Escherichia coli serogroups in slaughterhouses: Antibiotic susceptibility and molecular typing of isolates. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
122501.0000Escherichia coli serogroups in slaughterhouses: Antibiotic susceptibility and molecular typing of isolates. This study aimed to investigate the contamination of carcasses and slaughterhouse environment with Escherichia coli O157:H7 and non-O157 serogroups (O45:H2, O103:H2, O121:H19, O145:H28, O26:H11, O111:H8). For this purpose, a total of 150 samples (30 carcasses, 30 shredding units, 30 knives, 30 slaughterhouse waste water and 30 wall surfaces) were collected from 5 different slaughterhouses in Kayseri, Turkey. The conventional and molecular methods were performed in order to detect Escherichia coli and its serogroups. Of the 150 samples, 55 (36%) were found to be contaminated with E. coli. Among isolates, E. coli serogroup (O157:H7) were detected in 2 (11%) carcass and 2 (11%) wastewater samples. None of the E. coli isolates harbored tested genes (stx1, stx2, eaeA, and hylA). Effective infection control measures and antibiotic stewardship programs should be adopted to limit the spread of multidrug-resistant bacteria. It was also deduced that these isolates resistance to different antibiotics could be hazardous for public health.202235427957
130710.9995Identification of shiga toxin and intimin coding genes in Escherichia coli isolates from pigeons (Columba livia) in relation to phylotypes and antibiotic resistance patterns. Shiga toxin-producing Escherichia coli (STEC) strains are responsible for outbreaks of human intestinal diseases worldwide. Pigeons are distributed in public areas and are potential reservoirs for pathogenic bacteria. One hundred fifty-four fresh fecal samples were obtained from trapped pigeons in southeast of Iran and were cultured for isolation of E. coli. The isolates were examined to determine the prevalence of stx1, stx2, and eae genes, antimicrobial resistance, and their phylotypes. The confirmed E. coli isolates (138) belong to four phylogenetic groups: A (54.34%), B1 (34.05%), B2 (3.62%), and D (7.79%). Thirteen (9.42%) isolates were positive for one of the examined genes. Eight isolates (5.79%) were positive for eae, four (2.89%) for stx2, and one isolate (1.44%) for stx1 gene. Phylotyping assays showed that eight eae-positive isolates fall into three phylogroups; A (three isolates), B1 (three isolates), and D (two isolates), whereas four stx2-positive isolates belonged to the A (three isolates) and D (one isolate) groups. The stx1-positive isolate belonged to phylogroup A. One hundred six isolates (76.81%) showed resistance to at least one of the selected antibacterial agents. The maximum resistance rate was against oxytetracycline (73.91%), and the minimum was against flumequine (2.17%). Twenty different patterns of drug resistance were observed. According to the results, pigeons could be considered as carriers of STEC strains. However, E. coli isolates of pigeon feces increase the potential of these birds to act as a reservoir of multiple antibiotic resistant bacteria.201222105907
115720.9995Isolation and Molecular Characterization of Antimicrobial Resistant Escherichia coli from Healthy Broilers in Retail Chicken Outlets of Hotspot Cities in Southern India. E. coli is one of the first commensal bacteria to colonize the chicken gut. It may act as a source for the spread of antibiotic resistance to human via the food chain and contamination of the environment. Isolation and characterization of such E. coli from commercial broilers in retail outlets of Southern India were carried out. Eighty-three E. coli isolates (76.9%) were obtained from cloacal/meat swabs (108 samples). Phenotypically, 78.3% of isolates were ESBL producers, 69.9% were fluoroquinolone-resistant, and 6% were carbapenemase producers. Genotypically, the blaSHV, blaTEM, and blaCTX-M were present in 48.2%, 43.4%, and 10.8% of the isolates, respectively. These isolates also carried fluoroquinolone-resistant genes viz qnrB (31.3%) and qnrS (34.9%) but not carbapenemase genes. Overall, ESBL were identified in 72.3% of isolates and fluoroquinolone-resistance genes in 51.8%. Strikingly, 53% of the isolates were multidrug-resistant, with both ESBL and fluoroquinolone-resistant genes. The study revealed the presence of MDR E. coli strains in broiler meat at retail outlets indicating the potential public health risks.202540778947
