Occurrence of antimicrobial resistance and antimicrobial resistance genes in methicillin-resistant Staphylococcus aureus isolated from healthy rabbits. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
125801.0000Occurrence of antimicrobial resistance and antimicrobial resistance genes in methicillin-resistant Staphylococcus aureus isolated from healthy rabbits. BACKGROUND AND AIM: Methicillin-resistant globally, Staphylococcus aureus (MRSA) is a major cause of disease in both humans and animals. Several studies have documented the presence of MRSA in healthy and infected animals. However, there is less information on MRSA occurrence in exotic pets, especially healthy rabbits. This study aimed to look into the antimicrobial resistance profile, hidden antimicrobial-resistant genes in isolated bacteria, and to estimate prevalence of MRSA in healthy rabbits. MATERIALS AND METHODS: Two-hundreds and eighteen samples, including 42 eyes, 44 ears, 44 oral, 44 ventral thoracic, and 44 perineal swabs, were taken from 44 healthy rabbits that visited the Prasu-Arthorn Animal Hospital, in Nakornpathom, Thailand, from January 2015 to March 2016. The traditional methods of Gram stain, mannitol fermentation, hemolysis on blood agar, catalase test, and coagulase production were used to confirm the presence of Staphylococcus aureus in all specimens. All bacterial isolates were determined by antimicrobial susceptibility test by the disk diffusion method. The polymerase chain reaction was used to identify the antimicrobial-resistant genes (blaZ, mecA, aacA-aphD, msrA, tetK, gyrA, grlA, and dfrG) in isolates of MRSA with a cefoxitin-resistant phenotype. RESULTS: From 218 specimens, 185 S. aureus were isolated, with the majority of these being found in the oral cavity (29.73%) and ventral thoracic area (22.7%), respectively. Forty-seven (25.41%) MRSAs were found in S. aureus isolates, with the majority of these being found in the perineum (16, 34.04%) and ventral thoracic area (13, 27.66%) specimens. Among MRSAs, 29 (61.7%) isolates were multidrug-resistant (MDR) strains. Most of MRSA isolates were resistant to penicillin (100%), followed by ceftriaxone (44.68%) and azithromycin (44.68%). In addition, these bacteria contained the most drug-resistance genes, blaZ (47.83%), followed by gyrA (36.17%) and tetK (23.4%). CONCLUSION: This study revealed that MRSA could be found even in healthy rabbits. Some MRSAs strains were MDR-MRSA, which means that when an infection occurs, the available antibiotics were not effective in treating it. To prevent the spread of MDR-MRSA from pets to owners, it may be helpful to educate owners about effective prevention and hygiene measures.202236590129
130010.9996Genotypic and Phenotypic-Based Assessment of Antibiotic Resistance and Profile of Staphylococcal Cassette Chromosome mec in the Methicillin-Resistant Staphylococcus aureus Recovered from Raw Milk. BACKGROUND: Multidrug resistant methicillin-resistant Staphylococcus aureus (MRSA) bacteria are determined to be one of the chief causes of foodborne diseases around the world. PURPOSE: This research was done to assess the genotypic and phenotypic profiles of antibiotic resistance and distribution of Staphylococcus cassette chromosome mec (SCCmec) types amongst the MRSA bacteria recovered from raw milk. METHODS: Five-hundred and ninety raw milk samples were collected and examined. MRSA bacteria were recognized using susceptibility evaluation toward oxacillin and cefoxitin disks. Profile of antibiotic resistance genes and SCCmec types were determined using the PCR. Antibiotic resistance pattern of isolates was examined using the disk diffusion. RESULTS: Thirty-nine out of 590 raw milk samples (6.61%) were positive for S. aureus. Twenty-eight out of 39 (71.79%) bacteria were defined as MRSA bacteria. Raw buffalo (80%) milk samples had the maximum incidence of MRSA, while raw camel (33.33%) had the minimum. MRSA bacteria harbored the maximum incidence of resistance toward penicillin (100%), tetracycline (100%), erythromycin (82.14%), gentamicin (78.57%) and trimethoprim-sulfamethoxazole (78.57%). Incidence of resistance toward more than eight classes of antibiotic agents was 28.57%. The most frequently distinguished antibiotic resistance markers were blaZ (100%), tetK (85.71%), dfrA1 (71.42%), aacA-D (67.85%), ermA (50%) and gyrA (42.85%). SCCmec IVa (29.62%), V (25%), III (14.81%) and IVb (11.11%) were the most frequently distinguished types. CONCLUSION: Raw milk of dairy animals maybe sources of multidrug resistant MRSA which pose a hygienic threat concerning the consumption of raw milk in Iran. Nevertheless, further investigations are necessary to understand supplementary epidemiological features of MRSA in raw milk.202032099419
