Whole genome sequencing snapshot of multi-drug resistant Klebsiella pneumoniae strains from hospitals and receiving wastewater treatment plants in Southern Romania. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
121801.0000Whole genome sequencing snapshot of multi-drug resistant Klebsiella pneumoniae strains from hospitals and receiving wastewater treatment plants in Southern Romania. We report on the genomic characterization of 47 multi-drug resistant, carbapenem resistant and ESBL-producing K. pneumoniae isolates from the influent (I) and effluent (E) of three wastewater treatment plants (WWTPs) and from Romanian hospital units which are discharging the wastewater in the sampled WWTPs. The K. pneumoniae whole genome sequences were analyzed for antibiotic resistance genes (ARGs), virulence genes and sequence types (STs) in order to compare their distribution in C, I and E samples. Both clinical and environmental samples harbored prevalent and widely distributed ESBL genes, i.e. blaSHV, blaOXA, blaTEM and blaCTX M. The most prevalent carbapenemase genes were blaNDM-1, blaOXA-48 and blaKPC-2. They were found in all types of isolates, while blaOXA-162, a rare blaOXA-48 variant, was found exclusively in water samples. A higher diversity of carbapenemases genes was seen in wastewater isolates. The aminoglycoside modifying enzymes (AME) genes found in all types of samples were aac(6'), ant(2'')Ia, aph(3'), aaD, aac(3) and aph(6). Quinolone resistance gene qnrS1 and the multi-drug resistance oqxA/B pump gene were found in all samples, while qnrD and qnrB were associated to aquatic isolates. The antiseptics resistance gene qacEdelta1 was found in all samples, while qacE was detected exclusively in the clinical ones. Trimethroprim-sulfamethoxazole (dfrA, sul1 and sul2), tetracyclines (tetA and tetD) and fosfomycin (fosA6, known to be located on a transpozon) resistance genes were found in all samples, while for choramphenicol and macrolides some ARGs were detected in all samples (catA1 and catB3 / mphA), while other (catA2, cmIA5 and aac(6')Ib / mphE and msrE) only in wastewater samples. The rifampin resistance genes arr2 and 3 (both carried by class I integrons) were detected only in water samples. The highly prevalent ARGs preferentially associating with aquatic versus clinical samples could ascribe potential markers for the aquatic (blaSHV-145, qacEdelta1, sul1, aadA1, aadA2) and clinical (blaOXA-1, blaSHV-106,blaTEM-150, aac(3)Iia, dfrA14, oqxA10; oqxB17,catB3, tetD) reservoirs of AR. Moreover, some ARGs (oqxA10; blaSHV-145; blaSHV-100, aac(6')Il, aph(3')VI, armA, arr2, cmlA5, blaCMY-4, mphE, msrE, oqxB13, blaOXA-10) showing decreased prevalence in influent versus effluent wastewater samples could be used as markers for the efficiency of the WWTPs in eliminating AR bacteria and ARGs. The highest number of virulence genes (75) was recorded for the I samples, while for E and C samples it was reduced to half. The most prevalent belong to three functional groups: adherence (fim genes), iron acquisition (ent, fep, fyu, irp and ybt genes) and the secretion system (omp genes). However, none of the genes associated with hypervirulent K. pneumoniae have been found. A total of 14 STs were identified. The most prevalent clones were ST101, ST219 in clinical samples and ST258, ST395 in aquatic isolates. These STs were also the most frequently associated with integrons. ST45 and ST485 were exclusively associated with I samples, ST11, ST35, ST364 with E and ST1564 with C samples. The less frequent ST17 and ST307 aquatic isolates harbored blaOXA-162, which was co-expressed in our strains with blaCTX-M-15 and blaOXA-1.202031999747
89910.9995Whole-Genome Sequencing Snapshot of Clinically Relevant Carbapenem-Resistant Gram-Negative Bacteria from Wastewater in Serbia. Wastewater (WW) is considered a source of antibiotic-resistant bacteria with clinical relevance and may, thus, be important for their dissemination into the environment, especially in countries with poor WW treatment. To obtain an overview of the occurrence and characteristics of carbapenem-resistant Gram-negative bacteria (CR-GNB) in WW of Belgrade, we investigated samples from the four main sewer outlets prior to effluent into international rivers, the Sava and the Danube. Thirty-four CR-GNB isolates were selected for antimicrobial susceptibility testing (AST) and whole-genome sequencing (WGS). AST revealed that all isolates were multidrug-resistant. WGS showed that they belonged to eight different species and 25 different sequence types (STs), seven of which were new. ST101 K. pneumoniae (bla(CTX-M-15)/bla(OXA-48)) with novel plasmid p101_srb was the most frequent isolate, detected at nearly all the sampling sites. The most frequent resistance genes to aminoglycosides, quinolones, trimethroprim-sulfamethoxazole, tetracycline and fosfomycin were aac(6')-Ib-cr (55.9%), oqxA (32.3%), dfrA14 (47.1%), sul1 (52.9%), tet(A) (23.5%) and fosA (50%), respectively. Acquired resistance to colistin via chromosomal-mediated mechanisms was detected in K. pneumoniae (mutations in mgrB and basRS) and P. aeruginosa (mutation in basRS), while a plasmid-mediated mechanism was confirmed in the E. cloacae complex (mcr-9.1 gene). The highest number of virulence genes (>300) was recorded in P. aeruginosa isolates. Further research is needed to systematically track the occurrence and distribution of these bacteria so as to mitigate their threat.202336830261
