Prevalence of multiple antibiotic-resistant Gram-negative bacteria on bagged, ready-to-eat baby spinach. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
126801.0000Prevalence of multiple antibiotic-resistant Gram-negative bacteria on bagged, ready-to-eat baby spinach. In this study, multiple antibiotic-resistant (MAR) Gram-negative bacteria (GNB) were isolated from triple-washed, bagged, ready-to-eat (RTE) baby spinach. Biochemical identification of randomly selected bacterial colonies showed the predominance of cytochrome oxidase-positive Pseudomonas species. Among the GNB, a higher prevalence of resistance was observed against cefoxitin (93.1%) followed by ampicillin (79.4%), chloramphenicol (72.6%), ceftizoxime (65.7%), aztreonam (64.9%), cefotaxime (53.6%), imipenem (38.3%), ceftazidime (33.5%), gentamicin (32.6%), tetracycline (22.2%), and ciprofloxacin (19.8%). Multiple antibiotic resistance (MAR) linked to two or more antibiotics was found in 95.3% of isolates, and resistance was transferable in the strains tested. These findings confirm the presence of MAR bacteria on RTE baby spinach and suggest that human consumption of this produce would amplify the MAR gene pool via conjugal transfer of MAR genes to commensal gut microflora and bacterial pathogens.201322838727
127010.9998Multiantibiotic resistance of gram-negative bacteria isolated from drinking water samples in southwest Greece. In this study we monitored the sensitivity of 239 gram-negative bacteria (of fecal and non-fecal origin), isolated from the old drinking water distribution network of Patras in southwestern Greece, to 20 antibiotic agents. Two methods were used to find the multiresistant bacteria (bacteria resistant to two or more antibiotics): the diffusion disk method and a serial dilution method. The gram-negative bacteria tested were: Enterobacteriaceae (62), Pseudomonas (145), Vibrionaceae (24), Chromobacter (3), Acinetobacter (2) and others (4). The highest levels of antibiotic resistance were obtained for cephalothin (86.7%), ampicillin (77.5%) and carbenicillin (71%) followed by cefoxitin (55.4%) and cefuroxime (51.2%). Intermediate resistance levels were found for ticarcillin (31.3%), ceftizoxime (31.2%), chloramphenicol (30.3%), and cefotetan (25.2%). Low resistance levels were obtained for cefotaxime (17.9%), sulfisoxazole (15.2%), ceftriaxone (12.5%), tetracycline (11.9%), trimethoprim/sulfamethoxazole (7.4%) and piperacillin (2.4%). Overall 91.3% of the gram-negative bacteria isolated from drinking water were multiresistant. No resistant strains were found to quinolones, aminoglycosides, imipenem, aztreonam, ceftazidime or cefoperazone. The high antibiotic resistance rate of the isolated microorganisms from the Patras drinking water supply is discussed.200010949974
132420.9997Molecular characterization of antimicrobial resistance in enterococci and Escherichia coli isolates from European wild rabbit (Oryctolagus cuniculus). A total of 44 Escherichia coli and 64 enterococci recovered from 77 intestinal samples of wild European rabbits in Portugal were analyzed for resistance to antimicrobial agents. Resistance in E. coli isolates was observed for ampicillin, tetracycline, sulfamethoxazole/trimethoprim, streptomycin, gentamicin, tobramycin, nalidixic acid, ciprofloxacin and chloramphenicol. None of the E. coli isolates produced extended-spectrum beta-lactamases (ESBLs). The bla(TEM), aadA, aac(3)-II, tet(A) and/or tet(B), and the catA genes were demonstrated in all ampicillin, streptomycin, gentamicin, tetracycline, and chloramphenicol-resistant isolates respectively, and the sul1 and/or sul2 and/or sul3 genes in 4 of 5 sulfamethoxazole/trimethoprim resistant isolates. Of the enterococcal isolates, Enterococcus faecalis was the most prevalent detected species (39 isolates), followed by E. faecium (21 isolates) and E. hirae (4 isolates). More than one-fourth (29.7%) of the isolates were resistant to tetracycline; 20.3% were resistant to erythromycin, 14.1% were resistant to ciprofloxacin and 10.9% were resistant to high-level-kanamycin. Lower level of resistance (<10%) was detected for ampicillin, quinupristin/dalfopristin and high-level-gentamicin, -streptomycin. No vancomycin-resistance was detected in the enterococci isolates. Resistance genes detected included aac(6')-aph(2''), ant(6)-Ia, tet(M) and/or tet(L) in all gentamicin, streptomycin and tetracycline-resistant isolates respectively. The aph(3')-IIIa gene was detected in 6 of 7 kanamycin-resistant isolates, the erm(B) gene in 11 of 13 erythromycin-resistant isolates and the vat(D) gene in the quinupristin/dalfopristin-resistant E. faecium isolate. This survey showed that faecal bacteria such as E. coli and enterococci of wild rabbits could be a reservoir of antimicrobial resistance genes.201020624632