130220.9996A survey of prevalence and phenotypic and genotypic assessment of antibiotic resistance in Staphylococcus aureus bacteria isolated from ready-to-eat food samples collected from Tehran Province, Iran. BACKGROUND: Resistant Staphylococcus aureus (S. aureus) bacteria are considered among the major causes of foodborne diseases. This survey aims to assess genotypic and phenotypic profiles of antibiotic resistance in S. aureus bacteria isolated from ready-to-eat food samples. METHODS: According to the previously reported prevalence of S. aureus in ready-to-eat food samples, a total of 415 ready-to-eat food samples were collected from Tehran province, Iran. S. aureus bacteria were identified using culture and biochemical tests. Besides, the phenotypic antibiotic resistance profile was determined by disk diffusion. In addition, the genotypic pattern of antibiotic resistance was determined using the PCR. RESULTS: A total of 64 out of 415 (15.42%) ready-to-eat food samples were contaminated with S. aureus. Grilled mushrooms and salad olivieh harbored the highest contamination rate of (30%), while salami samples harbored the lowest contamination rate of 3.33%. In addition, S. aureus bacteria harbored the highest prevalence of resistance to penicillin (85.93%), tetracycline (85.93%), gentamicin (73.43%), erythromycin (53.12%), trimethoprim-sulfamethoxazole (51.56%), and ciprofloxacin (50%). However, all isolates were resistant to at least four antibiotic agents. Accordingly, the prevalence of tetK (70.31%), blaZ (64.06%), aacA-D (57.81%), gyrA (50%), and ermA (39.06%) was higher than that of other detected antibiotic resistance genes. Besides, AacA-D + blaZ (48.43%), tetK + blaZ (46.87%), aacA-D + tetK (39.06%), aacA-D + gyrA (20.31%), and ermA + blaZ (20.31%) were the most frequently identified combined genotypic patterns of antibiotic resistance. CONCLUSION: Ready-to-eat food samples may be sources of resistant S. aureus, which pose a hygienic threat in case of their consumption. However, further investigations are required to identify additional epidemiological features of S. aureus in ready-to-eat foods.202134635183
127630.9995Should we leave the paper currency? A microbiological examination. OBJECTIVE: Pathogens can be transmitted to banknotes due to the personal unhygienic habits. The aim of study was to find the possible pathogens on the banknotes circulating in the market and also to present their antibacterial resistance and their various virulence factors using genotypic and phenotypic methods. METHODS: A total of 150 samples of bank-notes were randomly collected between August 2017 and March 2018. VITEK systems were used for identification and antimicrobial susceptibility testing respectively. Antimicrobial resistance genes (mecA, van, extended-spectrum β-lactamase [ESBL] and carbapenemases) and staphyloccoccal virulence genes (staphyloccoccal enterotoxins [SEs], pvl, and tsst-1) were determined using with real-time PCR. RESULTS: Staphylococcus aureus, coagulase-negative staphylococci (CoNS), Enterococcus spp., Gram-negative enteric bacteria, non-fermentative Gram-negative bacteria and Candida spp. were detected 48%, 54.7%, 56%, 21.3%, 18.7%, and 4%, respectively. Methicillin-resistant S. aureus, vancomycin-resistant enterococci and ESBL producing Gram-negative were found 46.8%, 1.3%, and 28.7%, respectively. Pvl, tsst-1, and SEs genes were found in a 2.8/4.9%, 1.4/1.2%, and 100/ 87.8% of the S. aureus/CoNS strains, respectively. The sea gene was found the most common enterotoxigenic gene. blaTEM, blaSHV, blaCTX-M-2, blaCTX-M-1, blaKPC, and blaOXA-48 were found 55.8%, 46.5%, 41.2%, 18.6%, 18.6%, and 18.6%, respectively in Gram-negative strains. CONCLUSIONS: These results is very important to highlight hygienic status of paper currencies. This can be considered as an indication that banknotes may contribute to the spread of pathogens and antimicrobial resistance. Therefore, we may need to start using alternative products instead of banknotes.202032066229
237640.9995Molecular characterization and antimicrobial susceptibility of methicillin-resistant staphylococcus aureus isolates from clinical samples and asymptomatic nasal carriers in Istanbul (Turkey). BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) has been a widespread problem in Turkish hospitals. AIMS: The aim of this study was to investigate the staphylococcal toxin genes of the clinical and nasal MRSA isolates, and their antibiotic resistance profiles. MATERIALS AND METHODS: Isolation of nasal and clinical bacteria was done following standard microbiological methods. The presence of antimicrobial resistance genes (mec A, pvl, tsst-1, and SEs genes) was determined using the real-time polymerase chain reaction (PCR) assay. RESULTS: Among nasal MRSA isolates, 66.7% were toxigenic. The distribution of genes was as follows: pvl 26.7%, tsst-1 3.3%, and SEs 36.7%. Therefore, the nasal MRSA isolates had a rate of 23.3% multidrug resistance (MDR) pattern to the non-beta-lactams antibiotics. All (100%) clinical MRSA isolates were found to be toxigenic. The distribution of genes was as follows; pvl 10%, tsst-1 6.7%, and SEs 100%. The clinical MRSA isolates had a rate of 60% MDR. CONCLUSIONS: Following detection of pvl, tsst-1, and SEs among nasal and clinical MRSA isolates, and the presence of high antimicrobial resistance, the spread of these strains may be an additional factor contributing to the emergence of community-acquired (CA)-MRSA and hospital-acquired (HA)-MRSA. This study is the first to determine the resistance to linezolid and tigecycline in both nasal and clinical MRSA isolates, for the first time in Turkey. All nasal and clinical MRSA isolates were uniformly susceptible to vancomycin and quinupristin-dalfopristin. Our findings show that MRSA infections in Turkey can be empirically treated with vancomycin and quinupristin-dalfopristin based on the lack of demonstrable resistance to these drugs.202134290175