136530.9995The frequency of tetracycline resistance genes in Escherichia coli strains isolated from healthy and diarrheic pet birds. BACKGROUND: Pet birds have close contact to human and resistant bacteria can transfer from birds to intestinal flora of human. AIMS: This study was carried out to determine the tetracycline resistance genes in Escherichia coli strains associated with enteric problem in pet birds. METHODS: Totally, 295 cloacal swabs were collected from 195 healthy and 100 diarrheic pet birds in Isfahan province, Iran. The presence of E. coli was identified by conventional bacteriological, biochemical, and molecular examinations. The presence of tetracycline resistance genes (tetA, tetB, tetC, tetD, tetE, tetG, tetK, tetL, tetM, tetO, and tetS genes) were examined using three multiplex PCR. RESULTS: The results showed that 18.9% and 43% of cloacal samples of healthy and diarrheic pet birds contained E. coli, respectively. The mean percentage of E. coli isolated from cloacal samples of diarrheic birds was significantly higher than the healthy birds (46.6 vs 23.1%). In healthy birds, out of 37 E. coli isolates, 10 isolates were resistant to tetracycline, harboring tetA and tetB genes (3 tetA vs 7 tetB), but in the diarrheic birds, of 26 resistance E. coli, 11, 12, and 3 strains contained tetA (42.3%), tetB (46.15), and tetA+tetB (11.53%) genes. The percentage of tet genes were significantly higher in diarrheic birds than healthy birds (58.9 vs 24.0%). CONCLUSION: Both resistant genes of tetA and tetB were detected in E. coli isolates that are related with efflux pump activity. These genes can be transferred between Gram-negative bacteria and they have the potential ability to be transferred to the environment and human flora.202135126542
133440.9995Intimin (eae) and virulence membrane protein pagC genes are associated with biofilm formation and multidrug resistance in Escherichia coli and Salmonella enterica isolates from calves with diarrhea. OBJECTIVES: This study aimed to evaluate the association of the intimin (eae) and pagC genes with biofilm formation and multidrug resistance (MDR) phenotype in Escherichia coli and Salmonella enterica collected from calves with diarrhea. RESULTS: Fecal samples (n: 150) were collected from calves with diarrhea. Of 150 fecal samples, 122 (81.3%) were culture positive and 115/122 (94.2%) were Gram-negative bacteria. Among them, E. coli (n = 64/115, 55.6%) was the most common isolate followed by S. enterica (n = 41/115, 35.6%). Also, 10 (8.6%) isolates were other Enterobacteriaceae bacteria including Klebsiella and Proteus species. Eighty-nine isolates (77.4%) from calf diarrhea, including 52 (81.3%) E. coli and 37 (90.2%) S. enterica were MDR. The eae and pagC genes were detected in 33 (51.5%) E. coli and 28 (68.3%) S. enterica isolates, respectively. There was a strong association between these genes and biofilm formation and MDR phenotype (P-value = 0.000). All E. coli isolates carrying the eae gene were biofilm producers and MDR. Also, all pagC-positive S. enterica isolates were MDR and 25 (89.3%) isolates of them produced biofilm.202236221149
115550.9995Prevalence and antimicrobial resistance profiles of Escherichia coli isolated from free-range pigs. INTRODUCTION: Numerous studies about antimicrobial resistant Escherichia coli (E. coli) of animal origins have been conducted around the world, most of them focus on bacteria from animals raised in intensive breeding farms, but systematic studies on antimicrobial resistance in E. coli of free range animals are still lacking. METHODOLOGY: This study aimed to investigate the prevalence and antimicrobial resistance profiles of E. coli from free-range pigs in Laiwu mountainous areas, eastern China. RESULTS: Among 123 fecal samples, 123 non-duplicate E. coli were obtained with an isolation rate of 100.0% (123/123). These E. coli showed the highest resistance rate to tetracycline (77/123, 62.6%), but all were sensitive to amoxicillin/clavulanic acid. Thirty-eight E. coli (38/123, 30.9%) showed multidrug resistance (MDR). Among 123 E. coli isolates, only 39 carried antimicrobial resistant genes detected in this study. Of these 39 isolates, blaTEM-1, blaCTX-M-14, blaCTX-M-15, qnrB, qnrD, qnrS1, floR and cfr genes were detected in 13, 9, 4, 7, 10, 7, 20, and 7 isolates, respectively. blaTEM-1 and blaCTX-M-14 genes were concomitantly detected in 6 isolates, and blaTEM, qnrB, qnrS and qnrD genes were concomitantly detected in 7 isolates. CONCLUSIONS: Free-ranging pigs may be regarded as a potential reservoir for antibiotic resistant genes.201731085827