118920.9995Detection of the carbapenemase gene bla(VIM-5) in members of the Pseudomonas putida group isolated from polluted Nigerian wetlands. There are increasing concerns about possible dissemination of clinically relevant antibiotic resistance genes, including genes encoding for carbapenemases in the environment. However, little is known about environmental distribution of antibiotic resistance in Africa. In this study, four polluted urban wetlands in Nigeria were investigated as potential reservoirs of carbapenem-resistant bacteria (CRB). CRB were isolated from the wetlands, characterized by Blue-Carba test, MIC determinations and whole genome sequencing (WGS). Nine of 65 bacterial isolates identified as members of the Pseudomonas putida group (P. plecoglossicida and P. guariconensis, respectively) harboured the metallo-beta-lactamase gene bla(VIM-5). WGS revealed the bla(VIM-5) in three novel Tn402-like class 1 integron structures containing the cassette arrays aadB|bla(VIM-5)|bla(PSE-1), aadB|bla(VIM-5)|aadB|bla(PSE-1), and bla(VIM-5)|aadB|tnpA|bla(PSE-1)|smr2|tnpA, respectively. Strains carrying the aadB|bla(VIM-5)|bla(PSE-1) cassette also carried an identical integron without bla(VIM-5). In addition(,) the strains harboured another Tn402-like class 1 integron carrying bcr2, several multidrug resistance efflux pumps, and at least one of ampC, aph(3")-lb, aph(6)-ld, tetB, tetC, tetG, floR, and macAB. This is the first report of a carbapenemase gene in bacteria from environmental sources in Nigeria and the first report of bla(VIM-5) in environmental bacteria isolates. This result underscores the role of the Nigerian environment as reservoir of bacteria carrying clinically relevant antibiotic resistance genes.201830310126
107530.9994Extended Spectrum Beta-Lactamase-Producing Gram-Negative Bacteria Recovered From an Amazonian Lake Near the City of Belém, Brazil. Aquatic systems have been described as antibiotic resistance reservoirs, where water may act as a vehicle for the spread of resistant bacteria and resistance genes. We evaluated the occurrence and diversity of third generation cephalosporin-resistant gram-negative bacteria in a lake in the Amazonia region. This water is used for human activities, including consumption after appropriate treatment. Eighteen samples were obtained from six sites in October 2014. Water quality parameters were generally within the legislation limits. Thirty-three bacterial isolates were identified as Escherichia (n = 7 isolates), Acinetobacter, Enterobacter, and Klebsiella (n = 5 each), Pseudomonas (n = 4), Shigella (n = 3), and Chromobacterium, Citrobacter, Leclercia, Phytobacter (1 isolate each). Twenty nine out of 33 isolates (88%) were resistant to most beta-lactams, except carbapenems, and 88% (n = 29) were resistant to antibiotics included in at least three different classes. Among the beta-lactamase genes inspected, the bla (CTX-M) was the most prevalent (n = 12 positive isolates), followed by bla (TEM) (n = 5) and bla (SHV) (n = 4). bla (CTX-M-15) (n = 5), bla (CTX-M-14) (n = 1) and bla (CTX-M-2) (n = 1) variants were detected in conserved genomic contexts: bla (CTX-M-15) flanked by ISEcp1 and Orf477; bla (CTX-M-14) flanked by ISEcp1 and IS903; and bla (CTX-M-2) associated to an ISCR element. For 4 strains the transfer of bla (CTX-M) was confirmed by conjugation assays. Compared with the recipient, the transconjugants showed more than 500-fold increases in the MICs of cefotaxime and 16 to 32-fold increases in the MICs of ceftazidime. Two isolates (Escherichia coli APC43A and Acinetobacter baumannii APC25) were selected for whole genome analysis. APC43A was predicted as a E. coli pathogen of the high-risk clone ST471 and serotype O154:H18. bla (CTX-M-15) as well as determinants related to efflux of antibiotics, were noted in APC43A genome. A. baumannii APC25 was susceptible to carbapenems and antibiotic resistance genes detected in its genome were intrinsic determinants (e.g., bla (OXA-208) and bla (ADC-like)). The strain was not predicted as a human pathogen and belongs to a new sequence type. Operons related to metal resistance were predicted in both genomes as well as pathogenicity and resistance islands. Results suggest a high dissemination of ESBL-producing bacteria in Lake Água Preta which, although not presenting characteristics of a strongly impacted environment, contains multi-drug resistant pathogenic strains.201930873145