218130.9997Molecular Characterization of Antibiotic Resistance Determinants in Klebsiella pneumoniae Isolates Recovered from Hospital Effluents in the Eastern Cape Province, South Africa. Klebsiella pneumoniae (K. pneumoniae) is an opportunistic bacteria responsible for many nosocomial and community-acquired infections. The emergence and spread of antibiotic resistances have resulted in widespread epidemics and endemic dissemination of multidrug-resistant pathogens. A total of 145 K. pneumoniae isolates were recovered from hospital wastewater effluents and subjected to antibiogram profiling. Furthermore, the antibiotic resistance determinants were assessed among phenotypic resistant isolates using polymerase chain reaction (PCR). The isolates showed a wide range of antibiotic resistance against 21 selected antibiotics under 11 classes, with the most susceptible shown against imipenem (94.5%) and the most resistant shown against ampicillin (86.2%). The isolates also showed susceptibility to piperacillin/tazobactam (89.0%), ertapenem (87.6%), norfloxacin (86.2%), cefoxitin (86.2%), meropenem (76.6%), doripenem (76.6%), gentamicin (76.6%), chloramphenicol (73.1%), nitrofurantoin (71.7%), ciprofloxacin (79.3%), amikacin (60.7%), and amoxicillin/clavulanic acid (70.4%). Conversely, resistance was also recorded against tetracycline (69%), doxycycline (56.6%), cefuroxime (46.2%), cefotaxime (48.3%), ceftazidime (41.4%). Out of the 32 resistance genes tested, 28 were confirmed, with [tetA (58.8%), tetD (47.89%), tetM (25.2%), tetB (5.9%)], [sul1 (68.4%), sul1I (66.6%)], and [aadA (62.3%), strA (26%), aac(3)-IIa(aacC2)(a) (14.4%)] genes having the highest occurrence. Strong significant associations exist among the resistance determinants screened. About 82.7% of the K. pneumoniae isolates were multidrug-resistant (MDR) with a multiple antibiotics resistance index (MARI) range of 0.24 to 1.0. A dual presence of the resistant genes among K. pneumoniae was also observed to occur more frequently than multiple presences. This study reveals a worrisome presence of multidrug-resistant K. pneumoniae isolates and resistance genes in hospital waste effluent, resulting in higher public health risks using untreated surface water for human consumption. As a result, adequate water treatment and monitoring initiatives designed to monitor antimicrobial resistance patterns in the aquatic ecosystem are required.202337508235
214440.9997Antimicrobial resistance and prevalence of resistance genes in intestinal Bacteroidales strains. OBJECTIVE: This study examined the antimicrobial resistance profile and the prevalence of resistance genes in Bacteroides spp. and Parabacteroides distasonis strains isolated from children's intestinal microbiota. METHODS: The susceptibility of these bacteria to 10 antimicrobials was determined using an agar dilution method. β-lactamase activity was assessed by hydrolysis of the chromogenic cephalosporin of 114 Bacteriodales strains isolated from the fecal samples of 39 children, and the presence of resistance genes was tested using a PCR assay. RESULTS: All strains were susceptible to imipenem and metronidazole. The following resistance rates were observed: amoxicillin (93%), amoxicillin/clavulanic acid (47.3%), ampicillin (96.4%), cephalexin (99%), cefoxitin (23%), penicillin (99%), clindamycin (34.2%) and tetracycline (53.5%). P-lactamase production was verified in 92% of the evaluated strains. The presence of the cfiA, cepA, ermF, tetQ and nim genes was observed in 62.3%, 76.3%, 27%, 79.8% and 7.8% of the strains, respectively. CONCLUSIONS: Our results indicate an increase in the resistance to several antibiotics in intestinal Bacteroides spp. and Parabacteroides distasonis and demonstrate that these microorganisms harbor antimicrobial resistance genes that may be transferred to other susceptible intestinal strains.201121655744
