.1%), nitrofurantoin (71.7%), ciprofloxacin (79.3%), amikacin (60.7%), and amoxicillin/clavulanic acid (70.4%). Conversely, resistance was also recorded against tetracycline (69%), doxycycline (56.6%), cefuroxime (46.2%), cefotaxime (48.3%), ceftazidime (41.4%). Out of the 32 resistance genes tested, 28 were confirmed, with [tetA (58.8%), tetD (47.89%), tetM (25.2%), tetB (5.9%)], [sul1 (68.4%), sul1I (66.6%)], and [aadA (62.3%), strA (26%), aac(3)-IIa(aacC2)(a) (14.4%)] genes having the highest occurrence. Strong significant associations exist among the resistance determinants screened. About 82.7% of the K. pneumoniae isolates were multidrug-resistant (MDR) with a multiple antibiotics resistance index (MARI) range of 0.24 to 1.0. A dual presence of the resistant genes among K. pneumoniae was also observed to occur more frequently than multiple presences. This study reveals a worrisome presence of multidrug-resistant K. pneumoniae isolates and resistance genes in hospital waste effluent, resulting in higher public health risks using untreated surface water for human consumption. As a result, adequate water treatment and monitoring initiatives designed to monitor antimicrobial resistance patterns in the aquatic ecosystem are required.202337508235
127020.9998Multiantibiotic resistance of gram-negative bacteria isolated from drinking water samples in southwest Greece. In this study we monitored the sensitivity of 239 gram-negative bacteria (of fecal and non-fecal origin), isolated from the old drinking water distribution network of Patras in southwestern Greece, to 20 antibiotic agents. Two methods were used to find the multiresistant bacteria (bacteria resistant to two or more antibiotics): the diffusion disk method and a serial dilution method. The gram-negative bacteria tested were: Enterobacteriaceae (62), Pseudomonas (145), Vibrionaceae (24), Chromobacter (3), Acinetobacter (2) and others (4). The highest levels of antibiotic resistance were obtained for cephalothin (86.7%), ampicillin (77.5%) and carbenicillin (71%) followed by cefoxitin (55.4%) and cefuroxime (51.2%). Intermediate resistance levels were found for ticarcillin (31.3%), ceftizoxime (31.2%), chloramphenicol (30.3%), and cefotetan (25.2%). Low resistance levels were obtained for cefotaxime (17.9%), sulfisoxazole (15.2%), ceftriaxone (12.5%), tetracycline (11.9%), trimethoprim/sulfamethoxazole (7.4%) and piperacillin (2.4%). Overall 91.3% of the gram-negative bacteria isolated from drinking water were multiresistant. No resistant strains were found to quinolones, aminoglycosides, imipenem, aztreonam, ceftazidime or cefoperazone. The high antibiotic resistance rate of the isolated microorganisms from the Patras drinking water supply is discussed.200010949974
131530.9998Neonatal calf diarrhea: A potent reservoir of multi-drug resistant bacteria, environmental contamination and public health hazard in Pakistan. Though emergence of multi-drug resistant bacteria in the environment is a demonstrated worldwide phenomenon, limited research is reported about the prevalence of resistant bacteria in fecal ecology of neonatal calf diarrhea (NCD) animals in Pakistan. The present study aimed to identify and assess the prevalence of bacterial pathogens and their resistance potential in the fecal ecology of NCD diseased animals of Pakistan. The presence of antibiotic resistance genes (bla(TEM), bla(NDM-1), bla(CTX-M), qnrS) was also investigated. A total of 51 bacterial isolates were recovered from feces of young diarrheic animals (n = 11), collected from 7 cities of Pakistan and identified on the basis of 16S rRNA gene sequence and phylogenetic analysis. Selected isolates were subjected to antimicrobial susceptibility by disc diffusion method while polymerase chain reaction (PCR) was used to characterize the bla(TEM), bla(NDM-1), bla(CTX-M), qnrS and mcr-1 antibiotic resistance genes. Based on the 16S rRNA gene sequences (Accession numbers: LC488898 to LC488948), all isolates were identified that belonged to seventeen genera with the highest prevalence rate for phylum Proteobacteria and genus Bacillus (23%). Antibiotic susceptibility explained the prevalence of resistance in isolates ciprofloxacin (100%), ampicillin (100%), sulfamethoxazole-trimethoprim (85%), tetracycline (75%), amoxicillin (55%), ofloxacin (50%), ceftazidime (45%), amoxicillin/clavulanic acid (45%), levofloxacin (30%), cefpodoxime (25%), cefotaxime (25%), cefotaxime/clavulanic acid (20%), and imipenem (10%). MICs demonstrated that almost 90% isolates were multi-drug resistant (against at least three antibiotics), specially against ciprofloxacin, and tetracycline with the highest resistance levels for Shigella sp. (NCCP-421) (MIC-CIP up to 75 μg mL(-1)) and Escherichia sp. (NCCP-432) (MIC-TET up to 250 μg mL(-1)). PCR-assisted detection of antibiotic resistance genes showed that 54% isolates were positive for bla(TEM) gene, 7% isolates were positive for bla(CTX-M) gene, 23% isolates were positive for each of qnrS and mcr-1 genes, 23% isolates were co-positive in combinations of qnrS and mcr-1 genes and bla(TEM) and mcr-1 genes, whereas none of the isolate showed presence of bla(NDM-1) gene.202134426357
137040.9998Risk Characterization of Antibiotic Resistance in Bacteria Isolated from Backyard, Organic, and Regular Commercial Eggs. This study was conducted to assess the risk due to antimicrobial-resistant strains of Salmonella spp., Listeria monocytogenes, and Escherichia coli isolated from the eggshell and the contents of eggs bought in markets in Valencia (Spain). Thirty-four samples from three different production styles were analyzed: standard ( n = 34), organic ( n = 16), and backyard ( n = 10) eggs. L. monocytogenes was not isolated in any style of production. Only one strain of Salmonella was isolated from standard production, which was resistant to ciprofloxacin and amoxicillin. E. coli strains were resistant in 22% of the isolates from organic production, 12.25% from standard production, and 11.23% from backyard production. In all cases, the highest resistance was observed for amoxicillin-clavulanate. None of the isolates from standard and backyard eggs were resistant to chloramphenicol, ciprofloxacin, gentamycin, and streptomycin, while only ceftriaxone was found to be effective against all E. coli isolates from organic eggs. β-Lactamase genes bla(TEM) , bla(SHV), and bla(CMY-2) and the resistance genes for tetracycline tetA, tetB, and tetC were tested. The most commonly detected antimicrobial resistance genes among the E. coli isolates were tetA (49.30%), bla(TEM) (47.89%), and tetB (36.62%). Overall, a maximum public health risk is associated with β-lactam antibiotics.201930794464
271050.9998Isolation and molecular characterization of multidrug‑resistant Escherichia coli from chicken meat. Antibiotics in animal farms play a significant role in the proliferation and spread of antibiotic-resistant genes (ARGs) and antibiotic-resistant bacteria (ARB). The dissemination of antibiotic resistance from animal facilities to the nearby environment has become an emerging concern. The present study was focused on the isolation and molecular identification of Escherichia coli (E. coli) isolates from broiler chicken meat and further access their antibiotic-resistant profile against different antibiotics. Broiler chicken meat samples were collected from 44 retail poultry slaughter shops in Prayagraj district, Uttar Pradesh, India. Standard bacteriological protocols were followed to first isolate the E. coli, and molecular characterization was performed with genus-specific PCR. Phenotypic and genotypic antibiotic-resistant profiles of all confirmed 154 E. coli isolates were screened against 09 antibiotics using the disc diffusion and PCR-based method for selected resistance genes. In antibiotic sensitivity testing, the isolates have shown maximum resistance potential against tetracycline (78%), ciprofloxacin (57.8%), trimethoprim (54.00%) and erythromycin (49.35%). E. coli bacterial isolates have shown relative resistant to amoxicillin-clavulanic acid (43.00%) and against ampicillin (44.15%). Notably, 64.28% E. coli bacteria were found to be multidrug resistant. The results of PCR assays exposed that tetA and blaTEM genes were the most abundant genes harboured by 83 (84.0%) and 82 (82.0%) out of all 99 targeted E. coli isolates, followed by 48.0% for AmpC (CITM) gene and cmlA (23.00%) for chloramphenicol resistance. It is notable that most of the isolates collected from chicken meat samples were multidrug resistant (> 3 antibiotics), with more than 80% of them carrying tetracycline (tetA) and beta-lactam gene (blaTEM). This study highlights the high risk associated with poultry products due to MDR-E. coli and promote the limited use of antibiotics in poultry farms. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-024-03950-7.202438476645