131560.9994Neonatal calf diarrhea: A potent reservoir of multi-drug resistant bacteria, environmental contamination and public health hazard in Pakistan. Though emergence of multi-drug resistant bacteria in the environment is a demonstrated worldwide phenomenon, limited research is reported about the prevalence of resistant bacteria in fecal ecology of neonatal calf diarrhea (NCD) animals in Pakistan. The present study aimed to identify and assess the prevalence of bacterial pathogens and their resistance potential in the fecal ecology of NCD diseased animals of Pakistan. The presence of antibiotic resistance genes (bla(TEM), bla(NDM-1), bla(CTX-M), qnrS) was also investigated. A total of 51 bacterial isolates were recovered from feces of young diarrheic animals (n = 11), collected from 7 cities of Pakistan and identified on the basis of 16S rRNA gene sequence and phylogenetic analysis. Selected isolates were subjected to antimicrobial susceptibility by disc diffusion method while polymerase chain reaction (PCR) was used to characterize the bla(TEM), bla(NDM-1), bla(CTX-M), qnrS and mcr-1 antibiotic resistance genes. Based on the 16S rRNA gene sequences (Accession numbers: LC488898 to LC488948), all isolates were identified that belonged to seventeen genera with the highest prevalence rate for phylum Proteobacteria and genus Bacillus (23%). Antibiotic susceptibility explained the prevalence of resistance in isolates ciprofloxacin (100%), ampicillin (100%), sulfamethoxazole-trimethoprim (85%), tetracycline (75%), amoxicillin (55%), ofloxacin (50%), ceftazidime (45%), amoxicillin/clavulanic acid (45%), levofloxacin (30%), cefpodoxime (25%), cefotaxime (25%), cefotaxime/clavulanic acid (20%), and imipenem (10%). MICs demonstrated that almost 90% isolates were multi-drug resistant (against at least three antibiotics), specially against ciprofloxacin, and tetracycline with the highest resistance levels for Shigella sp. (NCCP-421) (MIC-CIP up to 75 μg mL(-1)) and Escherichia sp. (NCCP-432) (MIC-TET up to 250 μg mL(-1)). PCR-assisted detection of antibiotic resistance genes showed that 54% isolates were positive for bla(TEM) gene, 7% isolates were positive for bla(CTX-M) gene, 23% isolates were positive for each of qnrS and mcr-1 genes, 23% isolates were co-positive in combinations of qnrS and mcr-1 genes and bla(TEM) and mcr-1 genes, whereas none of the isolate showed presence of bla(NDM-1) gene.202134426357
120070.9994Virulence and Antimicrobial Resistance Patterns of Salmonella spp. Recovered From Migratory and Captive Wild Birds. BACKGROUND: Salmonella spp., especially those are resistant to extended-spectrum β-lactamase (ESBL), are considered as major concern to global health due to their emergence and dissemination. AIM: The aim of this study was to investigate the virulence and antimicrobial resistance (AMR) profile of Salmonella spp. from migratory and captive wild birds. METHOD: A total 262 faecal samples were collected, and the identification of Salmonella spp. was carried out using a standard culture and PCR as well as molecular detection of virulence and AMR genes. RESULTS: The overall prevalence of Salmonella was determined to be 30.92% (95% CI = 25.63-36.75). Migratory birds exhibited highest prevalence (38.10%), whereas wild birds in captivity showed a lower prevalence (23.40%). The agfA gene was detected at a higher rate at 24.69%. Salmonella spp. exhibited 100% resistance to tetracycline, followed by 58% ampicillin and 46% streptomycin. In addition, there was a resistance rate to ceftriaxone of 17% and to colistin sulphate of 25%. Interestingly, levofloxacin alone displayed 100% sensitivity across all isolates, while ciprofloxacin and azithromycin showed 73% and 64% sensitivity, respectively. The MAR index was 0.25 and 0.42, and 74.07% of all isolates showed multidrug resistance (MDR). It was shown that migratory and captive wild birds contained ESBL genes blaTEM (94.34% and 49.06%) and blaSHV (13.33% and 10%), respectively. Genes responsible for sulphonamide (sul1) resistance were detected in 13.33% and 79% of wild and migratory birds, respectively. CONCLUSION: Salmonella has been found in captive wild and migratory birds and could act as reservoirs for the transmission of MDR and ESBL bacteria.202439494993