130950.9997Phenotypic and genotypic antimicrobial resistance patterns of Escherichia coli isolated from dairy cows with mastitis. Pulsed field gel electrophoresis (PFGE) patterns, susceptibility to 26 antimicrobial agents used in veterinary and human medicine, and prevalence of antimicrobial resistance genes of Escherichia coli isolated from cows with mastitis were evaluated. Among 135 E. coli isolates, PFGE analysis revealed 85 different genetic patterns. All E. coli were resistant to two or more antimicrobials in different combinations. Most E. coli were resistant to antimicrobials used in veterinary medicine including ampicillin (98.4%, >or=32 microg/ml) and many E. coli were resistant to streptomycin (40.3%, >or=64 microg/ml), sulfisoxazole (34.1%, >or=512 microg/ml), and tetracycline (24.8%, >or=16 microg/ml). Most E. coli were resistant to antimicrobials used in human medicine including aztreonam (97.7%, >or=32 microg/ml) and cefaclor (89.9%, >or=32 microg/ml). Some E. coli were resistant to nitrofurantoin (38%, >or=128 microg/ml), cefuroxime (22.5%, >or=32 microg/ml), fosfomycin (17.8%, >or=256 microg/ml). All E. coli were susceptible to ciprofloxacin and cinoxacin. Almost 97% (123 of 127) of ampicillin-resistant isolates carried ampC. Eleven of 52 (21.2%) streptomycin-resistant isolates carried strA, strB and aadA together and 29 streptomycin-resistant isolates (55.8%) carried aadA alone. Among 44 sulfisoxazole-resistant E. coli, 1 isolate (2.3%) carried both sulI and sulII, 12 (27.3%) carried sulI and 10 (22.7%) isolates carried sulII. Among 32 tetracycline-resistant isolates, 14 (43.8%) carried both tetA and tetC and 14 (43.8%) carried tetC. Results of this study demonstrated that E. coli from cows with mastitis were genotypically different, multidrug resistant and carried multiple resistance genes. These bacteria can be a reservoir for antimicrobial resistance genes and can play a role in the dissemination of antimicrobial resistance genes to other pathogenic and commensal bacteria in the dairy farm environment.200717544234
137060.9997Risk Characterization of Antibiotic Resistance in Bacteria Isolated from Backyard, Organic, and Regular Commercial Eggs. This study was conducted to assess the risk due to antimicrobial-resistant strains of Salmonella spp., Listeria monocytogenes, and Escherichia coli isolated from the eggshell and the contents of eggs bought in markets in Valencia (Spain). Thirty-four samples from three different production styles were analyzed: standard ( n = 34), organic ( n = 16), and backyard ( n = 10) eggs. L. monocytogenes was not isolated in any style of production. Only one strain of Salmonella was isolated from standard production, which was resistant to ciprofloxacin and amoxicillin. E. coli strains were resistant in 22% of the isolates from organic production, 12.25% from standard production, and 11.23% from backyard production. In all cases, the highest resistance was observed for amoxicillin-clavulanate. None of the isolates from standard and backyard eggs were resistant to chloramphenicol, ciprofloxacin, gentamycin, and streptomycin, while only ceftriaxone was found to be effective against all E. coli isolates from organic eggs. β-Lactamase genes bla(TEM) , bla(SHV), and bla(CMY-2) and the resistance genes for tetracycline tetA, tetB, and tetC were tested. The most commonly detected antimicrobial resistance genes among the E. coli isolates were tetA (49.30%), bla(TEM) (47.89%), and tetB (36.62%). Overall, a maximum public health risk is associated with β-lactam antibiotics.201930794464
131270.9997Antimicrobial resistance profiles among Escherichia coli strains isolated from commercial and cooked foods. A total of 4330 food samples of which microbiological standard for Escherichia coli is negative in Korea were determined for the frequency of E. coli. Ninety six samples (2.2%) were positive for E. coli. Detection rate of E. coli varied significantly by food type and ranged from 0.3% to 10.9%. Seasoned raw meat (yukhoe) and cold bean-soup had the highest prevalence for E. coli (10.9%) followed by gimbap (5.2%), meat broth for cold noodle (2.9%) and sprout (2.1%). E. coli isolates (n=96) were investigated for their phenotypic and genotypic antimicrobial resistance patterns. Seventeen E. coli isolates (17.7%) were resistant to one or more antimicrobial agents tested. High rates of resistance to the following drugs were observed: tetracycline (15.6%), streptomycin (12.5%), ampicillin (10.4%), nalidixic acid (9.4%) and ticarcillin (9.4%). All ampicillin resistant isolates were screened for extended-spectrum β-lactamase (ESBL) production by the combination disk test. None of the E. coli isolates produced ESBLs. Seventeen out of 96 E. coli isolates which were resistant to at least one antibiotic were investigated by PCR for the presence of 3 classes of antimicrobial resistance genes (tetracycline, aminoglycosides and beta-lactams). The tetracycline resistance