Plasmid-mediated quinolone resistance genes in fecal bacteria from rooks commonly wintering throughout Europe. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
121401.0000Plasmid-mediated quinolone resistance genes in fecal bacteria from rooks commonly wintering throughout Europe. This study concerned the occurrence of fecal bacteria with plasmid-mediated quinolone resistance (PMQR) genes in rooks (Corvus frugilegus, medium-sized corvid birds) wintering in continental Europe during winter 2010/2011. Samples of fresh rook feces were taken by cotton swabs at nine roosting places in eight European countries. Samples were transported to one laboratory and placed in buffered peptone water (BPW). The samples from BPW were enriched and subcultivated onto MacConkey agar (MCA) supplemented with ciprofloxacin (0.06 mg/L) to isolate fluoroquinolone-resistant bacteria. DNA was isolated from smears of bacterial colonies growing on MCA and tested by PCR for PMQR genes aac(6')-Ib, qepA, qnrA, qnrB, qnrC, qnrD, qnrS, and oqxAB. All the PCR products were further analyzed by sequencing. Ciprofloxacin-resistant bacteria were isolated from 37% (392 positive/1,073 examined) of samples. Frequencies of samples with ciprofloxacin-resistant isolates ranged significantly from 3% to 92% in different countries. The qnrS1 gene was found in 154 samples and qnrS2 in 2 samples. The gene aac(6')-Ib-cr was found in 16 samples. Thirteen samples were positive for qnrB genes in variants qnrB6 (one sample), qnrB18 (one), qnrB19 (one), qnrB29 (one), and qnrB49 (new variant) (one). Both the qnrD and oqxAB genes were detected in six samples. The genes qnrA, qnrC, and qepA were not found. Wintering omnivorous rooks in Europe were commonly colonized by bacteria supposedly Enterobacteriaceae with PMQR genes. Rooks may disseminate these epidemiologically important bacteria over long distances and pose a risk for environmental contamination.201222731858
113810.9990Occurrence of plasmid mediated fluoroquinolone resistance genes amongst enteric bacteria isolated from human and animal sources in Delta State, Nigeria. Plasmid mediated quinolone resistance (PMQR) is a public health challenge arising among other things, from indiscriminate use of the floroquinolones (FQr) prophylactically in animal husbandry. This study examines the occurrence of PMQR genes amongst enteric bacteria isolated from human and animal sources. A total of 720 (360 stool and 360 fish pond water/poultry litter) samples were examined for fluoroquinolone resistant (FQr) bacteria. Percentage FQr was generally higher among human isolates than isolates from animals. Proportion of PMQR amongst FQr isolates were (1.05 and 4.32) % for E. coli from human and animal sources. For Salmonella spp., Shigella spp., Klebsiella spp. and Aeromonas spp., percentages PMQR were 0.00 & 6.93, 0.00 & 6.38, 4.26 & 5.26 and 0.00 &3.03 for human and animal sources respectively, for the isolates. The PMQR genes: qnrA, qnr B, qnr S and qep A were 11, 15, 7 and 1 amongst a total of 1018 FQr and 29 PMQR isolates respectively. The aac (6')-Ib-cr gene was not detected in this study. Approximate Plasmid bands of PCR amplicon for qnr A, qnr B, qnr S and qep A respectively were established. The proportion of PMQR genes especially among isolates from animal sources is of public health concern due to the higher possibility of a horizontal FQ resistance transfer to humans.202133659770
109320.9989The rate of frequent co-existence of plasmid-mediated quinolone resistance (PMQR) and extended-spectrum β-lactamase (ESBL) genes in Escherichia coli isolates from retail raw chicken in South Korea. Since plasmid-encoded antibiotic resistance facilitates the emergence of antibiotic-resistant bacteria, the increasing prevalence of Escherichia coli harboring plasmid-mediated quinolone resistance (PMQR) and extended-spectrum β-lactamase (ESBL) genes is a public health concern. The objective of this study is to investigate the co-existence of PMQR and ESBL genes in E. coli isolates from retail raw chicken in South Korea. Among 67 ESBL-producing E. coli isolates from 40 retail raw chicken, more than half of them carried PMQR genes, including qnrS, aac(6')-Ib-cr, and oqxAB. The qnrS was predominantly (91.4%) detected in E. coli isolates carrying both PMQR and ESBL. The aac(6')-Ib-cr was detected in seven ESBL-producing E. coli strains, and 85.7% of the aac(6')-Ib-cr-positive strains also carried qnrS. Moreover, the strains co-harboring qnrS and aac(6')-Ib-cr exhibited increased resistance to ciprofloxacin and kanamycin. These results demonstrate that PMQR genes are frequently detected in ESBL-producing E. coli isolates from retail raw chicken in South Korea.202235646407