130150.9995Phenotypic and Genotypic Assessment of Antibiotic Resistance of Staphylococcus aureus Bacteria Isolated from Retail Meat. BACKGROUND: Resistant Staphylococcus aureus (S. aureus) bacteria are determined to be one of the main causes of foodborne diseases. PURPOSE: This survey was done to assess the genotypic and phenotypic profiles of antibiotic resistance of S. aureus bacteria isolated from retail meat. METHODS: Four-hundred and eighty-five retail meat samples were collected and examined. S. aureus bacteria were identified using culture and biochemical tests. The phenotypic profile of antibiotic resistance was examined using the disk diffusion method. The genotypic pattern of antibiotic resistance was determined using the polymerase chain reaction. RESULTS: Forty-eight out of 485 (9.89%) raw retail meat samples were contaminated with S. aureus. Raw retail buffalo meat (16%) had the highest incidence of S. aureus, while raw camel meat (4%) had the lowest. S. aureus bacteria exhibited the uppermost incidence of resistance toward tetracycline (79.16%), penicillin (72.91%), gentamicin (60.41%), and doxycycline (41.666%). The incidence of resistance toward chloramphenicol (8.33%), levofloxacin (22.91%), rifampin (22.91%), and azithromycin (25%) was lower than other examined antibiotics. The most routinely detected antibiotic resistance genes were blaZ (58.33%), tetK (52.08%), aacA-D (33.33%), and ermA (27.08%). Cat1 (4.16%), rpoB (10.41%), msrA (12.50%), grlA (12.50%), linA (14.58%), and dfrA1 (16.66%) had the lower incidence rate. CONCLUSION: Raw meat of animals may be sources of resistant S. aureus which pose a hygienic threat about the consumption of raw meat. Nevertheless, further investigations are essential to understand supplementary epidemiological features of S. aureus in retail meat.202032440171
128060.9995Antimicrobial-Resistant Staphylococcus spp. Harbored by Hedgehogs (Erinaceus europaeus) in Central Italy. BACKGROUND/OBJECTIVES: European hedgehogs (Erinaceus europaeus) are present in areas where there is human activity; therefore, they can be a source of pathogens for other animals and humans. METHODS: Eighteen hedgehog carcasses were collected and analyzed for Staphylococcus spp. Isolated strains were typed and analyzed for exfoliative toxins genes and the phenotypic and genotypic characteristics of antimicrobial resistance. RESULTS: A total of 54 strains were isolated and typed as S. aureus, S. xylosus, S. sciuri, S. pseudintermedius, S. simulans, S. chromogenes, S. epidermidis, S. hyicus, and S. lentus. No strains had the eta and etb genes coding for exfoliative toxins. Overall, 39/54 (72.20%) isolates showed phenotypic resistance to at least one antimicrobial and 21/54 (38.80%) showed more than one resistance. The lowest efficacy was observed for erythromycin, with 40/54 (74.08%) strains classified as intermediate and 6/54 (11.11%) classified as resistant. Among the 29 isolates shown to be penicillin-resistant, 11 (37.93%) were oxacillin-resistant, with a minimum inhibitory concentration (MIC). Among the 54 staphylococcal strains, 2 (3.70%) were resistant to vancomycin, both with an MIC value equal to the maximum concentration of the antibiotic tested (256 μg/mL) and 2 (3.70%) had an intermediate resistance profile with an 8 μg/mL MIC value. No strains had the genes vanA and vanB. Two of the 29 (6.90%) penicillin-resistant strains had the blaZ gene; 8 (27.13%) strains had the mecA gene. Overall, 2/54 (3.70%) isolates were classified as extensively drug-resistant (XDR) and 9/54 (16.66%) were classified as multidrug-resistant (MDR). CONCLUSIONS: Hedgehogs can harbor antimicrobial-resistant staphylococci and can be sources of these bacteria for other animals and humans. They can also serve as bioindicators of the pathogens and antimicrobial-resistant bacteria circulating in a given habitat.202540724026
127570.9995Analysis of the Frequency, Antibiotic Susceptibility, and Related Genes among Foodborne Pathogenic Bacteria Isolated from Hospital Refrigerators in Tehran, Iran. BACKGROUND: Hospital refrigerators as essential food storage can be important source of food contamination. We aimed to investigate the frequency and antibiotic susceptibility of the pathogenic bacteria in three hospital refrigerators in Tehran. METHODS: This study was performed on 254 samples, collected from 60 refrigerators of the various wards of three hospitals, A, B, and C, in Tehran, Iran from 2020 to 2021. Following isolation and identification of isolates, the antibiotic susceptibility pattern was determined. PCR-based assays were used to screen the presence of antibiotic resistance genes of resistant isolates. RESULTS: From 254 collected samples, 236 samples (92.9%) were contaminated. Most strains were isolated from refrigerators with poorly cleaned, temperatures above 8 °C in non-critical wards. Most bacteria belonging to Enterobacteriaceae (68.8%), followed by Staphylococcus (11.9%), and Enterococcus (10.6%), while the frequency of non-Enterobacteriaceae isolates was 8.9%. The highest antibiotic resistant bacteria were in extended spectrum beta-lactamase (ESBL) 9.7%, vancomycin-resistant enterococci (VRE) 5.3%, methicillin-resistant S. epidermidis (MRSE) 0.4%, and methicillin-resistant S. aureus (MRSA) 0.4%, respectively. The bla (OXA-48), bla (CTX), and bcla (TEM) genes were found only in 10% of Enterobacteriaceae isolates. The bla (OXA-51) gene was found in all non-Enterobacteriaceae isolates. The vanA and mecA genes were detected in antibiotic-resistant Enterococcus and Staphylococcus. CONCLUSION: Our findings suggests major concern about cross-contamination and the emergence of antibiotic-resistant isolates as a potential health threat with hospital refrigerators origin. More attention to hospital refrigerators cleaning is necessary to prevent foodborne diseases and nosocomial infections.202438919309