genes tetA and tetB were found in 7 and 5 isolates, respectively. The aminoglycoside resistance genes, strA/B, aphA1, aadA and aac(3)-IV were found in 9, 5, 2 and 2 isolates, respectively. The beta-lactam resistance gene, bla(TEM) was found in 7 isolates. Results of this study show that 13 E. coli isolates were multidrug resistant (to three or more antibiotics) and 12 isolates carried at least one antimicrobial resistance gene. These isolates can act as the reservoir for antimicrobial resistance genes and facilitate the dissemination of these genes to other pathogenic and commensal bacteria. Adequate intervention to reduce microbial contamination of these foods is strongly recommended.201223107506
120280.9997Antimicrobial resistance and genetic diversity in ceftazidime non-susceptible bacterial pathogens from ready-to-eat street foods in three Taiwanese cities. Bacterial contamination of ready-to-eat (RTE) street foods is a major concern worldwide. Dissemination of antibiotic resistant pathogens from food is an emerging public-health threat. To investigate the prevalence of antibiotic resistance genes and ceftazidime resistance-associated efflux pumps in foodborne pathogens, 270 RTE street foods samples were collected in three densely populated Taiwanese cities. Among 70 ceftazidime non-susceptible isolates, 21 Stenotrophomonas maltophilia, 12 Pseudomonas spp., 22 Acinetobacter spp., and 15 Enterobacteriaceae isolates were identified. Phylogenetic analyses revealed high levels of genetic diversity between all of the different strains. Multi-drug resistance was observed in 86.4% (19/22) of Acinetobacter spp., 100% (12/12) of Pseudomonas spp., 71.4% (15/21) of S. maltophilia, and 93.3% (14/15) of Enterobacteriaceae. Of 70 ceftazidime non-susceptible isolates, 13 contained ESBLs or plasmid-mediated ampC genes and 23 contained ceftazidime resistance-associated efflux pumps, with Acinetobacter spp. identified as predominant isolate (69.6%; 16/23). AdeIJK pump RNA expression in Acinetobacter isolates was 1.9- to 2-fold higher in active efflux strains. Nine clinically resistant genes were detected: catIII and cmlA (chloramphenicol); aacC1, aacC2, aacC3, and aacC4 (gentamicin); tet(A), tet(C), and tet(D) (tetracycline). The scope and abundance of multidrug-resistant bacteria described in this report underscores the need for ongoing and/or expanded RTE monitoring and control measures.201729138446
127990.9997Antibiotic resistance and virulence potentials of E. faecalis and E. faecium in hospital wastewater: a case study in Ardabil, Iran. Hospital wastewater can contaminate the environment with antibiotic-resistant and virulent bacteria. We analyzed wastewater samples from four hospitals in Ardabil province, Iran for Enterococcus faecium and Enterococcus faecalis using culture and molecular methods. We also performed antimicrobial susceptibility testing and polymerase chain reaction testing for resistance and virulence genes. Out of 141 enterococci isolates, 68.8% were E. faecium and 23.4% were E. faecalis. Ciprofloxacin and rifampicin showed the highest level of resistance against E. faecalis and E. faecium isolates at 65%. High-level gentamicin resistance (HLGR), high-level streptomycin resistance (HLSR), ampicillin, and vancomycin resistance were observed in 25, 5, 10, and 5.15% of E. faecium, and 15, 6, 15, and 3.03% of E. faecalis isolates, respectively. The ant(6')-Ia and ant(3')-Ia genes that were responsible for streptomycin resistance were observed in HLSR isolates and aph(3')-IIIa and aac(6') Ie-aph(2″)-Ia genes accounting for gentamicin resistance were detected in HLGR isolates. vanA was the predominant gene detected in vancomycin-resistant isolates. The majority of isolates were positive for gelE, asa1, esp, cylA, and hyl virulence genes. We found that drug-resistant and virulent E. faecalis and E. faecium isolates were prevalent in hospital wastewater. Proper treatment strategies are required to prevent their dissemination into the environment.202337756195