137360.9998Multidrug resistant Aeromonas spp. isolated from zebrafish (Danio rerio): antibiogram, antimicrobial resistance genes and class 1 integron gene cassettes. Aeromonas spp. are Gram-negative opportunistic bacteria which have been commonly associated with fish diseases. In this study, antibiogram, antimicrobial resistance genes and integrons of 43 zebrafish-borne Aeromonas spp. were studied. The isolates were identified as six Aeromonas species (A. veronii biovar veronii (n = 26), A. veronii biovar sobria (n = 3), A. hydrophila (n = 8), A. caviae (n = 3), A. enteropelogenes (n = 2) and A. dhakensis (n = 1)). Antibiogram of the isolates indicated that most of them were resistant to amoxicillin (100·00%), nalidixic acid (100·00%), oxytetracycline (100·00%), ampicillin (93·02%), tetracycline (74·42%), rifampicin (67·44%) and imipenem (65·15%). Multiple antimicrobial resistance (MAR) index values ranged from 0·19-0·44 to 90·70% isolates showed multidrug resistance. PCR of antimicrobial resistance genes revealed that the tetracycline resistance gene (tetA) was the most predominant (67·44%) among the isolates. The qnrS (53·49%), tetB (30·23%), tetE (30·23%), qnrB (23·26%) and aac(6')-Ib-cr (4·65%) genes were also detected. Class 1 integrase (IntI1) gene was found in 46·51% of the isolates. Two types of class 1 integron gene cassette profiles (qacG-aadA6-qacG and drfA1) were identified. The results showed that zebrafish-borne aeromonads can harbour different types of antimicrobial resistance genes and class 1 integrons. SIGNIFICANCE AND IMPACT OF THE STUDY: Aeromonas spp. are important pathogens found in diverse environments. Antimicrobial resistance genes and integrons of ornamental fish-borne Aeromonas spp. are not well studied. The antibiogram, antimicrobial resistance genes and class 1 integrons of Aeromonas spp. isolated from zebrafish were characterized for the first time in Korea. The prevalence of tetracycline resistance genes, plasmid-mediated quinolone resistance genes and class 1 integron gene cassettes were observed among the isolates. The qacG-aadA6-qacG gene cassette was identified for the first time in Aeromonas spp. The results suggest that the wise use of antimicrobials is necessary for the better management of the ornamental fish.201930790321
131470.9998Antibiotic resistance genes, colistin-resistant Escherichia coli, and physicochemicals in health care wastewater in Vinh Long General Hospital, Vietnam. This study collected ten treated wastewater samples from Vinh Long General Hospital to determine their physicochemical characteristics and antibiotic properties. All treated wastewater samples collected during the monitoring periods complied with national regulations. In addition, these samples did not contain bacteria such as Salmonella, Shigella, and Vibrio cholerae. The investigation yielded a total of 25 Escherichia coli isolates. The E. coli isolates exhibied highest antibiotic resistance rate to ampicillin (100%), followed by ciprofloxacin, amoxicillin/clavulanic acid, and cefazolin (96%, 92%, and 92%, respectively). The resistance rate to fosfomycin was 88%, whereas 80% of the isolates were resistant to sulfamethoxazole-trimethoprim. The resistance rate to gentamicin was 72%, whereas that to imipenem and tetracycline was 52%. In addition, 44% isolates were resistant to chloramphenicol, and 32% of isolates were colistin-resistant. Among analyzed isolates, three were resistant to 10 of 11 tested antibiotics but only displayed intermediate resistance to imipenems (carbapenems). Surprisingly, 23 out of 25 isolates showed a positive ESBL phenotype. Eleven of them had both the bla(TEM) and bla(CTX-M-1) group structural genes, while twelve only had the bla(CTX-M-1) group gene. Furthermore, none of the isolated E. coli isolates exhibited the bla(SHV) gene. The minimum inhibitory concentration (MIC) of colistin exceeded 4 μg/mL in 8 out of 25 (32%) isolates. Seven of eight isolates (87.5%) carried the mcr-1 gene, while one (12.5%) carried the mcr-8 gene. None of the other mcr (mcr-2 to mcr-9) genes were found.202439528737