119030.9989Co-occurrence of mcr-1, mcr-3, mcr-7 and clinically relevant antimicrobial resistance genes in environmental and fecal samples. Multidrug-resistant bacteria harboring different antimicrobial resistance genes (ARGs) have been detected worldwide. The association of plasmid-mediated colistin resistance genes (mcr-like) and other ARGs in bacteria isolated from animals is a huge concern worldwide. Therefore, this study aimed to investigate the presence of mcr-like genes and clinically relevant ARGs as well as plasmids in samples from a zoo. Fecal and environmental (soil and water) samples were collected from a zoo and the DNA of cultivable aerobic bacteria was extracted. ARGs were screened by PCR and the plasmids were detected using the PCR-based replicon typing method. A total of 74 amplicons from 27 ARGs [mcr-1, mcr-3, mcr-7.1, bla(CTX-M-Gp1), bla(CTX-M-Gp2), bla(CTX-M-Gp9), bla(VEB), bla(PER), bla(CMY), tetA, tetB, tetC, aadA, aac(6')-Ib, aph(3')-Ia, ant(2'')-Ia, qnrA, qnrB, qnrS, oqxA, oqxB, sul1, sul2, sul3, cmlA, mefAE, ermB] and 21 amplicons from eight plasmid families (IncY, ColE-like, IncF(repB), IncFIA, IncFIB, IncHI1, IncFIC, IncP) were detected. These findings reinforce that the zoo acts as a reservoir of clinically relevant ARGs, including mcr-like, and call attention to the monitoring studies in the zoo. Therefore, to the best of our knowledge, this is the first report of the world of mcr-1, mcr-3 and mcr-7.1 in environmental samples from the zoo.202032382766
117540.9989Existence of a novel qepA variant in quinolone resistant Escherichia coli from aquatic habitats of Bangladesh. Of 19 environmental Escherichia coli (n = 12) and Klebsiella pneumoniae (n = 7) tested for quinolone resistance-related genes qnrA, qnrB, qnrC, qnrS and qepA, four each of E. coli and K. pneumoniae possessed qnrS, and another E. coli isolate possessed a new variant of qepA. This is the first detection of qepA in environmentally dwelling bacteria in Bangladesh.201729075330
117450.9989Identification of plasmid-mediated quinolone resistance qnr genes in multidrug-resistant Gram-negative bacteria from hospital wastewaters and receiving waters in the Jinan area, China. We investigated the prevalence of plasmid-mediated quinolone resistance (PMQR) qnr genes by the polymerase chain reaction (PCR) in antibiotic-resistant bacteria isolates collected from aquatic environments in Jinan during 2 years (2008.3-2009.11). Genes were identified to variant level by PCR restriction fragment length polymorphism analysis or sequencing. qnrA1, qnrB2, qnrB4, qnrB6, qnrB9, qnrS1, and the new qnrB variant qnrB26 were detected in 31 strains from six genera (Klebsiella spp., Escherichia coli, Enterobacter spp., Proteus spp., Shigella spp., and Citrobacter spp.), four of which contained double qnr genes. Other PMQR genes, aac(6')-Ib-cr and qepA, were found in 12 (38.7%) and 5 (16.1%) of 31 isolates, respectively; while qepA was found in Shigella spp. for the first time. Eight types of β-lactamase genes and eight other types of resistance genes were also present in the 31 qnr-positive isolates. The detection rate for five β-lactamase genes (blaTEM, blaCTX, ampR, blaDHA, and blaSHV) was >45%. Class 1 integrons and complex class 1 integrons were prevalent in these strains, which contained 15 different gene cassette arrays and 5 different insertion sequence common region 1 (ISCR1)-mediated downstream structures. qnrA1, qnrB2, and qnrB6 were present in three ISCR1-mediated downstream structures: qnrA1-ampR, sapA-like-qnrB2, and sdr-qnrB6. We also analyzed the horizontal transferability of PMQR genes and other resistance determinants. The qnr genes and some integrons and resistance genes from 18 (58.1%) of the 31 qnr-positive strains could be transferred to E. coli J53 Azi(R) or E. coli DH5α recipient strains using conjugation or transformation methods. The results showed that a high number of qnr genes were associated with other resistance genes in aquatic environments in Jinan. This suggests that we should avoid over-using antibiotics and monitor aquatic environments to control the spread of antibiotic resistance genes.201323844849