2708100.9997Occurrence, Virulence and Antimicrobial Resistance-Associated Markers in Campylobacter Species Isolated from Retail Fresh Milk and Water Samples in Two District Municipalities in the Eastern Cape Province, South Africa. Campylobacter species are among the major bacteria implicated in human gastrointestinal infections and are majorly found in faeces of domestic animals, sewage discharges and agricultural runoff. These pathogens have been implicated in diseases outbreaks through consumption of contaminated milk and water in some parts of the globe and reports on this is very scanty in the Eastern Cape Province. Hence, this study evaluated the occurrence as well as virulence and antimicrobial-associated makers of Campylobacter species recovered from milk and water samples. A total of 56 water samples and 72 raw milk samples were collected and the samples were processed for enrichment in Bolton broth and incubated for 48 h in 10% CO(2) at 42 °C under microaerobic condition. Thereafter, the enriched cultures were further processed and purified. After which, presumptive Campylobacter colonies were isolated and later confirmed by PCR using specific primers for the detection of the genus Campylobacter, target species and virulence associated genes. Antimicrobial resistance profiles of the isolates were determined by disk diffusion method against a panel of 12 antibiotics and relevant genotypic resistance genes were assessed by PCR assay. A total of 438 presumptive Campylobacter isolates were obtained; from which, 162 were identified as belonging to the genus Campylobacter of which 36.92% were obtained from water samples and 37.11% from milk samples. The 162 confirmed isolates were further delineated into four species, of which, 7.41%, 27.16% and 8.64% were identified as C. fetus, C. jejuni and C. coli respectively. Among the virulence genes screened for, the iam (32.88%) was most prevalent, followed by flgR (26.87%) gene and cdtB and cadF (5.71% each) genes. Of the 12 antibiotics tested, the highest phenotypic resistance displayed by Campylobacter isolates was against clindamycin (95.68%), while the lowest was observed against imipenem (21.47%). Other high phenotypic resistance displayed by the isolates were against erythromycin (95.06%), followed by ceftriaxone (93.21%), doxycycline (87.65%), azithromycin and ampicillin (87.04% each), tetracycline (83.33%), chloramphenicol (78.27%), ciprofloxacin (77.78%), levofloxacin (59.88%) and gentamicin (56.17%). Relevant resistance genes were assessed in the isolates that showed high phenotypic resistance, and the highest resistance gene harbored by the isolates was catII (95%) gene while VIM, KPC, Ges, bla-(OXA)-48-like, tetC, tetD, tetK, IMI and catI genes were not detected. The occurrence of this pathogen and the detection of virulence and antimicrobial resistance-associated genes in Campylobacter isolates recovered from milk/water samples position them a risk to human health.202032708075
1269110.9997Prevalence of Resistance Genes Among Multidrug-Resistant Gram-Negative Bacteria Isolated from Waters of Rivers Swat and Kabul, Pakistan. The waters of rivers Swat and Kabul are the main water source for domestic and irrigation purposes in the northwestern part of Pakistan. However, this water has been contaminated due to human activities. This study aimed to analyze the water of these rivers for occurrence of antibiotic resistance genes among Gram-negative bacteria. Samples were collected from 10 different locations of these rivers. The samples were processed for the isolation of Gram-negative bacteria. Isolated bacteria were checked against 12 different antibiotics for susceptibility. The isolates were also analyzed for the presence of seven antibiotic resistance genes. A total of 50 bacterial isolates were recovered that belonged to five different bacterial genera, that is, Escherichia coli, Klebsiella oxytoca, Pseudomonas aeruginosa, Raoultella terrigena (Klebsiella terrigena), and Pseudomonas fluorescens. Antibiotic resistance pattern was cefixime 72%, cephalothin 72%, ampicillin 68%, nalidixic acid 68%, kanamycin 54%, streptomycin 42%, sulfamethoxazole-trimethoprim 28%, chloramphenicol 28%, meropenem 8%, gentamicin 8%, amikacin 2%, and tobramycin 2%. The prevalence of bla-TEM gene was 72% (n = 36), aadA gene 34% (n = 17), sul gene 32% (n = 16), bla-CTXM gene 12% (n = 6), int gene 66% (n = 33), and int1 gene 6% (n = 3). This information highlights the need for controlling and monitoring the release of domestic wastes to rivers.202539435695