130680.9998Escherichia coli from healthy farm animals: Antimicrobial resistance, resistance genes and mobile genetic elements. The use of antibiotics in agriculture and subsequent environmental pollution are associated with the emergence and spread of multidrug-resistant (MDR) bacteria including Escherichia coli. The aim of this study was to detect antimicrobial resistance, resistance genes and mobile genetic elements of 72 E. coli strains isolated from faeces of healthy farm animals. Disk diffusion test showed resistance to ampicillin (59.7%), tetracycline (48.6%), chloramphenicol (16.7%), cefoperazone and ceftriaxone (13.9%), cefepime and aztreonam (12.5%), norfloxacin and ciprofloxacin (8.3%), levofloxacin (6.9%), gentamicin and amikacin (2.8%) among the studied strains. Antibiotic resistance genes (ARGs) were detected by polymerase chain reaction: the prevalence of blaTEM was the highest (59.7% of all strains), followed by tetA (30.6%), blaCTX-M (11.1%), catA1 (9.7%), less than 5% strains contained blaSHV, cmlA, floR, qnrB, qnrS, tetM. 26.4% of E. coli strains had a MDR phenotype. MDR E. coli more often contained class 1 integrons, bacteriophages, conjugative F-like plasmids, than non-MDR strains. ARGs were successfully transferred from faecal E. coli strains into the E. coli Nissle 1917 N4i strain by conjugation. Conjugation frequencies varied from (1.0 ± 0.1) * 10-5 to (7.9 ± 2.6) * 10-4 per recipient. Monitoring mobile genetic elements of E. coli for antibiotic resistance is important for farm animal health, as well as for public health and food safety.202439259602
102890.9998Antibiotic resistance and extended-spectrum β-lactamases in isolated bacteria from seawater of Algiers beaches (Algeria). The aim of the study was to evaluate bacterial antibiotic resistance in seawater from four beaches in Algiers. The most significant resistance rates were observed for amoxicillin and ticarcillin, whereas they were relatively low for ceftazidime, cefotaxime and imipenem. According to sampling sites, the highest resistance rates were recorded for 2 sites subjected to chemical and microbiological inputs (amoxicillin, 43% and 52%; ticarcillin, 19.6% and 47.7%), and for 2 sites relatively preserved from anthropogenic influence, resistance rates were lowest (amoxicillin, 1.5% and 16%; ticarcillin, 0.8% and 2.6%). Thirty-four bacteria resistant to imipenem (n=14) or cefotaxime (n=20) were identified as Pseudomonas aeruginosa (n=15), Pseudomonas fluorescens (7), Stenotrophomonas maltophilia (4), Burkholderia cepacia (2), Bordetella sp. (1), Pantoea sp. (1), Acinetobacter baumannii (1), Chryseomonas luteola (1), Ochrobactrum anthropi (1) and Escherichia coli (1). Screening for extended spectrum β-lactamase showed the presence of CTX-M-15 β-lactamase in the E. coli isolate, and the encoding gene was transferable in association with the IncI1 plasmid of about 50 kbp. Insertion sequence ISEcp1B was located upstream of the CTX-M-15 gene. This work showed a significant level of resistance to antibiotics, mainly among environmental saprophytic bacteria. Transmissible CTX-M-15 was detected in E. coli; this may mean that contamination of the environment by resistant bacteria may cause the spread of resistance genes.201222095134
2716100.9998Distribution of Antibiotic-Resistant Enterobacteriaceae Pathogens in Potable Spring Water of Eastern Indian Himalayas: Emphasis on Virulence Gene and Antibiotic Resistance Genes in Escherichia coli. Every year millions of people die due to fatal waterborne diseases around the world especially in developing countries like India. Sikkim, a northeastern state of India, greatly depends on natural water sources. About 80% of the population of Sikkim depends on natural spring water for domestic as well as agricultural use. Recent waterborne disease outbreaks in the state raises a concerning question on water quality. In this study, we analyzed water quality especially for the detection of Enterobacteriaceae members from four districts of the state. Isolation with selective culture media techniques and taxonomic characterization of Enterobacteriaceae bacteria with 16S rRNA gene showed the prevalence of Escherichia coli (37.50%), Escherichia fergusonii (29.41%), Klebsiella oxytoca (36.93%), Citrobacter freundii (37.92%), Citrobacter amalonaticus (43.82%), Enterobacter sp. (43.82%), Morganella morganii (43.82%), Hafnia alvei (32.42%), Hafnia paralvei (38.74%), and Shigella flexneri (30.47%) in the spring water of Sikkim. Antibiotic susceptibility test (AST) showed resistance of the isolates to common antibiotics like ampicillin, amoxicillin as well as to third generation antibiotics like ceftazidime and carbapenem. None of the isolates showed resistance to chloramphenicol. E. coli isolated from spring water of Sikkim showed presence of different virulence genes such as stx1 (81.81%), elt (86.66%), and eae (66.66%) along with resistance gene for ampicillin (CITM) (80%), quinolones (qnrB) (44.44%), tetracycline (tetO) (66.66%), and streptomycin (aadA1) (66.66%). The data indicates a high incidence rate of multiple antibiotic resistant enteric bacteria in the spring water of Sikkim. Additionally, the presence of enteric bacteria in the water samples indicates widespread fecal contamination of the spring water.202033224119