267680.9994Characterization of commensal Escherichia coli isolates from slaughtered sheep in Mexico. INTRODUCTION: Commensal Escherichia coli is defined as bacteria without known virulence factors that could be playing a specific role in some diseases; however, they could be responsible to disseminate antimicrobial resistance genes to other microorganisms. This study aimed to characterize the commensal E. coli isolates obtained from slaughtered sheep in the central region of Mexico. METHODOLOGY: Isolates were classified as commensal E. coli when distinctive genes related to diarrheagenic pathotypes (stx1, stx2, eae, bfp, LT, stp, ipaH, and aggR) were discarded by PCR. Identification of serotype, phylogenetic group, and antimicrobial resistance was also performed. RESULTS: A total of 41 isolates were characterized. The phylogenetic groups found were B1 in 37 isolates (90.2%), A in 2 (4.8%), and 1 isolate (2.4%) for C and D groups. Serotypes associated with diarrhea in humans (O104:H2 and O154:NM) and hemolytic uremic syndrome (O8:NM) were detected. Thirty-three isolates (80%) were resistant to ceftazidime, 23 (56%), to tetracycline 8 (19.5%) to ampicillin, and 1 to amikacin. Six isolates (14.6%) were multidrug-resistant. CONCLUSIONS: This study provides new information about commensal E. coli in slaughtered sheep, high percentages of resistance to antibiotics, and different profiles of antimicrobial resistance were found, their dissemination constitute a risk factor towards the consuming population.202134898507
117890.9994Molecular Characterization of Plasmid-Mediated Quinolone Resistance Genes in Multidrug-Resistant Escherichia coli Isolated From Wastewater Generated From the Hospital Environment. AIM: This study investigated the carriage of Plasmid-Mediated Quinolone Resistance (PMQR) genes in fluoroquinolone-resistant Escherichia coli recovered from wastewater generated by healthcare institutions. MATERIALS AND METHODS: Isolation of fluoroquinolone-resistant Escherichia coli was done on medium supplemented with 1 µg/mL of ciprofloxacin (a fluoroquinolone). Presumptive isolates were identified via the detection of uidA gene. Susceptibility of the isolates to a panel of antibiotics was done using disc diffusion method. Detection of PMQR genes in the isolates was done using primer-specific PCR. RESULTS: Thirty fluoroquinolone-resistant Escherichia coli were obtained from the wastewater over a period of 6 months. The resistance to each of the antibiotic tested was: ampicillin (100%), ceftriaxone (100%), nalidixic acid (100%), tetracycline (96.7%), cefotaxime (96.7%), amoxicillin-clavulanate (80%), gentamicin (60%), cefoxitin (30%), and imipenem (3.3%). The Multiple Antibiotic Resistance Index (MARI) ranged from 0.6 to 0.9. The detection of PMQR genes in the 30 isolates was: qnrA (76.7%), qnrB (53.3%), qnrS (63.3%), aac(6')-lb-cr (43.3%), and qepA (43.3%). All the fluoroquinolone-resistant Escherichia coli carried at least one PMQR determinant. CONCLUSION: This study revealed that untreated hospital wastewaters are significant hub of multidrug-resistant and fluoroquinolone-resistant Escherichia coli, showing high carriage of PMQR genes, and may be a major contributor to the resistome of fluoroquinolone-resistant bacteria in the Nigerian environment.202540552214
1288100.9994Assessment of virulence factors and antimicrobial resistance among the Pseudomonas aeruginosa strains isolated from animal meat and carcass samples. BACKGROUND: Pseudomonas aeruginosa bacteria are emerging causes of food spoilage and foodborne diseases. Raw meat of animal species may consider a reservoir of P. aeruginosa strains. OBJECTIVES: The present survey was done to assess the prevalence, antibiotic resistance properties and distribution of virulence factors among the P. aeruginosa strains isolated from raw meat and carcass surface swab samples of animal species. METHODS: Five hundred and fifty raw meat and carcass surface swab samples were collected from cattle and sheep species referred to as slaughterhouses. P. aeruginosa bacteria were identified using culture and biochemical tests. The pattern of antibiotic resistance was determined by disk diffusion. The distribution of virulence and antibiotic resistance genes was determined using polymerase chain reaction. RESULTS: Forty-seven of 550 (8.54%) examined samples were contaminated with P. aeruginosa. The prevalence of P. aeruginosa in raw meat and carcass surface swab samples were 6.57 and 12%, respectively. P. aeruginosa isolates showed the maximum resistance rate toward penicillin (87.23%), ampicillin (85.10%), tetracycline (85.10%), gentamicin (65.95%) and trimethoprim (57.44%). The most commonly detected antibiotic resistance genes were BlaCTX-M (53.19%), blaDHA (42.55%) and blaTEM (27.65%). The most commonly detected virulence factors was ExoS (42.55%), algD (31.91%), lasA (31.91%), plcH (31.91%) and exoU (25.53%). CONCLUSIONS: Meat and carcass surface swab samples may be sources of resistant and virulent P. aeruginosa, which pose a hygienic threat in their consumption. However, further investigations are required to identify additional epidemiological features of P. aeruginosa in meat and carcass surface samples.202336418165