1330120.9997Antimicrobial resistance of Enterococcus spp. isolated from Thai fermented pork in Chiang Rai Province, Thailand. OBJECTIVES: The aim of this study was to evaluate the prevalence of antimicrobial-resistant phenotypes and genes of Enterococcus spp. in order to explore the range of resistance profiles from Thai traditional fermented pork. METHODS: A total of 120 Thai fermented pork specimens were collected in Chiang Rai, Thailand. Antimicrobial resistance among isolated enterococci to 11 antimicrobial agents was determined by the agar disk diffusion method. Antibiotic resistance genes from resistant phenotypes and virulence genes were observed. RESULTS: A total of 119 enterococci were found contaminating the collected samples. The most prevalent species was Enterococcus faecalis (68.9%), followed by Enterococcus hirae (16.0%), Enterococcus faecium (13.4%) and Enterococcus gallinarum (1.7%). The highest percentage of resistance was to ciprofloxacin (97.5%), followed by erythromycin (78.2%) and tetracycline (67.2%), whilst high-level gentamicin- and streptomycin-resistant isolates were of lower frequency (7.6% and 22.7%, respectively). All isolates were susceptible to the clinically important agents vancomycin and teicoplanin. Overall, a relatively high frequency of multidrug-resistant (MDR) enterococci was observed (76.2%). Antimicrobial-resistant phenotypes were found to carry aacA-aphD, addE, erm(B), mefA/E, cat, tet(L) and tet(M) resistance genes. Virulence genes were also evaluated and the gelE gene was found to be the most common (37.8%). CONCLUSIONS: These data highlight the importance of MDR enterococci in fermented pork in Thailand. This is the first report to detect the unusual species E. hirae carrying the mefA/E macrolide resistance gene. These clinically important and unusual enterococci isolates from Thai fermented pork could be a source of transferable resistance genes to other bacteria.201829030312
1325130.9997Antimicrobial Resistance Profiles of Bacteria Isolated from the Nasal Cavity of Camels in Samburu, Nakuru, and Isiolo Counties of Kenya. This study was designed to determine antimicrobial resistance profiles of bacteria isolated from the nasal cavity of healthy camels. A total of 255 nasal samples (swabs) were collected in Isiolo, Samburu, and Nakuru counties, Kenya, from which 404 bacterial isolates belonging to various genera and species were recovered. The bacterial isolates included Bacillus (39.60%), coagulase-negative Staphylococcus (29.95%), Streptococcus species other than Streptococcus agalactiae (25.74%), coagulase-positive Staphylococcus (3.96%), and Streptococcus agalactiae (0.74%). Isolates were most susceptible to Gentamicin (95.8%), followed by Tetracycline (90.5%), Kanamycin and Chloramphenicol (each at 85.3%), Sulphamethoxazole (84.2%), Co-trimoxazole (82.1%), Ampicillin (78.9%), and finally Streptomycin (76.8%). This translated to low resistance levels. Multidrug resistance was also reported in 30.5% of the isolates tested. Even though the antibiotic resistance demonstrated in this study is low, the observation is significant, since the few resistant normal flora could be harboring resistance genes which can be transferred to pathogenic bacteria within the animal, to other animals' bacteria and, most seriously, to human pathogens.201729147677
2710140.9997Isolation and molecular characterization of multidrug‑resistant Escherichia coli from chicken meat. Antibiotics in animal farms play a significant role in the proliferation and spread of antibiotic-resistant genes (ARGs) and antibiotic-resistant bacteria (ARB). The dissemination of antibiotic resistance from animal facilities to the nearby environment has become an emerging concern. The present study was focused on the isolation and molecular identification of Escherichia coli (E. coli) isolates from broiler chicken meat and further access their antibiotic-resistant profile against different antibiotics. Broiler chicken meat samples were collected from 44 retail poultry slaughter shops in Prayagraj district, Uttar Pradesh, India. Standard bacteriological protocols were followed to first isolate the E. coli, and molecular characterization was performed with genus-specific PCR. Phenotypic and genotypic antibiotic-resistant profiles of all confirmed 154 E. coli isolates were screened against 09 antibiotics using the disc diffusion and PCR-based method for selected resistance genes. In antibiotic sensitivity testing, the isolates have shown maximum resistance potential against tetracycline (78%), ciprofloxacin (57.8%), trimethoprim (54.00%) and erythromycin (49.35%). E. coli bacterial isolates have shown relative resistant to amoxicillin-clavulanic acid (43.00%) and against ampicillin (44.15%). Notably, 64.28% E. coli bacteria were found to be multidrug resistant. The results of PCR assays exposed that tetA and blaTEM genes were the most abundant genes harboured by 83 (84.0%) and 82 (82.0%) out of all 99 targeted E. coli isolates, followed by 48.0% for AmpC (CITM) gene and cmlA (23.00%) for chloramphenicol resistance. It is notable that most of the isolates collected from chicken meat samples were multidrug resistant (> 3 antibiotics), with more than 80% of them carrying tetracycline (tetA) and beta-lactam gene (blaTEM). This study highlights the high risk associated with poultry products due to MDR-E. coli and promote the limited use of antibiotics in poultry farms. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-024-03950-7.202438476645