218380.9995Prevalence and multidrug resistance of Enterococcus species isolated from chickens at slaughterhouses in Nakhon Ratchasima Province, Thailand. BACKGROUND AND AIM: Enterococcus is a commensal bacteria found in humans and animals, which can cause human nosocomial infections. One of the most contaminated enterococcal sources is poultry meat. Therefore, this study estimated the prevalence and antimicrobial resistance (AMR) profile of Enterococcus from chickens and their meat products at local slaughterhouses in Nakhon Ratchasima Province, Thailand. MATERIALS AND METHODS: From January 2021 to March 2022, 558 samples from 279 cloacal swabs and breast meat were collected from 31 local slaughterhouses in the area. Then, the samples were screened for Enterococcus using modified de Man, Rogosa, and Sharpe agar. Next, selected Gram-positive, catalase-negative, and cocci-shaped colonies were investigated for enterococcal confirmation using Enterococcosel Agar (EA). We also cultivated the samples directly on EA. However, the disk diffusion method was used to investigate positive Enterococcus resistance profiles to 16 antimicrobial agents. Finally, selected phenotypic multidrug-resistant (MDR) Enterococcus isolates were further assessed to identify AMR genes by polymerase chain reaction. RESULTS: Investigations showed that the prevalence of Enterococcus isolates from the chicken cloacal swabs and meat samples were 29.75% (83/279) and 28.32% (78/279), respectively. Most Enterococcus positive isolates were resistant to colistin, followed by cefoxitin, cephalexin, and streptomycin. These isolates also showed a prevalence of MDR species (65.22%; 105/161) and 66 patterns. Furthermore, selected MDR Enterococcus (MDRE) from cloacal swabs and breast meat were positive for the resistant extended-spectrum beta-lactamase TEM genes at 71.43% (20/28) and 78.26% (18/23), respectively, whereas other AMR genes detected in the selected MDR enterococci from the cloacal swabs and breast meat were beta-lactamase TEM (bla (TEM) [0%, 1.96%]), Class 1 integrase (intI1 [14.28%, 0%]), colistin (mrc-1 [3.57%, 0%]), and vancomycin (vanA [14.28%, 0%]). CONCLUSION: This study indicated that phenotypic MDRE correlated with extended-spectrum beta-lactamase TEM gene presence, leading to an AMR reservoir that can be transferred to other bacteria.202236590124
237790.9994Multidrug-resistant and enterotoxigenic methicillin-resistant Staphylococcus aureus isolated from raw milk of cows at small-scale production units. OBJECTIVE: Staphylococcus aureus (S. aureus) has evolved as one of the most significant bacteria causing food poisoning outbreaks worldwide. This study was carried out to investigate the prevalence, antibiotic sensitivity, virulence, and enterotoxin production of S. aureus in raw milk of cow from small-scale production units and house-raised animals in Damietta governorate, Egypt. MATERIAL AND METHODS: The samples were examined bacteriologically, and antimicrobial sensitivity testing was carried out. Moreover, isolates were characterized by the molecular detection of antimicrobial resistance, virulence, and enterotoxin genes. RESULTS: Out of 300 milk samples examined, S. aureus was isolated from 50 samples (16.7%). Antibiotic sensitivity testing revealed that isolates were resistant to β-lactams (32%), tetracycline (16%), and norfloxacin (16%); however, they showed considerable sensitivity to ceftaroline and amikacin (72%). Multidrug-resistance (MDR) has been observed in eight isolates (16%), with a MDR index (0.5) in all of them. Of the total S. aureus isolates obtained, methicillin-resistant S. aureus (MRSA) has been confirmed molecularly in 16/50 (32%) and was found to carry mecA and coa genes, while virulence genes; hlg (11/16, 68.75%) and tsst (6/16, 37.5%) were amplified at a lower percentage, and they showed a significant moderate negative correlation (r = -0.59, p-value > 0.05). Antibiotic resistance genes have been detected in resistant isolates relevant to their phenotypic resistance: blaZ (100%), tetK (50%), and norA (50%). Fifty percent of MRSA isolates carried the seb enterotoxin gene. CONCLUSION: High detection rate of MRSA and MDR isolates from milk necessitates the prompt implementation of efficient antimicrobial stewardship guidelines, especially at neglected small-scale production units.202235445112