1149110.9994Antimicrobial resistance, Extended-Spectrum β-Lactamase production and virulence genes in Salmonella enterica and Escherichia coli isolates from estuarine environment. The impact of antimicrobial resistance (AMR) on global public health has been widely documented. AMR in the environment poses a serious threat to both human and animal health but is frequently overlooked. This study aimed to characterize the association between phenotype and genotype of AMR, virulence genes and Extended-Spectrum β-Lactamase (ESBL) production from estuarine environment. The Salmonella (n = 126) and E. coli (n = 409) were isolated from oysters and estuarine water in Thailand. The isolates of Salmonella (96.9%) and E. coli (91.4%) showed resistance to at least one antimicrobial agent. Multidrug resistance (MDR) was 40.1% of Salmonella and 23.0% of E. coli. Resistance to sulfamethoxazole was most common in Salmonella (95.2%) and E. coli (77.8%). The common resistance genes found in Salmonella were sul3 (14.3%), followed by blaTEM (11.9%), and cmlA (11.9%), while most E. coli were blaTEM (31.5%) and tetA (25.4%). The ESBL production was detected in Salmonella (1.6%, n = 2) of which one isolate was positive to blaTEM-1. Eight E. coli isolates (2.0%) were ESBL producers, of which three isolates carried blaCTX-M-55 and one isolate was blaTEM-1. Predominant virulence genes identified in Salmonella were invA (77.0%), stn (77.0%), and fimA (69.0%), while those in E. coli isolates were stx1 (17.8%), lt (11.7%), and stx2 (1.2%). Logistic regression models showed the statistical association between resistance phenotype, virulence genes and ESBL production (p < 0.05). The findings highlighted that estuarine environment were potential hotspots of resistance. One Health should be implemented to prevent AMR bacteria spreading.202337115770
1147120.9994Detection and Characterisation of Colistin-Resistant Escherichia coli in Broiler Meats. The irrational use of antimicrobials has led to the emergence of resistance, impacting not only pathogenic bacteria but also commensal bacteria. Resistance against colistin, a last-resort antibiotic, mediated by globally disseminated plasmid-borne mobile colistin resistance (mcr) genes, has raised significant global concerns. This cross-sectional study aimed to investigate the antimicrobial resistance patterns of colistin-resistant Escherichia coli (E. coli) and mobilised colistin resistance (mcr 1-5) genes from broiler meat. A total of 570 broiler samples (285 liver and 285 muscle) were collected from 7 supermarkets and 11 live bird markets (LBMs) in Chattogram metropolitan areas of Bangladesh. The isolation and identification of E. coli were carried out using standard bacteriological and molecular techniques. Antimicrobial susceptibility testing (AST) was performed using the Kirby-Bauer disc diffusion method, and colistin's minimum inhibitory concentration (MIC) was determined by the broth microdilution (BMD) method. Colistin-resistant isolates were further tested for the presence of mcr (1-5) genes using polymerase chain reaction (PCR). Out of the 570 samples, 311 (54.56%; 95% confidence interval: 50.46-58.60) were positive for E. coli. AST results showed the highest resistance to sulphamethoxazole-trimethoprim (89.39%), while the highest susceptibility was observed for cefalexin (62.70%). A total of 296 isolates (95.18%) were found to be multidrug-resistant (MDR), with the multiple antibiotic resistance (MAR) index ranging from 0.38 to 1. Additionally, 41 isolates (13.18%) exhibited resistance to five antimicrobial classes, with resistance patterns of CIP + SXT + AMP + DO + TE + CT. A total of 233 isolates (74.92%) were resistant to colistin (MIC > 2 mg/L). A strong correlation between colistin resistance and the presence of the mcr-1 gene was observed (r = 1). All phenotypic colistin-resistant E. coli isolates carried the mcr-1 gene, while no isolates were positive for mcr (2-5). The detection of mcr genes in E. coli strains from poultry sources poses a significant risk, as these resistance genes can be transferred to humans through the food chain. The prevalence of multidrug-resistant Escherichia coli and the mcr-1 gene in poultry products in Bangladesh presents a significant public health and food safety concern.202439770738