110340.9994Characterization of β-Lactamases and Multidrug Resistance Mechanisms in Enterobacterales from Hospital Effluents and Wastewater Treatment Plant. Antimicrobials in wastewater promote the emergence of antibiotic resistance, facilitated by selective pressure and transfer of resistant genes. Enteric bacteria belonging to Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, and Citrobacter species (n = 126) from hospital effluents and proximate wastewater treatment plant were assayed for susceptibility to four antimicrobial classes. The β-lactamase encoding genes harbored in plasmids were genotyped and the plasmids were sequenced. A multidrug resistance phenotype was found in 72% (n = 58) of E. coli isolates, 70% (n = 43) of Klebsiella species isolates, and 40% (n = 25) of Enterobacter and Citrobacter species. Moreover, 86% (n = 50) of E. coli, 77% (n = 33) of Klebsiella species, and 25% (n = 4) of Citrobacter species isolates phenotypically expressed extended spectrum β-lactamase. Regarding ESBL genes, bla(CTX-M-27) and bla(TEM-1) were found in E. coli, while Klebsiella species harbored bla(CTX-M-15), bla(CTX-M-30), or bla(SHV-12). Genes coding for aminoglycoside modifying enzymes, adenylyltransferases (aadA1, aadA5), phosphotransferases (aph(6)-1d, aph(3″)-Ib), acetyltransferases (aac(3)-IIa), (aac(6)-Ib), sulfonamide/trimethoprim resistant dihydropteroate synthase (sul), dihydrofolate reductase (dfrA), and quinolone resistance protein (qnrB1) were also identified. Monitoring wastewater from human sources for acquired resistance in clinically important bacteria may provide a cheaper alternative in regions facing challenges that limit clinical surveillance.202235740182
96150.9994Predominance of CTX-M-15 among ESBL Producers from Environment and Fish Gut from the Shores of Lake Victoria in Mwanza, Tanzania. Extended-Spectrum Beta-Lactamase (ESBL)-producing bacteria are a common cause of healthcare and community-associated infections worldwide. The distribution of such isolates in the environment and their presence in fish as a result of sewage contamination is not well-studied. Here we examined fish and environmental samples from Mwanza city for the presence of ESBL-producing bacteria. From 196 fish sampled from local markets, 26 (13.3%) contained lactose-fermenting ESBL-producing bacteria, while 39/73 (53.4%) environmental samples from the same area were ESBL producers. Antibiotic resistance genes, multi locus sequence types (MLST) and plasmid replicon types in 24 selected isolates from both populations were identified with whole genome sequencing using Illumina MiSeq. Nine of eleven sequenced fish isolates had the bla(CTX-M-15) gene whereas 12/13 from environment carried bla(CTX-M-15). Antibiotic resistance genes encoding resistance to sulfonamides (sul1/sul2), tetracyclines [tet(A)/tet(B)] fluoroquinolones [e.g., aac(6')-Ib-cr, qnrS1], aminoglycosides [e.g., aac(3)-lld, strB, strA,] and trimethoprim (e.g., dfrA14) were detected. E. coli sequence type ST-38 (2) and ST-5173 (2) were detected in isolates both from the environment and fish. IncY plasmids carrying bla(CTX-M-15), qnrS1, strA, and strB were detected in five environmental E. coli isolates and in one E. coli isolate from fish. Our data indicate spillage of resistant environmental isolates into Lake Victoria through the sewage system. Persistence of bla(CTX-M-15) in the Mwanza city environment is complex, and involves both clonal spread of resistant strains as well as dissemination by commonly occurring IncY plasmids circulating in isolates present in humans, the environment as well as in the food chain.201627990135
262060.9994GES-5 among the β-lactamases detected in ubiquitous bacteria isolated from aquatic environment samples. In this study, we investigated the β-lactamase-encoding genes responsible for β-lactam resistance phenotypes detected among 56 Gram-negative isolates (Gamma- and Alpha-proteobacteria) recovered from wastewater, urban streams, and drinking water. The β-lactam resistance mechanisms detected in 36 isolates comprised the presence of class A (bla(TEM)(-1) , bla(SHV)(-1) , bla(SHV)(-11) , bla(GES)(-5) ), class B (ImiS, L1), class C (bla(CMY)(-2) , bla(CMY)(-34) , bla(CMY)(-65) , bla(CMY)(-89) , bla(CMY)(-90) , bla(ACC)(-5) , bla(ACT)(-13) ), and class D (blaOXA-309)β-lactamase-encoding genes, some variants described for the first time here. Notably, the results showed antimicrobial resistance genes related not only to commonly used antibiotics, but also to carbapenems, providing the first description of a GES-5-producing Enterobacteriaceae. The importance of ubiquitous bacteria thriving in aquatic environments as reservoirs or carriers of clinically relevant resistance determinants was confirmed, and the need to monitor water habitats as potential sources for the emergence and/or spread of antibiotic resistance in the environment was highlighted.201424267783