2357100.9994Prevalence of Methicillin and β-Lactamase Resistant Pathogens Associated with Oral and Periodontal Disease of Children in Mymensingh, Bangladesh. Oral and periodontal diseases (OPD) is considered one of the main problems of dentistry worldwide. This study aimed to estimate the prevalence of oral and periodontal pathogenic bacteria along with their antimicrobial resistance pattern in 131 children patients aged between 4-10 years who attended in Mymensingh Medical College Hospital during October 2019 to March 2020. OPD pathogens were identified through isolation, cultural and biochemical properties, and nucleic acid detection. The isolates were subjected to antimicrobial susceptibility to 12 antibiotics commonly used in dentistry. In addition, the isolates were analyzed molecularly for the presence of six virulence and three antibacterial resistance genes. Five pathogens were identified, of which Staphylococcus aureus (S. aureus) (49%) and S. salivarius (46%) were noticed frequently; other bacteria included S. mutans (16.8%), S. sobrinus (0.8%) and L. fermentum (13.7%). The virulence genes-clumping factor A (clfA) was detected in 62.5% isolates of S. aureus, and gelatinase enzyme E (gelE) gene was detected in 5% isolates of S. salivarius, while other virulence genes were not detected. All the tested isolates were multidrug-resistant. The overall prevalence of MDR S. aureus, Streptococcus spp. and L. fermentum was 92.2%, 95.1% and 100%, respectively. It was observed that a high proportion of isolates were found resistant to 5-8 antibiotics. A majority of S. aureus, Streptococcus spp., and L. fermentum isolates tested positive for the β-lactamase resistance genes blaTEM and cfxA, as well as the methicillin resistance gene mecA. Phylogenetically, the resistance genes showed variable genetic character among Bangladeshi bacterial pathogens. In conclusion, S. aureus and S. salivarius were major OPD pathogens in patients attended in Mymensingh Medical College Hospital of Bangladesh, and most were Beta-lactam and methicillin resistant.202236015011
1469110.9994Investigation of Bacterial Infections and Antibiotic Resistance Patterns Among Clinical Isolates in the Center of Iran. Introduction: Bacterial infection is a considerable problem in hospitals. Thus, this study was executed to appraise the rampancy of bacterial infections, antimicrobial susceptibility patterns, and molecular characterization of isolates among patients in Bafgh Hospital in Yazd, Iran, in 2020. Methods: In the current study, we surveyed 103 isolates of 400 clinical specimens from early March 2020 to September 2020 in Bafgh Hospital. We assessed phenotypic traits and antibiotic resistance with standard microbiological methods. Phenotypic methods were also performed to identify extended-spectrum beta-lactamases (ESBLs) in Gram-negative bacilli, inducible clindamycin resistance, and methicillin resistance in Staphylococcus according to CLSI guidelines. Molecular identification of isolates was done by conventional PCR 16S rRNA gene sequencing. Furthermore, we investigated the prevalence of resistant genes including bla (TEM), bla (PER-2), bla (CTX-M), bla (SHV), and bla (VEB-1) in Gram-negative bacteria and the mecA gene in staphylococcal species. Results: From 400 different clinical specimens, 103 isolates of Gram-positive and Gram-negative bacteria were isolated. Based on phenotypic and molecular methods, most common isolates were Escherichia coli (53 isolates), followed by Klebsiella spp. (18 isolates), and Staphylococcus aureus (16 isolates). The highest resistance was found in Gram-positive bacteria to erythromycin (66.67%) and penicillin (55.56%), while considering Gram-negative bacteria, the most resistant was cefixime (49.41%) and trimethoprim-sulfamethoxazole (47.05%). In addition, out of 16 S. aureus isolates, 62.5% and 17.65% were resistant to methicillin and clindamycin, respectively. Among 83 Gram-negative isolates, 22.89% were ESBL-positive. The prevalence of bla (SHV), bla (PER2), bla (TEM), bla (CTX-M), and bla (VEB-1) genes was 78.31%, 59.03%, 40.96%, 30.12%, and 0%, respectively. Conclusions: The outbreak of bacterial infections is relatively high in hospitals. Recognizing risk agents for bacterial infections and restricting the administration of multidrug-resistant antibiotics is a substantial measure that must be taken to prevent patient mortality.202540822981
2189120.9994High prevalence of Panton-Valentine Leucocidin (PVL) toxin carrying MRSA and multidrug resistant gram negative bacteria in late onset neonatal sepsis indicate nosocomial spread in a Pakistani tertiary care hospital. BACKGROUND: Neonatal sepsis has high incidence with significant mortality and morbidity rates in Pakistan. We investigated common etiological patterns of neonatal sepsis at a tertiary care setup. METHODS: 90 pus and blood, gram negative and gram positive bacterial isolates were analyzed for virulence and antibiotic resistance gene profiling using PCR and disc diffusion methods. RESULTS: Staphylococcus aureus showed strong association with neonatal sepsis (43 %) followed by Citrobacter freundii (21 %), Pseudomonas aeruginosa (13 %), Escherichia coli (15 %) and Salmonella enterica (8 %). Molecular typing of E. coli isolates depicted high prevalence of the virulent F and B2 phylogroups, with 4 hypervirulent phylogroup G isolates. 76.9 % S. aureus isolates showed presence of Luk-PV, encoding for Panton-valentine leucocidin (PVL) toxin with majority also carrying MecA gene and classified as methicillin resistant S. aureus (MRSA). ecpA, papC, fimH and traT virulence genes were detected in E. coli and Salmonella isolates. 47 % Citrobacter freundii isolates carried the shiga like toxin SltII B. Antimicrobial resistance profiling depicted common resistance to cephalosporins, beta lactams and fluoroquinolones. CONCLUSION: Presence of PVL carrying MRSA and multidrug resistant gram negative bacteria, all isolated from late onset sepsis neonates indicate a predominant nosocomial transmission pattern which may complicate management of the disease in NICU setups.202336621204