1311130.9994Prevalence and Molecular Characterization of Antimicrobial Resistance in Escherichia coli Isolated from Raw Milk and Raw Milk Cheese in Egypt. The goal of this study was to examine antimicrobial resistance and characterize the implicated genes in 222 isolates of Escherichia coli from 187 samples of raw milk and the two most popular cheeses in Egypt. E. coli isolates were tested for susceptibility to 12 antimicrobials by a disk diffusion method. Among the 222 E. coli isolates, 66 (29.7%) were resistant to one or more antimicrobials, and half of these resistant isolates showed a multidrug resistance phenotype (resistance to at least three different drug classes). The resistance traits were observed to tetracycline (27.5%), ampicillin (18.9%), streptomycin (18.5%), sulfamethoxazole-trimethoprim (11.3%), cefotaxime (4.5%), kanamycin (4.1%), ceftazidime (3.6%), chloramphenicol (2.3%), nalidixic acid (1.8%), and ciprofloxacin (1.4%). No resistance to fosfomycin and imipenem was observed. Tetracycline resistance genes tetA, tetB, and tetD were detected in 53 isolates, 9 isolates, and 1 isolate, respectively, but tetC was not detected. Aminoglycoside resistance genes strA, strB, aadA, and aphA1 were detected in 41, 41, 11, and 9 isolates, respectively. Sulfonamide resistance genes sul1, sul2, and sul3 were detected in 7, 25, and 3 isolates, respectively. Of 42 ampicillin-resistant isolates, bla(TEM), bla(CTX-M), and bla(SHV) were detected in 40, 9, and 3 isolates, respectively, and 10 (23.8%) ampicillin-resistant isolates were found to produce extended-spectrum β-lactamase. Each bla gene of extended-spectrum β-lactamase-producing E. coli was further subtyped to be bla(CTX-M-15), bla(CTX-M-104), bla(TEM-1), and bla(SHV-12). The class 1 integron was also detected in 28 resistant isolates, and three different patterns were obtained by PCR-restriction fragment length polymorphism. Sequencing analysis of the variable region revealed that four isolates had dfrA12/orfF/aadA2, two had aadA22, and one had dfrA1/aadA1. These data suggest that antimicrobial-resistant E. coli are widely distributed in the milk production and processing environment in Egypt and may play a role in dissemination of antimicrobial resistance to other pathogenic and commensal bacteria.201829323530
1160140.9994Prevalence of shiga toxins (stx1, stx2), eaeA and hly genes of Escherichia coli O157:H7 strains among children with acute gastroenteritis in southern of Iran. OBJECTIVE: To survey the prevalence severe diarrhea arising from these bacteria in children under 5 years old in Marvdasht. METHODS: In this study faecal sample from 615 children aged <5 years old who were hospitalized for gastroenteritis in Fars hospitals in Iran were collected and then enriched in Escherichia coli (E. coli) broth and modified tryptone soy broth with novobiocin media. Fermentation of sorbitol, lactose and β -glucoronidase activity of isolated strains was examined by CT-SMAC, VRBA and chromogenic media respectively. Then isolation of E. coli O157:H7 have been confirmed with the use of specific antisera and with multiplex PCR method presence of virulence genes including: stx1, stx2, eaeA, hly has been analyzed. RESULTS: E. coli O157:H7 was detected in 7 (1.14%) stool specimens. A significant difference was seen between detection rate of isolated bacteria from age groups 18-23 months and other age groups (P=0.004). Out of considered virulence genes, only 1 of the isolated strains (0.16%) the stx1 and eaeA genes were seen and also all isolated bacteria had resistance to penicillin, ampicillin and erythromycin antibiotics. CONCLUSIONS: We found that children < 2 years of age were at highest risk of infection with E. coli O157:H7. Regarding severity of E. coli O157:H7 pathogenesis, low infectious dose and lack of routine assay for detection of these bacteria in clinical laboratory, further and completed studies on diagnosis and genotyping of this E. coli O157:H7 strain has been recommended.201525901920