118760.9989Coastal seawater bacteria harbor a large reservoir of plasmid-mediated quinolone resistance determinants in Jiaozhou Bay, China. Diversity and prevalence of plasmid-mediated quinolone resistance determinants were investigated in environmental bacteria isolated from surface seawater of Jiaozhou Bay, China. Five qnr gene alleles were identified in 34 isolates by PCR amplification, including qnrA3 gene in a Shewanella algae isolate, qnrB9 gene in a Citrobacter freundii isolate, qnrD gene in 22 Proteus vulgaris isolates, qnrS1 gene in 1 Enterobacter sp. and 4 Klebsiella spp. isolates, and qnrS2 gene in 1 Pseudomonas sp. and 4 Pseudoalteromonas sp. isolates. The qnrC, aac(6')-Ib-cr, and qepA genes could not be detected in this study. The 22 qnrD-positive Proteus vulgaris isolates could be differentiated into four genotypes based on ERIC-PCR assay. The qnrS1 and qnrD genes could be transferred to Escherichia coli J53 Azi(R) or E. coli TOP10 recipient strains using conjugation or transformation methods. Among the 34 qnr-positive isolates, 30 had a single point mutation in the QRDRs of GyrA protein (Ala67Ser, Ser83Ile, or Ser83Thr), indicating that cooperation of chromosome- and plasmid-mediated resistance contributed to the spread and evolution of quinolone resistance in this coastal bay. Eighty-five percent of the isolates were also found to be resistant to ampicillin, and bla(CMY), bla(OXY), bla(SHV), and bla(TEM) genes were detected in five isolates that also harbored the qnrB9 or qnrS1 gene. Our current study is the first identification of qnrS2 gene in Pseudoalteromonas and Pseudomonas strains, and qnrD gene in Proteus vulgaris strains. High prevalence of diverse qnr genes in Jiaozhou Bay indicates that coastal seawater may serve as an important reservoir, natural source, and dissemination vehicle of quinolone resistance determinants.201222252223
117770.9988High carriage of plasmid-mediated quinolone resistance (PMQR) genes by cefotaxime-resistant Escherichia coli recovered from surface-leaking sanitary sewers. There is a rapid rise in the incidence of quinolone resistant bacteria in Nigeria. Most studies in Nigeria have focused on isolates from the clinical settings, with few focusing on isolates of environmental origin. This study aimed to investigate the antibiogram and carriage of plasmid-mediated quinolone resistance (PMQR) genes by quinolone-resistant isolates obtained from a pool of cefotaxime-resistant Escherichia coli (E. coli) recovered from sewage leaking out of some surface-leaking sanitary sewers in a University community in Nigeria. Isolation of E. coli from the sewage samples was done on CHROMagar E. coli, after enrichment of the samples was done in Brain Heart Infusion broth amended with 6 µg/mL of cefotaxime. Identification of presumptive E. coli was done using molecular methods (detection of uidA gene), while susceptibility to antibiotics was carried out using the disc diffusion method. Detection of PMQR genes (qnrA, qnrB, qnrS, aac(6')-lb-cr, qepA and oqxAB) was carried out using primer-specific PCR. A total of 32 non-repetitive cefotaxime-resistant E. coli were obtained from the sewage, with 21 being quinolone-resistant. The quinolone-resistant isolates showed varying level of resistance to the tested antibiotics, with imipenem being the only exception with 0% resistance. The PMQR genes: aac(6')-lb-cr, qnrA, qnrB, qnrS and qepA and oqxAB were detected in 90.5%, 61.9%, 47.6%, 38.1%, 4.8% and 0% respectively of the isolates. The findings of this study showed a high level of resistance to antibiotics and carriage of PMQR genes by quinolone-resistant E. coli obtained from the leaking sanitary sewers, suggesting a potential environmental and public health concern.202235000007