1266130.9994Characterization of methicillin-resistant coagulase-negative staphylococci in milk from cows with mastitis in Brazil. Staphylococci are one of the most prevalent microorganisms in bovine mastitis. Staphylococcus spp. are widespread in the environment, and can infect animals and humans as opportunistic pathogens. The objective of this study was to determine the frequency of methicillin-resistance (MR) among coagulase-negative staphylococci (CoNS) previously obtained from milk of mastitic cows in Brazil and to characterize the antimicrobial resistance phenotype/genotype and the SCCmec type of MRCoNS isolates. Identification of MRCoNS was based on both biochemical and molecular methods. Susceptibility testing for eleven antimicrobials was performed by disk-diffusion agar. Antimicrobial resistance genes and SCCmec were investigated by specific PCRs. Twenty-six MRCoNS were detected (20 % of total CoNS), obtained from 24 animals, and were identified as follows: S. epidermidis (7 isolates), S. chromogenes (7), S. warneri (6), S. hyicus (5) and S. simulans (1). All MRCoNS isolates carried mecA while the mecC gene was not detected in any CoNS. The SCCmec IVa was demonstrated in nine MRCoNS, while the remaining 17 isolates harbored non-typeable SCCmec cassettes. In addition to oxacillin and cefoxitin resistance, MRCoNS showed resistance to tetracycline (n = 7), streptomycin (n = 6), tobramycin (n = 6), and gentamicin (n = 4), and harbored the genes tet(K) (n = 7), str (n = 3), ant(4') (n = 6) and aac(6')-aph(2″) (n = 4), respectively. In addition, seven strains showed intermediate resistance to clindamycin and two to streptomycin, of which two harboured the lnu(B) and lsa(E) genes and two the aad(E) gene, respectively. One isolate presented intermediate erythromycin and clindamycin resistance and harbored an erm(C) gene with an uncommon 89-bp deletion rendering a premature stop codon. MRCoNS can be implicated in mastitis of cows and they constitute a reservoir of resistance genes that can be transferred to other pathogenic bacteria.201424817534
2679140.9994Detection and Molecular Characterization of Staphylococci from Eggs of Household Chickens. Eggs are a healthy and nutritious food source, but may be contaminated by bacteria. Previous studies have reported the presence of staphylococci in eggs of farmed chickens, but no study has evaluated the staphylococcal population of eggs from household chickens. In this study, staphylococci from eggs (n = 275) of household chickens collected from November 2016 to March 2017 from different villages of Khyber Pakhtunkhwa province, Pakistan, were characterized. Seven species of staphylococci were identified from 65 eggs, including the predominant species, Staphylococcus xylosus (49/275; 17.8%). S. xylosus isolates (n = 73) were tested for antimicrobial susceptibility, presence of resistance genes, genetic relatedness, and inhibitory activity against other bacteria. The majority of isolates were resistant to oxacillin (83.6%) and tetracycline (24.7%), but also exhibited resistance to daptomycin and linezolid (5.5% each). Of the 10 resistance genes tested, isolates were only positive for mecA (35.6%; 26/73), mecC/C1 (2.7%; 2/73), and tet(K) (14/73; 19%). Using pulsed-field gel electrophoresis (PFGE), nine clusters had identical PFGE patterns. Isolates produced inhibitory activity against a broad spectrum of bacteria; 20.5%, 19.2%, 17.8%, and 16.4% of S. xylosus were able to inhibit growth of Salmonella enterica serotype Typhi, methicillin-susceptible Staphylococcus aureus, Escherichia coli, and methicillin-resistant Staphylococcus aureus, respectively. This study demonstrated the presence of genetically related antimicrobial-resistant S. xylosus from eggs from household chickens. Like table eggs, eggs of household chickens also contain staphylococci that may be resistant to antimicrobials used to treat human infections. These data will allow comparison between staphylococci from eggs from different sources and may indicate the relative safety of eggs from household chickens. Further study of these egg types and their microbial composition is warranted.201931009262