1287150.9997Frequently used therapeutic antimicrobials and their resistance patterns on Staphylococcus aureus and Escherichia coli in mastitis affected lactating cows. Mastitis is one of the most frequent and costly production diseases of dairy cattle. It is frequently treated with broad-spectrum antimicrobials. The objectives of this work were to investigate the prevalence of Staphylococcus aureus and Escherichia coli, find out the antimicrobials used in mastitis treatment, and explore the antimicrobial resistance profile including detection of resistance genes. Bacterial species and antimicrobial resistance genes were confirmed by the polymerase-chain reaction. A total of 450 cows were screened, where 23 (5.11%) and 173 (38.44%) were affected with clinical and sub-clinical mastitis, respectively. The prevalence of S. aureus was 39.13% (n = 9) and 47.97%(n = 83) while, E. coli was 30.43% (n = 7) and 15.60% (n = 27) in clinical and sub-clinical mastitis affected cows, respectively. The highest antimicrobials used for mastitis treatment were ciprofloxacin (83.34%), amoxycillin (80%) and ceftriaxone (76.67%). More than, 70% of S. aureus showed resistance against ampicillin, oxacillin, and tetracycline and more than 60% of E. coli exhibited resistance against oxacillin and sulfamethoxazole-trimethoprim. Selected antimicrobial resistance genes (mecA, tetK, tetL, tetM, tetA, tetB, tetC, sul1, sul2 and sul3) were identified from S. aureus and E. coli. Surprisingly, 7 (7.61%) S. aureus carried the mecA gene and were confirmed as methicillin-resistant S. aureus (MRSA). The most prevalent resistance genes were tetK 18 (19.57%) and tetL 13 (14.13%) for S. aureus, whereas sul1 16 (47.06%), tetA 12 (35.29%), sul2 11 (32.35%) and tetB 7 (20.59%) were the most common resistance genes in E. coli. Indiscriminate use of antimicrobials and the presence of multidrug-resistant bacteria suggest a potential threat to public health.202235291582
1308160.9996Antimicrobial resistance genes and virulence gene encoding intimin in Escherichia coli and Enterococcus isolated from wild rabbits (Oryctolagus cuniculus) in Tunisia. The spread of antimicrobial-resistant bacteria in wildlife must be viewed as a major concern with serious implications for human and animal health. Escherichia coli and enterococcal isolates were recovered from faecal samples of 49 wild rabbits (Oryctolagus cuniculus) on specific media and were characterised using biochemical and molecular tests. For all isolates, antimicrobial susceptibility testing was performed, and resistance genes were detected by PCR. Molecular typing of isolates was carried out by pulsed-field gel-electrophoresis, and E. coli strains were also tested for the presence of intimin (eae) gene characteristic of rabbit enteropathogenic E. coli. A total of 34 E. coli and 36 enterococci [E. hirae (52.8%) and E. faecalis (47.2%)] were obtained. For E. coli, resistance to tetracycline (94%), streptomycin (62%), ciprofloxacin (47%), trimethoprim-sulphamethoxazole (35%) and chloramphenicol (6%) was observed. Resistance to third-generation cephalosporins was detected in one E. coli strain that carried the bla(CMY-2) and bla(TEM-1) genes. Class 1 integrons were detected in eight isolates. For enterococci, resistance to tetracycline (63.9%), erythromycin (30.5%), streptomycin (18.2%), and chloramphenicol (5.5%) was detected. The tet(M)+tet(L), erm(B) and ant (6)-Ia genes were identified in thirteen, seven and three resistant Enterococcus strains, respectively. Molecular typing showed a high diversity among our strains. Wild rabbits could represent a reservoir of E. coli, and enterococci carrying antimicrobial resistance genes and E. coli additionally carrying the eae gene of enteropathogenic pathotypes could both contaminate the environment. our finding seems to represent the first report of eae-positive E. coli in wild rabbits.201931842593