276970.9994Occurrences and Characterization of Antibiotic-Resistant Bacteria and Genetic Determinants of Hospital Wastewater in a Tropical Country. Wastewater discharged from clinical isolation and general wards at two hospitals in Singapore was examined to determine the emerging trends of antibiotic resistance (AR). We quantified the concentrations of 12 antibiotic compounds by analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS), antibiotic-resistant bacteria (ARB), the class 1 integrase gene (intI1), and 16 antibiotic resistance genes (ARGs) that confer resistance to 10 different clinically relevant antibiotics. A subset of 119 antibiotic-resistant isolates were phylogenetically classified and tested for the presence of ARGs encoding resistance to β-lactam antibiotics (bla(NDM), bla(KPC), bla(SHV), bla(CTX-M)), amikacin [aac(6')-Ib], co-trimoxazole (sul1, sul2, dfrA), ciprofloxacin (qnrA, qnrB), and the intI1 gene. Among these resistant isolates, 80.7% were detected with intI1 and 66.4% were found to carry at least 1 of the tested ARGs. Among 3 sampled locations, the clinical isolation ward had the highest concentrations of ARB and the highest levels of ARGs linked to resistance to β-lactam (bla(KPC)), co-trimoxazole (sul1, sul2, dfrA), amikacin [aac(6')-Ib], ciprofloxacin (qnrA), and intI1 We found strong positive correlations (P < 0.05) between concentrations of bacteria resistant to meropenem, ceftazidime, amikacin, co-trimoxazole, and ciprofloxacin and abundances of bla(KPC), aac(6')-Ib, sul1, sul2, dfrA, qnrA, and intI1 genes.201627736769
118880.9994High Prevalence of Plasmid-Mediated Quinolone Resistance and IncQ Plasmids Carrying qnrS2 Gene in Bacteria from Rivers near Hospitals and Aquaculture in China. Effluents from hospital and aquaculture are considered important sources of quinolone resistance. However, little information is available on the impact of this effluent on nearby rivers. In this study, 188 ciprofloxacin-resistant bacterial isolates obtained from rivers near hospitals and aquaculture were screened for plasmid-mediated quinolone resistance (PMQR) genes. Species identification, antibiotic susceptibility testing, and PMQR gene transferability assessment were conducted for PMQR-positive bacteria. Representative qnrS2-encoding plasmids were subsequently sequenced using a primer-walking approach. In total, 44 isolates (23.4%) were positive for qnr genes (16 qnrB2, 3 qnrS1, and 25 qnrS2) and 32 isolates (17.0%) were positive for aac(6')-Ib-cr. Other PMQR genes were not detected. The qnrB2 and aac(6')-Ib-cr genes had a higher prevalence in aquaculture samples than in hospital samples, and were significantly associated with Enterobacteriaceae (p < 0.05). In contrast, the prevalence of qnrS2 was not site-related, but was significantly associated with Aeromonas spp. (p < 0.05). All PMQR isolates were resistant to three or more classes of antibiotics. Eleven qnrS2-harboring plasmids from Aeromonas spp., including a novel conjugative plasmid pHP18, were selected for sequencing. These plasmids were small in size (6,388-16,197 bp) and belonged to the IncQ or IncU plasmid family, with qnrS2 being part of a mobile insertion cassette. Taken together, our findings suggest that aquaculture is a possible source for aac(6')-Ib-cr and qnrB2 dissemination, and demonstrate the ubiquity of qnrS2 in aquatic environments. Finally, Aeromonas spp. served as vectors for qnrS2 with the help of IncQ-type plasmids.201627427763
277590.9994Co-occurrence of multidrug resistance, β-lactamase and plasmid mediated AmpC genes in bacteria isolated from river Ganga, northern India. Wastewater effluents released in surface water provides suitable nutrient rich environment for the growth and proliferation of antibiotic resistant bacteria (ARB) and genes (ARG). Consequently, bacterial resistance has highly evolved over the recent years and diversified that each antibiotic class is inhibited by a distinct mechanism. In the present study, the prevalence of Multidrug resistant (MDR), extended spectrum β-lactamases (ESBL) and plasmid mediated Amp-C producing strains was analyzed in 28 surface water samples collected near domestic effluent discharge sites in river Ganga located across 11 different geographical indices of Uttar Pradesh, India. A total of 243 bacterial strains with different phenotypes were isolated. Among 243 isolates, 206 (84.77%) exhibited MDR trait displaying maximum resistance towards β-lactams (P = 78.19%; AMX = 72.84%), glycopeptides (VAN = 32.92%; TEI = 79.42%), cephalosporins (CF = 67.90%; CFX = 38.27%), and lincosamides (CD = 78.18%) followed by sulfonamide, macrolide and tetracycline. ESBL production was confirmed in 126 (51.85%) isolates that harbored the genes: blaTEM (95.24%), blaSHV (22.22%), blaOXA (11.90%) and blaCTX-M group (14.28%). The presence of plasmid mediated AmpC was detected only in 6.17% of isolates. The existence of such pathogenic strains in the open environment generates an urgent need for incorporating stringent measures to reduce the antibiotic consumption and hence its release.202032892014