1199110.9997Multi-drug resistant pathogenic bacteria in the gut of young children in Bangladesh. BACKGROUND: The gut of human harbors diverse commensal microbiota performing an array of beneficial role for the hosts. In the present study, the major commensal gut bacteria isolated by culturing methods from 15 children of moderate income families, aged between 10 and 24 months, were studied for their response to different antibiotics, and the molecular basis of drug resistance. RESULTS: Of 122 bacterial colonies primarily selected from Luria-Bertani agar, bacterial genera confirmed by analytical profile index (API) 20E(®) system included Escherichia as the predominant (52%) organism, followed by Enterobacter (16%), Pseudomonas (12%), Klebsiella (6%), Pantoea (6%), Vibrio (3%), and Citrobacter (3%); while Aeromonas and Raoultella were identified as the infrequently occurring genera. An estimated 11 and 22% of the E. coli isolates carried virulence marker genes stx-2 and eae, respectively. Antimicrobial susceptibility assay revealed 78% of the gut bacteria to be multidrug resistant (MDR) with highest resistance to erythromycin (96%), followed by ampicillin (63%), tetracycline (59%), azithromycin (53%), sulfamethoxazole-trimethoprim (43%), cefixime (39%), and ceftriaxone (33%). PCR assay results revealed 56% of the gut bacteria to possess gene cassette Class 1 integron; while 8, 17.5 and 6% of the strains carried tetracycline resistance-related genes tetA, tetB, and tetD, respectively. The macrolide (erythromycin and azithromycin) resistance marker genes mphA, ereB, and ermB were found in 28, 3 and 5% of bacterial isolates, respectively; while 26, 12, 17, 32, 7, 4 and 3% of the MDR bacterial isolates carried the extended spectrum β-lactamase (ESBL)-related genes e.g., bla(TEM), bla(SHV), bla(CMY-9), bla(CTX-M1), bla(CTX-M2), bla(CMY-2) and bla(OXA) respectively. Majority of the MDR gut bacteria harbored large plasmids [e.g., 140 MDa (43%), 105 MDa (30%), 90 MDa (14%)] carrying invasion and related antibiotic resistance marker genes. CONCLUSIONS: Our results suggest gut of young Bangladeshi children to be an important reservoir for multi-drug resistant pathogenic bacteria carrying ESBL related genes.201728439298
1029120.9997Phylogenetic relationships, virulence and antimicrobial resistance properties of Klebsiella sp. isolated from pet turtles in Korea. Klebsiella sp. are responsible for a multitude of infectious diseases in both humans and animals. In this study, phylogenetic relationships, virulence and antimicrobial resistance gene properties of 16 Klebsiella sp. isolated from 49 pet turtles were investigated. The isolates including Klebsiella oxytoca (n = 13) and Klebsiella pneumoniae (n = 3) were identified using 16S rRNA gene sequencing and each species formed distinct clusters in the neighbour-joining phylogenetic tree. The prevalence of virulence genes including ureC (100%) and kfu (68·75%) was observed among the isolates using Polymerase chain reaction (PCR) assay. The fimH, mrkD and rmpA genes were detected in all K. pneumoniae while these were absent in every K. oxytoca isolate. In antimicrobial susceptibility testing, high resistance rates were observed against ampicillin (100%) and cephalothin (62·50%). The resistance rates against imipenem, tetracycline, trimethoprim/sulfamethoxazole, nalidixic acid and ciprofloxacin were 12·50, 12·50, 12·50, 6·25 and 6·25% respectively. The presence of antimicrobial resistance genes such as plasmid-mediated quinolone resistance (PMQR) [qnrB (37·50%), qnrA (31·25%), qnrS (12·50%) and aac(6')-Ib-cr (12·50%)], extended-spectrum β-lactamase (ESBL) [bla(CTX-M) (18·75%)], β-lactamase [bla(SHV-1) (18·75%)] and tetracycline resistance [tetE (12·50%)] was observed. The results revealed that pet turtle-borne Klebsiella sp. may carry different types of virulence and antimicrobial resistance genes which represents a potential threat to public health. SIGNIFICANCE AND IMPACT OF THE STUDY: Klebsiella sp. are nonmotile Gram-negative bacteria that are found in different environments. The virulence and antimicrobial resistance properties of pet turtle-borne Klebsiella sp. have not been studied before. Phylogenetic relationships, virulence traits and antimicrobial resistance profiles of pet turtle-borne Klebsiella sp. were characterized for the first time in Korea. Multiple virulence and antimicrobial resistance genes were observed among the isolates. The occurrence of virulence and antimicrobial resistance determinants in Klebsiella sp. may represent a potential threat to public health.202031671218