2185150.9994Isolation of multidrug-resistant Escherichia coli, Staphylococcus spp., and Streptococcus spp. from dogs in Chattogram Metropolitan Area, Bangladesh. OBJECTIVES: Antibacterial resistance is a great concern in human and food animal medicine, and it poses a significant concern in pet animals like dogs. This cross-sectional study was conducted to evaluate the antimicrobial resistance pattern of Escherichia coli, Staphylococcus spp., and Streptococcus spp. along with the carryover of some resistance genes in E. coli from dogs in the Chattogram metropolitan area, Bangladesh. MATERIALS AND METHODS: Rectal swab (n = 50), nasal swab (n = 50), and skin swab (n = 50) samples were collected from dogs having respiratory infections, skin infections, and/or enteritis, respectively. Three types of bacteria were identified and isolated by conventional bacteriological techniques and biochemical tests. Antimicrobial susceptibility testing was carried out against 12 antimicrobials by disk diffusion methods. Six resistance genes, namely bla (TEM), bla (CTX-M), tetA, tetB, Sul-I, and Sul-II, were screened for phenotypically resistant E. coli isolates by the polymerase chain reaction. RESULTS: A total of 39 (78%) E. coli, 25 (50%) Staphylococcus spp., and 24 (48%) Streptococcus spp. isolates were isolated from the rectal swab, nasal swab, and skin swab samples, respectively. In the cultural sensitivity test, the E. coli isolates showed resistance to ceftriaxone (79%) and sulfamethoxazole/trimethoprim (64%). Doxycycline (80%) demonstrated the highest resistance among Staphylococcus isolates, followed by sulfamethoxazole/trimethoprim (60%). Streptococcus isolates showed the highest resistance to penicillin (63%), followed by ceftriaxone (54%), while no isolate showed resistance to gentamycin. The prevalence of bla (TEM), bla (CTX-M), tetA, tetB, Sul-I, and Sul-II genes in phenotypically resistant E. coli isolates were 100%, 61.29%, 100%, 8.33%, 56%, and 72%, respectively. CONCLUSIONS: Spillover of such multidrug-resistant bacteria and resistance genes from pet dogs pose a serious public health risk.202033409311
1470160.9994Occurrence of extended-spectrum beta-lactamase (ESBL) in Gram-negative bacterial isolates from high vaginal swabs in a teaching hospital in Nigeria. OBJECTIVE: This study aims to determine the antibiotic susceptibility pattern and incidence of extended-spectrum beta-lactamase (ESBL) genes in isolates from vaginal discharge of symptomatic female patients. STUDY DESIGN: Cross-sectional study. PARTICIPANT: Pregnant and non-pregnant women between 18 and 50 years who presented with genital tract infection and had not received antimicrobial therapy in the two weeks prior. INTERVENTIONS: The study determines the prevalence of bacteria in the vaginal discharge of female patients of reproductive age, the antibiotic susceptibility pattern of the isolates and the incidence of ESBL genes in Gram-negative isolates from the sample. RESULTS: Bacteria were found in 74 (80.4%) and 88 (81.5%) samples from pregnant and non-pregnant women, respectively. Escherichia coli (n=48; 27.6%) occurred mostly in the samples, followed by Staphylococcus aureus (n=38; 21.8%). Among the Gram-positive, all Streptococcus. pneumoniae and Staphylococcus. epidermidis were sensitive to imipenem and meropenem (100%). S. aureus was the most resistant to cephalexin (71.4%), cefoxitin (60.5%) carbenicillin (60.5%) and ceftazidime (57.9%). Escherichia coli was highly resistant to carbenicillin (85.4%), cephalexin (64.6%) and cefotaxime (56.3%). Klebsiella pneumoniae showed the highest level of imipenem resistance (31.6%), followed by E. coli (29.2%). The prevalence of ESBL genes in Gram-negative isolates from pregnant women was 25.6% (11/43), compared to 30.3% (23/76) in non-pregnant women. Both bla (TEM) and bla (SHV) had the highest occurrence of 14.3% (17/119) of the isolates. CONCLUSION: This study found Gram-negative pathogens isolated from the vaginal tract of both pregnant and non-pregnant women to be resistant to multiple antibiotics and have ESBL genes. FUNDING: None declared.202440585516
2156170.9994Antimicrobial resistance in urinary pathogens and culture-independent detection of trimethoprim resistance in urine from patients with urinary tract infection. BACKGROUND: Although urinary tract infections (UTIs) are extremely common, isolation of causative uropathogens is not always routinely performed, with antibiotics frequently prescribed empirically. This study determined the susceptibility of urinary isolates from two Health and Social Care Trusts (HSCTs) in Northern Ireland to a range of antibiotics commonly used in the treatment of UTIs. Furthermore, we determined if detection of trimethoprim resistance genes (dfrA) could be used as a potential biomarker for rapid detection of phenotypic trimethoprim resistance in urinary pathogens and from urine without culture. METHODS: Susceptibility of E. coli and Klebsiella spp. isolates (n = 124) to trimethoprim, amoxicillin, ceftazidime, ciprofloxacin, co-amoxiclav and nitrofurantoin in addition to susceptibility of Proteus mirabilis (n = 61) and Staphylococcus saprophyticus (n = 17) to trimethoprim was determined by ETEST® and interpreted according to EUCAST breakpoints. PCR was used to detect dfrA genes in bacterial isolates (n = 202) and urine samples(n = 94). RESULTS: Resistance to trimethoprim was observed in 37/124 (29.8%) E. coli and Klebsiella spp. isolates with an MIC(90) > 32 mg/L. DfrA genes were detected in 29/37 (78.4%) trimethoprim-resistant isolates. Detection of dfrA was highly sensitive (93.6%) and specific (91.4%) in predicting phenotypic trimethoprim resistance among E. coli and Klebsiella spp. isolates. The dfrA genes analysed were detected using a culture-independent PCR method in 16/94 (17%) urine samples. Phenotypic trimethoprim resistance was apparent in isolates cultured from 15/16 (94%) dfrA-positive urine samples. There was a significant association (P < 0.0001) between the presence of dfrA and trimethoprim resistance in urine samples containing Gram-negative bacteria (Sensitivity = 75%; Specificity = 96.9%; PPV = 93.8%; NPV = 86.1%). CONCLUSIONS: This study demonstrates that molecular detection of dfrA genes is a good indicator of trimethoprim resistance without the need for culture and susceptibility testing.202235610571