118880.9988High Prevalence of Plasmid-Mediated Quinolone Resistance and IncQ Plasmids Carrying qnrS2 Gene in Bacteria from Rivers near Hospitals and Aquaculture in China. Effluents from hospital and aquaculture are considered important sources of quinolone resistance. However, little information is available on the impact of this effluent on nearby rivers. In this study, 188 ciprofloxacin-resistant bacterial isolates obtained from rivers near hospitals and aquaculture were screened for plasmid-mediated quinolone resistance (PMQR) genes. Species identification, antibiotic susceptibility testing, and PMQR gene transferability assessment were conducted for PMQR-positive bacteria. Representative qnrS2-encoding plasmids were subsequently sequenced using a primer-walking approach. In total, 44 isolates (23.4%) were positive for qnr genes (16 qnrB2, 3 qnrS1, and 25 qnrS2) and 32 isolates (17.0%) were positive for aac(6')-Ib-cr. Other PMQR genes were not detected. The qnrB2 and aac(6')-Ib-cr genes had a higher prevalence in aquaculture samples than in hospital samples, and were significantly associated with Enterobacteriaceae (p < 0.05). In contrast, the prevalence of qnrS2 was not site-related, but was significantly associated with Aeromonas spp. (p < 0.05). All PMQR isolates were resistant to three or more classes of antibiotics. Eleven qnrS2-harboring plasmids from Aeromonas spp., including a novel conjugative plasmid pHP18, were selected for sequencing. These plasmids were small in size (6,388-16,197 bp) and belonged to the IncQ or IncU plasmid family, with qnrS2 being part of a mobile insertion cassette. Taken together, our findings suggest that aquaculture is a possible source for aac(6')-Ib-cr and qnrB2 dissemination, and demonstrate the ubiquity of qnrS2 in aquatic environments. Finally, Aeromonas spp. served as vectors for qnrS2 with the help of IncQ-type plasmids.201627427763
108890.9988Detection and Molecular Characterization of Escherichia coli Strains Producers of Extended-Spectrum and CMY-2 Type Beta-Lactamases, Isolated from Turtles in Mexico. Multidrug-resistant bacteria are a growing problem in different environments and hosts, but scarce information exists about their prevalence in reptiles. The aim of this study was to analyze the resistance mechanisms, molecular typing, and plasmid content of cefotaxime-resistant (CTX(R)) Escherichia coli isolates recovered from cloacal samples of 71 turtles sheltered in a herpetarium in Mexico. CTX(R)-E. coli were recovered in 11 of 71 samples (15.5%), and one isolate/sample was characterized. Extended-spectrum β-lactamase (ESBL)-producing E. coli isolates were detected in four samples (5.6%): two strains carried the blaCTX-M-2 gene (phylogroup D and ST2732) and two contained the blaCTX-M-15 gene (phylogroup B1 and lineages ST58 and ST156). The blaCMY-2 gene was detected by PCR in E. coli isolates of eight samples (9.8%) (one of them also carried blaCTX-M-2); these isolates were distributed into phylogroups A (n = 1), B1 (n = 6), and D (n = 1) and typed as ST155, ST156, ST2329, and ST2732. Plasmid-mediated quinolone resistance (PMQR) genes were detected in five isolates [aac(6')Ib-cr, qnrA, qnrB19, and oqxB]. From three to five replicon plasmids were detected among the strains, being IncFIB, IncI1, IncFrep, and IncK the most prevalent. ESBL or pAmpC genes were transferred by conjugation in four strains, and the blaCTX-M-15 and blaCMY-2 genes were localized in IncFIB or IncI1 plasmids by Southern blot hybridization assays. Class 1 and/or class 2 integrons were detected in eight strains with six different structures of gene cassette arrays. Nine pulsed-field gel electrophoresis patterns were found among the 11 studied strains. To our knowledge, this is the first detection of ESBL, CMY-2, PMQR, and mobile determinants of antimicrobial resistance in E. coli of turtle origin, highlighting the potential dissemination of multidrug-resistant bacteria from these animals to other environments and hosts, including humans.201627482752