1378130.9997Antimicrobial resistance and resistance genes in Escherichia coli strains isolated from commercial fish and seafood. The purpose of this study was to investigate the antimicrobial resistance and to characterize the implicated genes in Escherichia coli isolated from commercial fish and seafood. Fish and seafood samples (n=2663) were collected from wholesale and retail markets in Seoul, Korea between 2005 and 2008. A total of 179 E. coli isolates (6.7%) from those samples were tested for resistance to a range of antimicrobial agents. High rates of resistance to the following drugs were observed: tetracycline (30.7%), streptomycin (12.8%), cephalothin (11.7%), ampicillin (6.7%) and ticarcillin (6.1%). No resistances to amikacin, amoxicillin/clavulanic acid and cefoxitin were observed. Seventy out of 179 isolates which were resistant to one or more drugs were investigated by PCR for the presence of 3 classes of antimicrobial resistance genes (tetracycline, aminoglycosides and beta-lactams), class 1, 2 and 3 integrons. Gene cassettes of classes 1 and 2 integrons were further characterized by amplicon sequencing. The tetracycline resistance genes tetB and tetD were found in 29 (41.4%) isolates and 14 (20%) isolates, respectively. The beta-lactam resistance gene, bla(TEM) was found in 15 (21.4%) isolates. The aminoglycoside resistance gene, aadA was found in 18 (25.7%) isolates. Class 1 integron was detected in 41.4% (n=29) of the isolates, while only 2.9% (n=2) of the isolates were positive for the presence of class 2 integron. Two different gene cassettes arrangements were identified in class 1 integron-positive isolates: dfrA12-aadA2 (1.8 kb, five isolates) and aadB-aadA2 (1.6 kb, four isolates). One isolate containing class 2 integron presented the dfrA1-sat-aadA1 gene cassette array. These data suggest that commercial fish and seafood may act as the reservoir for multi-resistant bacteria and facilitate the dissemination of the resistance genes.201222071288
1360140.9997First Report on a Randomized Investigation of Antimicrobial Resistance in Fecal Indicator Bacteria from Livestock, Poultry, and Humans in Tanzania. This study provides an estimate of antimicrobial resistance in intestinal indicator bacteria from humans (n = 97) and food animals (n = 388) in Tanzania. More than 70% of all fecal samples contained tetracycline (TE), sulfamethoxazole (STX), and ampicillin (AMP)-resistant coliforms, while cefotaxime (CTX)-resistant coliforms were observed in 40% of all samples. The average Log(10) colony forming units/g of CTX-resistant coliforms in samples from humans were 2.20. Of 390 Escherichia coli tested, 66.4% were resistant to TE, 54.9% to STX, 54.9% to streptomycin, and 36.4% to CTX. Isolates were commonly (65.1%) multiresistant. All CTX-resistant isolates contained bla(CTX-M) gene type. AMP- and vancomycin-resistant enterococci were rare, and the average concentrations in positive samples were low (log(10) 0.9 and 0.4, respectively). A low-to-moderate resistance (2.1-15%) was detected in 240 enterococci isolates to the drugs tested, except for rifampicin resistance (75.2% of isolates). The average number of sulII gene copies varied between Log(10) 5.37 and 5.68 with no significant difference between sample source, while cattle had significantly higher number of tetW genes than humans. These findings, based on randomly obtained samples, will be instrumental in designing antimicrobial resistance (AMR) intervention strategies for Tanzania.201828759321