2185150.9994Isolation of multidrug-resistant Escherichia coli, Staphylococcus spp., and Streptococcus spp. from dogs in Chattogram Metropolitan Area, Bangladesh. OBJECTIVES: Antibacterial resistance is a great concern in human and food animal medicine, and it poses a significant concern in pet animals like dogs. This cross-sectional study was conducted to evaluate the antimicrobial resistance pattern of Escherichia coli, Staphylococcus spp., and Streptococcus spp. along with the carryover of some resistance genes in E. coli from dogs in the Chattogram metropolitan area, Bangladesh. MATERIALS AND METHODS: Rectal swab (n = 50), nasal swab (n = 50), and skin swab (n = 50) samples were collected from dogs having respiratory infections, skin infections, and/or enteritis, respectively. Three types of bacteria were identified and isolated by conventional bacteriological techniques and biochemical tests. Antimicrobial susceptibility testing was carried out against 12 antimicrobials by disk diffusion methods. Six resistance genes, namely bla (TEM), bla (CTX-M), tetA, tetB, Sul-I, and Sul-II, were screened for phenotypically resistant E. coli isolates by the polymerase chain reaction. RESULTS: A total of 39 (78%) E. coli, 25 (50%) Staphylococcus spp., and 24 (48%) Streptococcus spp. isolates were isolated from the rectal swab, nasal swab, and skin swab samples, respectively. In the cultural sensitivity test, the E. coli isolates showed resistance to ceftriaxone (79%) and sulfamethoxazole/trimethoprim (64%). Doxycycline (80%) demonstrated the highest resistance among Staphylococcus isolates, followed by sulfamethoxazole/trimethoprim (60%). Streptococcus isolates showed the highest resistance to penicillin (63%), followed by ceftriaxone (54%), while no isolate showed resistance to gentamycin. The prevalence of bla (TEM), bla (CTX-M), tetA, tetB, Sul-I, and Sul-II genes in phenotypically resistant E. coli isolates were 100%, 61.29%, 100%, 8.33%, 56%, and 72%, respectively. CONCLUSIONS: Spillover of such multidrug-resistant bacteria and resistance genes from pet dogs pose a serious public health risk.202033409311
2668160.9994Genotyping and distribution of putative virulence factors and antibiotic resistance genes of Acinetobacter baumannii strains isolated from raw meat. BACKGROUND: Acinetobacter baumannii strains with multiple antimicrobial resistance are primarily known as opportunistic nosocomial bacteria but they may also be regarded as emerging bacterial contaminants of food samples of animal origin. Here we aimed to study the molecular characteristics of the A. baumanni strains isolated from raw meat samples. METHODS: A total of 22 A. baumanni strains were isolated from 126 animal meat samples and were genotyped by ERIC-PCR method and by PCR detection of their virulence and antimicrobial resistance determinants. A. baumannii strains with 80% and more similarities were considered as one cluster. RESULTS: Sixteen different genetic clusters were found amongst the 22 A. baumanni strains. Of the 22 strains, 12 (54.54%) had similar genetic cluster. A. baumannii strains exhibited the highest percentage of resistance against tetracycline (90.90%), trimethoprim (59.09%), cotrimoxazole (54.54%) and gentamicin (50.00%). TetA (81.81%), tetB (72.72%), dfrA1 (63.63%), aac(3)-IV (63.63%), sul1 (63.63%) and aadA1 (45.45%) were the most commonly detected antibiotic resistance genes. FimH (81.81%), afa/draBC (63.63%), csgA (63.63%), cnf1 (59.09%), cnf2 (54.54%) and iutA (50.00%) were the most commonly detected virulence factors. A. baumannii strains isolated from the chicken meat samples had the highest similarities in the genetic cluster. CONCLUSIONS: A. baumannii strains with similar genetic cluster (ERIC-Type) had the same prevalence of antibiotic resistance, antibiotic resistance genes and virulence factors. Genetic cluster of the A. baumannii strains is the main factor affected the similarities in the genotypic and phenotypic properties of the A. baumannii strains.201830323923
1310170.9994Antimicrobial Resistance of Escherichia fergusonii Isolated from Broiler Chickens. The objective of this study was to investigate the antibiotic resistance of Escherichia fergusonii isolated from commercial broiler chicken farms. A total of 245 isolates from cloacal and cecal samples of 28- to 36-day-old chickens were collected from 32 farms. Isolates were identified using PCR, and their susceptibility to 16 antibiotics was determined by disk diffusion assay. All isolates were susceptible to meropenem, amikacin, and ciprofloxacin. The most common resistances were against ampicillin (75.1%), streptomycin (62.9%), and tetracycline (57.1%). Of the 184 ampicillin-resistant isolates, 127 were investigated using a DNA microarray carrying 75 probes for antibiotic resistance genetic