1286170.9996High prevalence of antibiotic resistance in pathogenic foodborne bacteria isolated from bovine milk. This study aimed to investigate the prevalence of foodborne pathogenic bacteria in bovine milk, their antibiogram phenotype, and the carriage of antibiotic resistance genes. Raw bovine milk samples (n = 100) were randomly collected from different suppliers in the northwest of Iran. Antibiotic-resistant patterns and the presence of antibiotic resistance genes were evaluated in the isolates. Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, and Salmonella spp. were isolated from 78%, 47%, 25%, and 21% of samples, respectively. All isolates showed high rates of resistance to amoxicillin, penicillin, and cefalexin. The bla(TEM) and bla(SHV) genes were detected in 50.0% and 6.4% of E. coli isolates, respectively. Also, 28.5% and 19.0% of Salmonella isolates were positive for bla(TEM) and bla(SHV). The frequency of mecA and bla(Z) in S. aureus isolates was 20.0% and 12.0%, respectively. The high prevalence of bovine milk contamination with antimicrobial-resistant species in this study necessitates precise control on antibiotic prescription in veterinary medicine.202235264647
1130180.9996The characteristic of antibiotic drug resistance of Salmonella Typhi isolated from tertiary care hospital in Faisalabad. Salmonella Typhi, a human-restricted pathogen, is demonstrating multi-drug resistance (MDR) due to widespread and inappropriate antibiotic use. This study aims to molecular identify the pattern of antibiotic resistance. Blood samples from 2456 suspected patients were assessed. Molecular identification of Salmonella Typhi was performed by amplifying the fliC gene. The Disc diffusion method was used to measure the susceptibility of antibiotics. 2456 patient samples, bacterial growth and Salmonella Typhi were 152 (6.2 %) positive. PCR analysis confirmed that all 152 isolated strains were Salmonella Typhi (100%) through the amplification of the fliC gene. Salmonella Typhi isolates showed resistance to trimethoprim (58%), ampicillin (63%), ciprofloxacin (79%) and chloramphenicol (58%). Fifty-eight percent of the isolates showed multi-drug resistance, whereas 26 percent had extensive drug resistance. Antibiotic resistance gene of quinolones was isolated as 44 (36.4%), whereas 88 (57.9 %) were positive for bla(CTX-M) gene were detected among cephalosporin-resistance bacteria 56 (36.8 %) resistance bla(IMP) and bla(OXA-48) were detected among carbapenem-resistance bacteria. For the azithromycin resistance, more genes were detected as a percentage 03 (50 %) from isolates. It concludes that several multidrug resistance and extensive drug-resistance Salmonella Typhi were found. The majority of isolates were sensitive to meropenem, Imipenem and Azithromycin.202540996203
1323190.9996Detection of antibiotic resistant enterococci and Escherichia coli in free range Iberian Lynx (Lynx pardinus). Thirty fecal samples from wild specimens of Iberian lynx were collected and analyzed for Enterococcus spp. (27 isolates) and Escherichia coli (18 isolates) recovery. The 45 isolates obtained were tested for antimicrobial resistance, molecular mechanisms of resistance, and presence of virulence genes. Among the enterococci, Enterococcus faecium and Enterococcus hirae were the most prevalent species (11 isolates each), followed by Enterococcus faecalis (5 isolates). High percentages of resistance to tetracycline and erythromycin (33% and 30%, respectively) were detected among enterococcal isolates. The tet(M) and/or tet(L), erm(B), aac(6')-Ie-aph(2″)-Ia, ant(6)-Ia, or aph(3')-IIIa genes were detected among resistant enterococci. Virulence genes were detected in one E. faecalis isolate (cpd, cylB, and cylL) and one E. hirae isolate (cylL). High percentages of resistance were detected in E. coli isolates to tetracycline (33%), streptomycin (28%), nalidixic acid (28%), and sulfamethoxazole-trimethoprim (SXT, 22%). Additionally, the blaTEM, tet(A), aadA, cmlA, and different combinations of sul genes were detected among most ampicillin, tetracycline, streptomycin, chloramphenicol and SXT-resistant isolates, respectively. Two isolates contained a class 1 integron with the gene cassette arrays dfrA1 + aadA1 and dfrA12 + aadA2. The E. coli isolates were ascribed to phylo-groups A (n=5); B1 (n=4); B2 (n=6), and D (n=3), with the virulence gene fimA present in all E. coli isolates. This study found resistance genes in wild specimens of Iberian lynx. Thus, it is important to notice that multiresistant bacteria have reached species as rare and completely non-synanthropic as the Iberian lynx. Furthermore, the susceptibility of this endangered species to bacterial infection may be affected by the presence of these virulence and resistance genes.201323588135