1057150.9997Emergence of ciprofloxacin-resistant extended-spectrum β-lactamase-producing enteric bacteria in hospital wastewater and clinical sources. This study aimed to evaluate the incidence of ciprofloxacin-resistant extended-spectrum β-lactamase (ESBL)-producing enteric bacteria in hospital wastewater and clinical sources. Enteric bacteria, mainly Escherichia coli, were isolated from clinical sources (urinary tract and gastrointestinal tract infections; 80 isolates) and hospital wastewater (103 isolates). The antibiotic resistance profile and ESBL production of the isolates were investigated by disc diffusion assay and combined disc diffusion test, respectively. Plasmid profiling was performed by agarose gel electrophoresis, and elimination of resistance markers was performed by a plasmid curing experiment. Antibiotic susceptibility testing revealed a high incidence of β-lactam resistance, being highest to ampicillin (88.0%) followed by amoxicillin, ceftriaxone, cefpodoxime, cefotaxime, aztreonam, cefepime and ceftazidime. Among the non-β-lactam antibiotics, the highest resistance was recorded to nalidixic acid (85.7%). Moreover, 50.8% of enteric bacteria showed resistance to ciprofloxacin. Among 183 total enteric bacteria, 150 (82.0%) exhibited multidrug resistance. ESBL production was detected in 78 isolates (42.6%). A significantly higher incidence of ciprofloxacin resistance was observed among ESBL-producing enteric bacteria both in clinical (P=0.0015) and environmental isolates (P=0.012), clearly demonstrating a close association between ESBL production and ciprofloxacin resistance. Plasmid profiling of selected ESBL-positive strains indicated the presence of one or more plasmids of varying sizes. Plasmid curing resulted in loss of ciprofloxacin and cefotaxime resistance markers simultaneously from selected ESBL-positive isolates, indicating the close relationship of these markers. This study revealed a common occurrence of ciprofloxacin-resistant ESBL-producing enteric bacteria both in hospital wastewater and clinical sources, indicating a potential public health threat.201627436461
1155160.9997Prevalence and antimicrobial resistance profiles of Escherichia coli isolated from free-range pigs. INTRODUCTION: Numerous studies about antimicrobial resistant Escherichia coli (E. coli) of animal origins have been conducted around the world, most of them focus on bacteria from animals raised in intensive breeding farms, but systematic studies on antimicrobial resistance in E. coli of free range animals are still lacking. METHODOLOGY: This study aimed to investigate the prevalence and antimicrobial resistance profiles of E. coli from free-range pigs in Laiwu mountainous areas, eastern China. RESULTS: Among 123 fecal samples, 123 non-duplicate E. coli were obtained with an isolation rate of 100.0% (123/123). These E. coli showed the highest resistance rate to tetracycline (77/123, 62.6%), but all were sensitive to amoxicillin/clavulanic acid. Thirty-eight E. coli (38/123, 30.9%) showed multidrug resistance (MDR). Among 123 E. coli isolates, only 39 carried antimicrobial resistant genes detected in this study. Of these 39 isolates, blaTEM-1, blaCTX-M-14, blaCTX-M-15, qnrB, qnrD, qnrS1, floR and cfr genes were detected in 13, 9, 4, 7, 10, 7, 20, and 7 isolates, respectively. blaTEM-1 and blaCTX-M-14 genes were concomitantly detected in 6 isolates, and blaTEM, qnrB, qnrS and qnrD genes were concomitantly detected in 7 isolates. CONCLUSIONS: Free-ranging pigs may be regarded as a potential reservoir for antibiotic resistant genes.201731085827
1286170.9997High prevalence of antibiotic resistance in pathogenic foodborne bacteria isolated from bovine milk. This study aimed to investigate the prevalence of foodborne pathogenic bacteria in bovine milk, their antibiogram phenotype, and the carriage of antibiotic resistance genes. Raw bovine milk samples (n = 100) were randomly collected from different suppliers in the northwest of Iran. Antibiotic-resistant patterns and the presence of antibiotic resistance genes were evaluated in the isolates. Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, and Salmonella spp. were isolated from 78%, 47%, 25%, and 21% of samples, respectively. All isolates showed high rates of resistance to amoxicillin, penicillin, and cefalexin. The bla(TEM) and bla(SHV) genes were detected in 50.0% and 6.4% of E. coli isolates, respectively. Also, 28.5% and 19.0% of Salmonella isolates were positive for bla(TEM) and bla(SHV). The frequency of mecA and bla(Z) in S. aureus isolates was 20.0% and 12.0%, respectively. The high prevalence of bovine milk contamination with antimicrobial-resistant species in this study necessitates precise control on antibiotic prescription in veterinary medicine.202235264647