determinants. Of these 127 isolates, the β-lactamase blaCMY2, blaTEM, blaACT, blaSHV, and blaCTX-M-15 genes were detected in 120 (94.5%), 31 (24.4%), 8 (6.3%), 6 (4.7%), and 4 (3.2%) isolates, respectively. Other detected genes included those conferring resistance to aminoglycosides (aadA1, strA, strB), trimethoprims (dfrV, dfrA1), tetracyclines (tetA, tetB, tetC, tetE), and sulfonamides (sul1, sul2). Class 1 integron was found in 35 (27.6%) of the ampicillin-resistant isolates. However, our data showed that the tested E. fergusonii did not carry any carbapenemase blaOXA genes. Pulsed-field gel electrophoresis revealed that the selected ampicillin-resistant E. fergusonii isolates were genetically diverse. The present study indicates that the monitoring of antimicrobial-resistant bacteria should include enteric bacteria such as E. fergusonii, which could be a reservoir of antibiotic resistance genes. The detection of isolates harboring extended-spectrum β-lactamase genes, particularly blaCTX-M-15, in this work suggests that further investigations on the occurrence of such genes in broilers are warranted.201627296596
1134180.9994Molecular epidemiology of antibiotic-resistant Escherichia coli among clinical samples isolated in Azerbaijan, Iran. BACKGROUND AND OBJECTIVES: The immediate emergence of resistant bacteria poses an increasingly growing problem to human society and the increasing prevalence of antibiotic resistance in Escherichia coli strains is one of the most important health problems. This study aimed to review the molecular epidemiology of drug resistance among clinical isolates of E. coli in north-west portion of Iran Azerbaijan. MATERIALS AND METHODS: A complete of 219 clinical isolates of E. coli had been collected from the various clinical samples. The disk diffusion and agar dilution assays were used to determine antimicrobial susceptibility. The presence of antibiotics resistance genes was carried out by the PCR method. RESULTS: The highest susceptibility was shown to imipenem (3%) and fosfomycin (3%), and the most antibiotic resistance was presented to ampicillin (99%). The highest frequent ESBL gene among isolates was bla (CTXM-15) in 70% followed by bla(CMY-2) in 67%, and bla(TEM-1) in 46%. The most common fluoroquinolone (FQ) resistance genes were oqxB (34%), followed by oqxA (25%), and qnrB (18%). The frequency of tetracycline resistance genes (tetA, tetB, tetC, and tetD) were detected in 24.8%, 31.6%, 1.8%, and 4.2%, respectively. The highest frequent genes to fosfomycin were fosA 10%, fosA3 30%, fosC 40%, and fosX 20%. The dominant founded aminoglycosides resistant genes were armA (12.96%) and npmA (4.93%). CONCLUSION: The prevalence of antibiotics resistance in the tested E. coli isolates was high in Azerbaijan, Iran and these findings showed that E. coli is one of the major drug-resistant pathogens.202337448678
1156190.9994Detection of qnr, aac(6')-Ib-cr and qepA genes in Escherichia coli isolated from cooked meat products in Henan, China. Antimicrobial resistance in Escherichia coli has increased in recent years in China. Antimicrobial resistant isolates and resistance genes of E. coli can be transferred to humans through the food chain and this presents a public health risk. However, few studies have investigated the prevalence of antimicrobial resistance-encoding genes in E. coli isolated from food samples in China. The aim of this study was to investigate the presence of quinolone resistance genes (QRGs) and extended-spectrum β-lactamases (ESBLs) in E. coli isolated from cooked meat products in Henan, China. A total of 75 E. coli isolates (12.1%) were detected from 620 samples. High rates of resistance to the following drugs were observed: tetracycline (56.0%), trimethoprim/sulfamethoxazole (41.3%), streptomycin (29.3%), ampicillin (26.7%) and nalidixic acid (14.7%). Of the 75 isolates, QRGs were present in 10 isolates (13.3%), with qnr and aac(6')-Ib-cr detected alone or in combination in five (6.7%) and eight isolates (10.7%). The qnr genes detected in this study included qnrS (n=3) and qnrA (n=2). The qepA gene was absent among these isolates. Three types of β-lactamase genes were identified in the five ESBL-producing E. coli isolates: blaCTX-M-1, blaCTX-M-9, and blaTEM-1. The qnrS gene was found to be co-transferred with blaCTX-M-1 and blaTEM-1 in one isolate. Our data suggest that cooked meat products may act as reservoirs for multi-resistant bacteria and facilitate the dissemination of antimicrobial resistance genes.201425036771