1190100.9994Co-occurrence of mcr-1, mcr-3, mcr-7 and clinically relevant antimicrobial resistance genes in environmental and fecal samples. Multidrug-resistant bacteria harboring different antimicrobial resistance genes (ARGs) have been detected worldwide. The association of plasmid-mediated colistin resistance genes (mcr-like) and other ARGs in bacteria isolated from animals is a huge concern worldwide. Therefore, this study aimed to investigate the presence of mcr-like genes and clinically relevant ARGs as well as plasmids in samples from a zoo. Fecal and environmental (soil and water) samples were collected from a zoo and the DNA of cultivable aerobic bacteria was extracted. ARGs were screened by PCR and the plasmids were detected using the PCR-based replicon typing method. A total of 74 amplicons from 27 ARGs [mcr-1, mcr-3, mcr-7.1, bla(CTX-M-Gp1), bla(CTX-M-Gp2), bla(CTX-M-Gp9), bla(VEB), bla(PER), bla(CMY), tetA, tetB, tetC, aadA, aac(6')-Ib, aph(3')-Ia, ant(2'')-Ia, qnrA, qnrB, qnrS, oqxA, oqxB, sul1, sul2, sul3, cmlA, mefAE, ermB] and 21 amplicons from eight plasmid families (IncY, ColE-like, IncF(repB), IncFIA, IncFIB, IncHI1, IncFIC, IncP) were detected. These findings reinforce that the zoo acts as a reservoir of clinically relevant ARGs, including mcr-like, and call attention to the monitoring studies in the zoo. Therefore, to the best of our knowledge, this is the first report of the world of mcr-1, mcr-3 and mcr-7.1 in environmental samples from the zoo.202032382766
1191110.9994IncFII plasmid carrying antimicrobial resistance genes in Shigella flexneri: Vehicle for dissemination. OBJECTIVES: Plasmids harbouring antimicrobial resistance determinants in clinical strains are a significant public-health concern worldwide. The present study investigated such plasmids in clinical isolates of Shigella flexneri. METHODS: A total of 162 Shigella isolates were obtained from stool specimens in the year 2015. Among the 70 multidrug-resistant (MDR) Shigella spp., 27 S. flexneri isolates were randomly selected for further characterisation. Antimicrobial resistance genes (ARGs) and plasmid incompatibility (Inc) types were analysed. RESULTS: IncFII plasmids were found in 63% (17/27) of the studied S. flexneri isolates. ARGs such as dhfr1a (81%), sulII (74%), bla(OXA) (74%), bla(TEM) (33%), bla(AmpC) (30%), qnrS (15%) and qnrB (4%) were identified by PCR, whereas bla(CTX-M) was not detected. Next-generation sequencing of a representative S. flexneri IncFII-type plasmid (pSF470) revealed the presence of bla(TEM1-B), bla(DHA-1), qnrB10, mphA, sulI, sulII, strA, strB and tetR ARGs along with the intI1 integrase gene. In addition, pMLST analysis showed that the replicon belonged to F2:A-:B- type. CONCLUSIONS: This study helps to know the prevalent plasmid types in MDR Shigella isolates and will improve our understanding of resistance dissemination among enteric bacteria. ARGs in plasmids further highlight the importance of such studies in enteric bacteria.201930342929
1025120.9994Detection of Extended Spectrum Beta-Lactamases Resistance Genes among Bacteria Isolated from Selected Drinking Water Distribution Channels in Southwestern Nigeria. Extended Spectrum Beta-Lactamases (ESBL) provide high level resistance to beta-lactam antibiotics among bacteria. In this study, previously described multidrug resistant bacteria from raw, treated, and municipal taps of DWDS from selected dams in southwestern Nigeria were assessed for the presence of ESBL resistance genes which include bla TEM, bla SHV, and bla CTX by PCR amplification. A total of 164 bacteria spread across treated (33), raw (66), and municipal taps (68), belonging to α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Flavobacteriia, Bacilli, and Actinobacteria group, were selected for this study. Among these bacteria, the most commonly observed resistance was for ampicillin and amoxicillin/clavulanic acid (61 isolates). Sixty-one isolates carried at least one of the targeted ESBL genes with bla TEM being the most abundant (50/61) and bla CTX being detected least (3/61). Klebsiella was the most frequently identified genus (18.03%) to harbour ESBL gene followed by Proteus (14.75%). Moreover, combinations of two ESBL genes, bla SHV + bla TEM or bla CTX + bla TEM, were observed in 11 and 1 isolate, respectively. In conclusion, classic bla TEM ESBL gene was present in multiple bacterial strains that were isolated from DWDS sources in Nigeria. These environments may serve as foci exchange of genetic traits in a diversity of Gram-negative bacteria.201627563674