2378180.9994Molecular Detection and Characterization of the mecA and nuc Genes From Staphylococcus Species (S. aureus, S. pseudintermedius, and S. schleiferi) Isolated From Dogs Suffering Superficial Pyoderma and Their Antimicrobial Resistance Profiles. Canine superficial pyoderma (CSP) is a bacterial infection secondary to several skin diseases of the dog. Staphylococcus pseudintermedius, which is a commensal bacterium of the dog's skin, is the leading agent found in dogs affected by CSP, which can progress to deep pyoderma. It is also of clinical significance because S. pseudintermedius strains carry antimicrobial resistance genes, mainly the mecA gene. In this descriptive longitudinal study, molecular characterization of bacterial isolates from dogs affected by CSP was performed in addition to phenotyping, antimicrobial profiling, and assessment of resistance carriage status. Fifty dogs (24 females and 26 males) attending the CES University Veterinary Teaching Hospital were included in the study. CSP was confirmed according to clinical signs and cytological examination. Swabs were taken from active skin lesions for bacterial culture, and phenotyping and antimicrobial resistance profiles were assessed using API-Staph phenotyping and the Kirby-Bauer method, respectively. We also performed molecular detection and characterization of the mecA and nuc encoding gene of coagulase-positive Staphylococci. The mecA gene frequency was established by qPCR amplification of a 131bp gene fragment. Data were evaluated by descriptive statistics. Erythema, peeling, pruritus, and alopecia were the predominant symptoms (72, 56, and 46%, respectively). We isolated bacteria compatible with Staphylococcus species from all samples tested. API phenotyping showed 83.1 to 97.8% compatibility with S. pseudintermedius. PCR-genotyping resulted in 15, 3, and 1 isolates positive for S. pseudintermedius, S. aureus, and S. schleiferi, respectively. Isolated strains showed high susceptibility to Imipenem, Ampicillin/Sulbactam, and Rifampicin (100, 94, and 92%, respectively). The highest resistance was against Vancomycin and Trimethoprim/Sulfamethoxazole (98 and 74%, respectively). S. pseudintermedius, S. aureus, and S. schleiferi isolates were cloned and shared 96% sequence homology. Finally, we found 62% carriage status of the mecA gene in isolates of CSP patients, although only 36% of the isolates were methicillin-resistant. Identification of three Staphylococcus species causing CSP, high-level resistance against conventional antimicrobials, and carriage of the mecA gene highlight the importance of performing molecular characterization of bacteria causing dermatological conditions in dogs.202032793641
1287190.9994Frequently used therapeutic antimicrobials and their resistance patterns on Staphylococcus aureus and Escherichia coli in mastitis affected lactating cows. Mastitis is one of the most frequent and costly production diseases of dairy cattle. It is frequently treated with broad-spectrum antimicrobials. The objectives of this work were to investigate the prevalence of Staphylococcus aureus and Escherichia coli, find out the antimicrobials used in mastitis treatment, and explore the antimicrobial resistance profile including detection of resistance genes. Bacterial species and antimicrobial resistance genes were confirmed by the polymerase-chain reaction. A total of 450 cows were screened, where 23 (5.11%) and 173 (38.44%) were affected with clinical and sub-clinical mastitis, respectively. The prevalence of S. aureus was 39.13% (n = 9) and 47.97%(n = 83) while, E. coli was 30.43% (n = 7) and 15.60% (n = 27) in clinical and sub-clinical mastitis affected cows, respectively. The highest antimicrobials used for mastitis treatment were ciprofloxacin (83.34%), amoxycillin (80%) and ceftriaxone (76.67%). More than, 70% of S. aureus showed resistance against ampicillin, oxacillin, and tetracycline and more than 60% of E. coli exhibited resistance against oxacillin and sulfamethoxazole-trimethoprim. Selected antimicrobial resistance genes (mecA, tetK, tetL, tetM, tetA, tetB, tetC, sul1, sul2 and sul3) were identified from S. aureus and E. coli. Surprisingly, 7 (7.61%) S. aureus carried the mecA gene and were confirmed as methicillin-resistant S. aureus (MRSA). The most prevalent resistance genes were tetK 18 (19.57%) and tetL 13 (14.13%) for S. aureus, whereas sul1 16 (47.06%), tetA 12 (35.29%), sul2 11 (32.35%) and tetB 7 (20.59%) were the most common resistance genes in E. coli. Indiscriminate use of antimicrobials and the presence of multidrug-resistant bacteria suggest a potential threat to public health.202235291582