1178180.9997Molecular Characterization of Plasmid-Mediated Quinolone Resistance Genes in Multidrug-Resistant Escherichia coli Isolated From Wastewater Generated From the Hospital Environment. AIM: This study investigated the carriage of Plasmid-Mediated Quinolone Resistance (PMQR) genes in fluoroquinolone-resistant Escherichia coli recovered from wastewater generated by healthcare institutions. MATERIALS AND METHODS: Isolation of fluoroquinolone-resistant Escherichia coli was done on medium supplemented with 1 µg/mL of ciprofloxacin (a fluoroquinolone). Presumptive isolates were identified via the detection of uidA gene. Susceptibility of the isolates to a panel of antibiotics was done using disc diffusion method. Detection of PMQR genes in the isolates was done using primer-specific PCR. RESULTS: Thirty fluoroquinolone-resistant Escherichia coli were obtained from the wastewater over a period of 6 months. The resistance to each of the antibiotic tested was: ampicillin (100%), ceftriaxone (100%), nalidixic acid (100%), tetracycline (96.7%), cefotaxime (96.7%), amoxicillin-clavulanate (80%), gentamicin (60%), cefoxitin (30%), and imipenem (3.3%). The Multiple Antibiotic Resistance Index (MARI) ranged from 0.6 to 0.9. The detection of PMQR genes in the 30 isolates was: qnrA (76.7%), qnrB (53.3%), qnrS (63.3%), aac(6')-lb-cr (43.3%), and qepA (43.3%). All the fluoroquinolone-resistant Escherichia coli carried at least one PMQR determinant. CONCLUSION: This study revealed that untreated hospital wastewaters are significant hub of multidrug-resistant and fluoroquinolone-resistant Escherichia coli, showing high carriage of PMQR genes, and may be a major contributor to the resistome of fluoroquinolone-resistant bacteria in the Nigerian environment.202540552214
2708190.9997Occurrence, Virulence and Antimicrobial Resistance-Associated Markers in Campylobacter Species Isolated from Retail Fresh Milk and Water Samples in Two District Municipalities in the Eastern Cape Province, South Africa. Campylobacter species are among the major bacteria implicated in human gastrointestinal infections and are majorly found in faeces of domestic animals, sewage discharges and agricultural runoff. These pathogens have been implicated in diseases outbreaks through consumption of contaminated milk and water in some parts of the globe and reports on this is very scanty in the Eastern Cape Province. Hence, this study evaluated the occurrence as well as virulence and antimicrobial-associated makers of Campylobacter species recovered from milk and water samples. A total of 56 water samples and 72 raw milk samples were collected and the samples were processed for enrichment in Bolton broth and incubated for 48 h in 10% CO(2) at 42 °C under microaerobic condition. Thereafter, the enriched cultures were further processed and purified. After which, presumptive Campylobacter colonies were isolated and later confirmed by PCR using specific primers for the detection of the genus Campylobacter, target species and virulence associated genes. Antimicrobial resistance profiles of the isolates were determined by disk diffusion method against a panel of 12 antibiotics and relevant genotypic resistance genes were assessed by PCR assay. A total of 438 presumptive Campylobacter isolates were obtained; from which, 162 were identified as belonging to the genus Campylobacter of which 36.92% were obtained from water samples and 37.11% from milk samples. The 162 confirmed isolates were further delineated into four species, of which, 7.41%, 27.16% and 8.64% were identified as C. fetus, C. jejuni and C. coli respectively. Among the virulence genes screened for, the iam (32.88%) was most prevalent, followed by flgR (26.87%) gene and cdtB and cadF (5.71% each) genes. Of the 12 antibiotics tested, the highest phenotypic resistance displayed by Campylobacter isolates was against clindamycin (95.68%), while the lowest was observed against imipenem (21.47%). Other high phenotypic resistance displayed by the isolates were against erythromycin (95.06%), followed by ceftriaxone (93.21%), doxycycline (87.65%), azithromycin and ampicillin (87.04% each), tetracycline (83.33%), chloramphenicol (78.27%), ciprofloxacin (77.78%), levofloxacin (59.88%) and gentamicin (56.17%). Relevant resistance genes were assessed in the isolates that showed high phenotypic resistance, and the highest resistance gene harbored by the isolates was catII (95%) gene while VIM, KPC, Ges, bla-(OXA)-48-like, tetC, tetD, tetK, IMI and catI genes were not detected. The occurrence of this pathogen and the detection of virulence and antimicrobial resistance-associated genes in Campylobacter isolates recovered from milk/water samples position them a risk to human health.202032708075