1353130.9993Dissemination of antibiotic resistance genes, mobile genetic elements, and efflux genes in anthropogenically impacted riverine environments. Anthropogenically impacted surface waters are an important reservoir for multidrug-resistant bacteria and antibiotic-resistant genes. The present study aimed at MDR, ESBL, AmpC, efflux genes, and heavy metals resistance genes (HMRGs) in bacterial isolates from four Indian rivers belonging to different geo-climatic zones, by estimating the mode of resistance transmission exhibited by the resistant isolates. A total 71.27% isolates exhibited MDR trait, showing maximum resistance towards β-lactams (P = 66.49%; AMX = 59.04%), lincosamides (CD = 65.96%), glycopeptides (VAN = 25.19%; TEI = 56.91%), cephalosporins (CF = 53.72%; CXM = 30.32%) sulphonamide (COT = 43.62%; TRIM = 12.77%), followed by macrolide and tetracycline. The dfrA1 and dfrB genes were detected in total 37.5% isolates whereas; dfrA1 genes were detected in 33.34%. The sul1 gene was detected in 9.76% and sul2 gene was detected in 2.44% isolates. A total of 69.40% MDR integron positive isolates were detected with intI1and intI2 detected at 89.25% and 1.07%, respectively; encoding class 1 and class 2 integron-integrase. ESBL production was confirmed in 73.13% isolates that harboured the genes blaTEM (96.84%), blaSHV (27.37%), blaOXA (13.68%) and blaCTXM (18.95%) while the frequency of HMRGs; 52.24% (zntB), 33.58% (chrA), and 6.72% (cadD). Efflux activity was confirmed in 96.26% isolates that harbored the genes acrA (93.02%), tolC (88.37%), and acrB (86.04%). AmpC (plasmid-mediated) was detected in 20.9% of the riverine isolates. Detection of such hidden molecular modes of antibiotic resistance in the rivers is alarming that requires urgent and stringent measures to control the resistance threats.202133524742
2773140.9993Genotypic Characterization of Aminoglycoside Resistance Genes from Bacteria Isolates in Selected Municipal Drinking Water Distribution Sources in Southwestern Nigeria. BACKGROUND: Multi-drug Resistant (MDR) bacteria could lead to treatment failure of infectious diseases and could be transferred by non-potable water. Few studies have investigated occurrence of Antibiotic Resistance Genes (ARGs) among bacteria including Aminoglycoside Modifying Genes (AMGs) from Drinking Water Distribution Systems (DWDS) in Nigeria. Here, we aimed at characterization of AMGs from DWDS from selected states in southwestern Nigeria. METHODS: One hundred and eighty one (181) MDR bacteria that had been previously characterized using 16S rDNA and showed resistance to at least one aminoglycoside antibiotic were selected from treated and untreated six water distribution systems in southwestern Nigeria. MDR bacteria were PCR genotyped for three AMGs:aph (3″)(c), ant (3″)(b) and aph(6)-1d(d). RESULTS: Out of 181 MDR bacteria genotyped, 69(38.12%) tested positive for at least one of the genotyped AMGs. Highest (50, 27.62%) detected gene was ant (3″)(c) followed by aph (3″)(c)(33, 18.23%). Combination of aph(3″)(c) and ant (3″)(b) in a single bacteria was observed as the highest (14, 7.73%) among the detected gene combination. Alcaligenes sp showed the highest (10/20) occurrence of ant (3″)(b) while aph(3″)(c) was the highest detected among Proteus sp (11/22). Other bacteria that showed the presence of AMGs include: Acinetobacter, Aeromonas, Bordetella, Brevundimonas, Chromobacterium, Klebsiella, Leucobacter, Morganella, Pantoae, Proteus, Providencia, Psychrobacter and Serratia. CONCLUSIONS: High occurrence of ant (3″)(c) and aph (3″)(c) among these bacteria call for urgent attention among public health workers, because these genes can be easily disseminated to consumers of these water samples if present on mobile genetic elements like plasmids, integrons and transposons.201931447500
843150.9993Whole Genome Sequencing Reveals Presence of High-Risk Global Clones of Klebsiella pneumoniae Harboring Multiple Antibiotic Resistance Genes in Multiple Plasmids in Mwanza, Tanzania. BACKGROUND: Klebsiella pneumoniae is an important multidrug-resistant (MDR) pathogen, causing both community- and healthcare-associated infections. The resistance is due to the continuous accumulation of multiple antibiotic-resistance-genes (ARGs) through spontaneous genomic mutations and the acquisition of conjugative plasmids. This study presents antibiotics resistance genes, plasmids replicons, and virulence genes of K. pneumoniae isolates from clinical specimens in a tertiary hospital, Mwanza, Tanzania. METHODS: Whole genome sequencing (WGS) of 34 K. pneumoniae was performed, using an Illumina NextSeq 500, followed by in silco analysis. RESULTS: A total of 34 extended-spectrum beta-lactamase-producing K. pneumoniae, isolated from blood samples from neonatal units were whole-genome sequenced. Of these, 28 (82.4%) had an identified sequence type (ST), with ST14 (39.3%, n = 11) being frequently identified. Moreover, 18 (52.9%) of the bacteria harbored at least one plasmid, from which a total of 25 plasmid replicons were identified with a predominance of IncFIB(K) 48.0% (n = 12). Out of 34 sequenced K. pneumoniae, 32 (94.1%) were harboring acquired antibiotic/biocides-resistance-genes (ARGs) with a predominance of bla(CTX-M-15) (90.6%), followed by oqxB (87.5%), oqxA (84.4%), bla(TEM-1B) (84.4%) and sul2 (84.4%). Interestingly, we observed the ColRNAI plasmid-replicon (n = 1) and qacE gene (n = 4) for the first time in this setting. CONCLUSION: Global high-risk clones of K. pneumoniae isolates carry multiple ARGs in multiple plasmid-replicons. Findings from this study warrant genomic-based surveillance to monitor high-risk global clones, epidemic plasmids and ARGs in low- and middle-income countries.202236557648