1156100.9988Detection of qnr, aac(6')-Ib-cr and qepA genes in Escherichia coli isolated from cooked meat products in Henan, China. Antimicrobial resistance in Escherichia coli has increased in recent years in China. Antimicrobial resistant isolates and resistance genes of E. coli can be transferred to humans through the food chain and this presents a public health risk. However, few studies have investigated the prevalence of antimicrobial resistance-encoding genes in E. coli isolated from food samples in China. The aim of this study was to investigate the presence of quinolone resistance genes (QRGs) and extended-spectrum β-lactamases (ESBLs) in E. coli isolated from cooked meat products in Henan, China. A total of 75 E. coli isolates (12.1%) were detected from 620 samples. High rates of resistance to the following drugs were observed: tetracycline (56.0%), trimethoprim/sulfamethoxazole (41.3%), streptomycin (29.3%), ampicillin (26.7%) and nalidixic acid (14.7%). Of the 75 isolates, QRGs were present in 10 isolates (13.3%), with qnr and aac(6')-Ib-cr detected alone or in combination in five (6.7%) and eight isolates (10.7%). The qnr genes detected in this study included qnrS (n=3) and qnrA (n=2). The qepA gene was absent among these isolates. Three types of β-lactamase genes were identified in the five ESBL-producing E. coli isolates: blaCTX-M-1, blaCTX-M-9, and blaTEM-1. The qnrS gene was found to be co-transferred with blaCTX-M-1 and blaTEM-1 in one isolate. Our data suggest that cooked meat products may act as reservoirs for multi-resistant bacteria and facilitate the dissemination of antimicrobial resistance genes.201425036771
2629110.9988Occurrence of plasmid-mediated quinolone resistance genes in Escherichia coli and Klebsiella spp. recovered from Corvus brachyrhynchos and Corvus corax roosting in Canada. The spread of antimicrobial resistance from human activity derived sources to natural habitats implicates wildlife as potential vectors of antimicrobial resistance transfer. Wild birds, including corvid species can disseminate mobile genetic resistance determinants through faeces. This study aimed to determine the occurrence of plasmid-mediated quinolone resistance (PMQR) genes in Escherichia coli and Klebsiella spp. isolates obtained from winter roosting sites of American crows (Corvus brachyrhynchos) and common ravens (Corvus corax) in Canada. Faecal swabs were collected at five roosting sites across Canada. Selective media isolation and multiplex PCR screening was utilized to identify PMQR genes followed by gene sequencing, pulse-field gel electrophoresis and multilocus sequence typing to characterize isolates. Despite the low prevalence of E. coli containing PMQR (1·3%, 6/449), qnrS1, qnrB19, qnrC, oqxAB and aac(6')-Ib-cr genes were found in five sequence types (ST), including E. coli ST 131. Conversely, one isolate of Klebsiella pneumoniae contained the plasmid-mediated resistance gene qnrB19. Five different K. pneumoniae STs were identified, including two novel types. The occurrence of PMQR genes and STs of public health significance in E. coli and Klebsiella pneumoniae recovered from corvids gives further evidence of the anthropogenic derived dissemination of antimicrobial resistance determinants at the human activity-wildlife-environment interface. SIGNIFICANCE AND IMPACT OF THE STUDY: This study examined large corvids as possible vector species for the dissemination of antimicrobial resistance in indicator and pathogenic bacteria as a means to assess the anthropogenic dissemination of plasmid-mediated quinolone resistance (PMQR) genes. Although rare, PMQR genes were found among corvid populations across Canada. The clinically important Escherichia coli strain ST131 containing aac(6')-Ib-cr gene along with a four-class phenotypic antimicrobial resistance (AMR) pattern as well as one Klebsiella pneumoniae strain containing a qnrB19 gene were identified in one geographical location. Corvids are a viable vector for the circulation of PMQR genes and clinically important clones in wide-ranging environments.201829675942
1157120.9988Isolation and Molecular Characterization of Antimicrobial Resistant Escherichia coli from Healthy Broilers in Retail Chicken Outlets of Hotspot Cities in Southern India. E. coli is one of the first commensal bacteria to colonize the chicken gut. It may act as a source for the spread of antibiotic resistance to human via the food chain and contamination of the environment. Isolation and characterization of such E. coli from commercial broilers in retail outlets of Southern India were carried out. Eighty-three E. coli isolates (76.9%) were obtained from cloacal/meat swabs (108 samples). Phenotypically, 78.3% of isolates were ESBL producers, 69.9% were fluoroquinolone-resistant, and 6% were carbapenemase producers. Genotypically, the blaSHV, blaTEM, and blaCTX-M were present in 48.2%, 43.4%, and 10.8% of the isolates, respectively. These isolates also carried fluoroquinolone-resistant genes viz qnrB (31.3%) and qnrS (34.9%) but not carbapenemase genes. Overall, ESBL were identified in 72.3% of isolates and fluoroquinolone-resistance genes in 51.8%. Strikingly, 53% of the isolates were multidrug-resistant, with both ESBL and fluoroquinolone-resistant genes. The study revealed the presence of MDR E. coli strains in broiler meat at retail outlets indicating the potential public health risks.202540778947