1199160.9993Multi-drug resistant pathogenic bacteria in the gut of young children in Bangladesh. BACKGROUND: The gut of human harbors diverse commensal microbiota performing an array of beneficial role for the hosts. In the present study, the major commensal gut bacteria isolated by culturing methods from 15 children of moderate income families, aged between 10 and 24 months, were studied for their response to different antibiotics, and the molecular basis of drug resistance. RESULTS: Of 122 bacterial colonies primarily selected from Luria-Bertani agar, bacterial genera confirmed by analytical profile index (API) 20E(®) system included Escherichia as the predominant (52%) organism, followed by Enterobacter (16%), Pseudomonas (12%), Klebsiella (6%), Pantoea (6%), Vibrio (3%), and Citrobacter (3%); while Aeromonas and Raoultella were identified as the infrequently occurring genera. An estimated 11 and 22% of the E. coli isolates carried virulence marker genes stx-2 and eae, respectively. Antimicrobial susceptibility assay revealed 78% of the gut bacteria to be multidrug resistant (MDR) with highest resistance to erythromycin (96%), followed by ampicillin (63%), tetracycline (59%), azithromycin (53%), sulfamethoxazole-trimethoprim (43%), cefixime (39%), and ceftriaxone (33%). PCR assay results revealed 56% of the gut bacteria to possess gene cassette Class 1 integron; while 8, 17.5 and 6% of the strains carried tetracycline resistance-related genes tetA, tetB, and tetD, respectively. The macrolide (erythromycin and azithromycin) resistance marker genes mphA, ereB, and ermB were found in 28, 3 and 5% of bacterial isolates, respectively; while 26, 12, 17, 32, 7, 4 and 3% of the MDR bacterial isolates carried the extended spectrum β-lactamase (ESBL)-related genes e.g., bla(TEM), bla(SHV), bla(CMY-9), bla(CTX-M1), bla(CTX-M2), bla(CMY-2) and bla(OXA) respectively. Majority of the MDR gut bacteria harbored large plasmids [e.g., 140 MDa (43%), 105 MDa (30%), 90 MDa (14%)] carrying invasion and related antibiotic resistance marker genes. CONCLUSIONS: Our results suggest gut of young Bangladeshi children to be an important reservoir for multi-drug resistant pathogenic bacteria carrying ESBL related genes.201728439298
1304170.9993Serovar and sequence type distribution and phenotypic and genotypic antimicrobial resistance of Salmonella originating from pet animals in Chongqing, China. A total of 334 Salmonella isolates were recovered from 6,223 pet rectal samples collected at 50 pet clinics, 42 pet shops, 7 residential areas, and 4 plazas. Forty serovars were identified that included all strains except for one isolate that did not cluster via self-agglutination, with Salmonella Typhimurium monophasic variant, Salmonella Kentucky, Salmonella Enteritidis, Salmonella Pomona, and Salmonella Give being the predominant serovars. Fifty-one sequence types were identified among the isolates, and ST198, ST11, ST19, ST451, ST34, and ST155 were the most common. The top four dominant antimicrobials to which isolates were resistant were sulfisoxazole, ampicillin, doxycycline, and tetracycline, and 217 isolates exhibited multidrug resistance. The prevalence of β-lactamase genes in Salmonella isolates was 59.6%, and among these isolates, 185 harbored bla(TEM), followed by bla(CTX-M) (66) and bla(OXA) (10). Moreover, six PMQR genes, namely, including qnrA (4.8%), qnrB (4.2%), qnrD (0.9%), qnrS (18.9%), aac(6')-Ib-cr (16.5%), and oqxB (1.5%), were detected. QRDR mutations (76.6%) were very common in Salmonella isolates, with the most frequent mutation in parC (T57S) (47.3%). Furthermore, we detected six tetracycline resistance genes in 176 isolates, namely, tet(A) (39.5%), tet(B) (8.1%), tet(M) (7.7%), tet(D) (5.4%), tet(J) (3.3%), and tet(C) (1.8%), and three sulfonamide resistance genes in 303 isolates, namely, sul1 (84.4%), sul2 (31.1%), and sul3 (4.2%). Finally, we found 86 isolates simultaneously harboring four types of resistance genes that cotransferred 2-7 resistance genes to recipient bacteria. The frequent occurrence of antimicrobial resistance, particularly in dogs and cats, suggests that antibiotic misuse may be driving multidrug-resistant Salmonella among pets.IMPORTANCEPet-associated human salmonellosis has been reported for many years, and antimicrobial resistance in pet-associated Salmonella has become a serious public health problem and has attracted increasing attention. There are no reports of Salmonella from pets and their antimicrobial resistance in Chongqing, China. In this study, we investigated the prevalence, serovar diversity, sequence types, and antimicrobial resistance of Salmonella strains isolated from pet fecal samples in Chongqing. In addition, β-lactamase, QRDR, PMQR, tetracycline and sulfonamide resistance genes, and mutations in QRDRs in Salmonella isolates were examined. Our findings demonstrated the diversity of serovars and sequence types of Salmonella isolates. The isolates were widely resistant to antimicrobials, notably with a high proportion of multidrug-resistant strains, which highlights the potential direct or indirect transmission of multidrug-resistant Salmonella from pets to humans. Furthermore, resistance genes were widely prevalent in the isolates, and most of the resistance genes were spread horizontally between strains.202438757951
1026180.9993Analysis of Wastewater Reveals the Spread of Diverse Extended-Spectrum β-Lactamase-Producing E. coli Strains in uMgungundlovu District, South Africa. Wastewater treatment plants (WWTPs) are major reservoirs of antibiotic-resistant bacteria (ARB), favouring antibiotic resistance genes (ARGs) interchange among bacteria and they can provide valuable information on ARB circulating in a community. This study characterised extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli from the influent and effluent of four WWTPs in uMgungundlovu District, KwaZulu-Natal, South Africa. E. coli was enumerated using the membrane filtration method and confirmed using the API 20E test and real-time polymerase chain reaction. ESBL-producers were phenotypically identified by their susceptibility to the third-generation cephalosporins using the disc diffusion and the double-disc synergy methods against cefotaxime (30 µg) with and without 10 µg clavulanic acid. Genotypic verification was by PCR of the TEM, SHV, and CTX-M genes. The clonality of isolates was assessed by ERIC-PCR. The highest E. coli count ranged between 1.1 × 10(5) (influent) and 4.3 × 10(3) CFU/mL (effluent). Eighty pure isolates were randomly selected, ten from the influent and effluent of each of the four WWTP. ESBLs were phenotypically confirmed in 49% (n = 39) of the isolates, of which 77% (n = 30) were genotypically confirmed. Seventy-three percent of the total isolates were multidrug-resistant (MDR). Only two isolates were susceptible to all antibiotics. Overall, resistance to first and second-generation cephalosporins was higher than to third and fourth generation cephalosporins. Also, 15% of the isolates were resistant to carbapenems. The CTX-M-type ESBL (67%; n = 20) was the most common ESBL antibiotic resistance gene (ARG) followed by TEM (57%; n = 17) and SHV-types (27%; n = 8). Also, a substantial number of isolates simultaneously carried all three ESBL genes. ERIC-PCR revealed a high diversity of isolates. The diversity of the isolates observed in the influent samples suggest the potential circulation of different ESBL-producing strains within the studied district, requiring a more comprehensive epidemiological study to prevent the spread of ESBL-producing bacteria within impoverished communities.202134356780
1111190.9993Molecular Characterization of Cotrimoxazole Resistance Genes and Their Associated Integrons in Clinical Isolates of Gram-Negative Bacteria from Tanzania. Cotrimoxazole is widely used, particularly as a prophylactic drug in HIV patients. We assessed resistance mechanisms among cotrimoxazole resistant-Gram negative bacterial isolates (n = 123) obtained from blood (n = 69) and urine (n = 54) from Tanzanian patients. sul genes were detected in 98% (121/123) of the isolates. Coexistence of sul1 and sul2 was common (49/123). The dfr genes were found in 63% (77/123) of all isolates. sul1, dfrA15, and dfrA5 genes predominated among Klebsiella pneumoniae, while sul2 and dfrA1 genes were frequent in Escherichia coli isolates. Two isolates, both K. pneumoniae, carried sul3. Integrons were detected in 81.3% (100/123) of all isolates. Class 1 integrons were found in 95% (42/44), 53% (23/43), and 80.6% (25/31) of K. pneumoniae, E. coli, and other Enterobacteriaceae isolates, respectively. Class 2 integrons were found in 14% of E. coli, but not in K. pneumoniae. All sul1 genes in K. pneumoniae were carried in class 1 integrons. Gene cassette arrays dfrA5 and dfrA15-aadA1 were most frequently associated with class 1 integrons, while class 2 integrons contained only dfrA1-sat2-aadA1 gene cassettes. This is the first report of sul3 gene in K. pneumoniae from human sources. The finding that mechanisms differ between E. coli and K. pneumoniae may broaden our understanding of cotrimoxazole resistance.201727533639