1176130.9988High carriage of plasmid-mediated quinolone resistance (PMQR) genes by ESBL-producing and fluoroquinolone-resistant Escherichia coli recovered from animal waste dumps. BACKGROUND: There has been a rise in the consumption of fluoroquinolones in human and veterinary medicine recently. This has contributed to the rising incidence of quinolone resistance in bacteria. This study aimed at the determination of the antibiotic resistance profile of ESBL-producing and fluoroquinolone-resistant E. coli (FQEC) isolated from animal waste obtained from the waste dumps of an agricultural farm and their carriage of genes encoding PMQR. METHODS AND RESULTS: Isolation of ESBL-producing E. coli from animal waste samples was done on CHROMagar ESBL, while presumptive isolates were purified, and identified via the detection of uidA gene. Susceptibility to a panel of ten antibiotics was done using the disc diffusion method, and detection of PMQR genes (qnrA, qnrB, qnrS, aac(6')-lb-cr, qepA and oqxAB) was done using monoplex and duplex PCR. Twenty-five ESBL-producing and FQEC were obtained from the cattle (6), piggery (7) and poultry (12) waste dumps of the farm. There was 100% resistance to cefpodoxime, cefotaxime, enrofloxacin, trimethoprim-sulfamethoxazole and penicillin by the isolates. The resistance to the other antibiotics was streptomycin (48%), ceftazidime (24%), while no isolate resisted amoxicillin-clavulanate and imipenem. The frequencies of PMQR genes detected were; qnrA (96%), oqxAB (96%), qnrB (92%), while  qnrS was detected in 88% (22) of the isolates. Aminoglycoside acetyltransferase (aac(6')-lb-cr) and quinolone efflux pump (qepA) were each detected in 20 (80%) of the isolates. CONCLUSIONS: This study showed that animal wastes disposed indiscriminately into dumps could be a budding 'hotspot' for multidrug resistant, ESBL-producing and fluoroquinolone-resistant E. coli carrying multiple genes encoding resistance to fluoroquinolone antibiotics.202438491992
2621140.9987Extended Spectrum Beta-Lactamase (ESBL)-producing bacteria isolated from hospital wastewaters, rivers and aquaculture sources in Nigeria. Untreated wastewater is a risk factor for the spread of antibiotic resistance in the environment. However, little is known about the contribution of untreated wastewater to the burden of antibiotic resistance in the Nigerian environment. In this study, a total of 143 ceftazidime-/cefpodoxime-resistant bacteria isolated from untreated wastewater and untreated wastewater-contaminated surface and groundwater in Nigeria were screened for extended-spectrum β-lactamase (ESBL) genes, integrons and integron gene cassettes by PCR. The genetic environment of bla (CTX-M-15) was mapped by PCR and potentially conjugative plasmids were detected among the isolates by degenerate primer MOB typing (DPMT). ESBL production was confirmed in 114 (79.7%) isolates and ESBL genes (bla (SHV), bla (CTX-M-15) and bla (TEM)) were detected in 85 (74.6%) ESBL-producing isolates. bla (CTX-M-15) was associated with ISEcp1 and with orf477 in 12 isolates and with ISEcp1, IS26 and orf477 in six others. To the best of our knowledge, this is the first report of bla (CTX-M-15) in hand-dug wells and borehole serving as sources of drinking water and a first report of the genetic environment of bla (CTX-M-15) in environmental bacteria from Nigeria. The results of this study confirm untreated wastewater as an important medium for the spread of ESBL-producing bacteria within the Nigerian environment. Hence, the widespread practice of discharging untreated wastewater into the aquatic ecosystem in Nigeria is a serious risk to public health.201829139076
961150.9987Predominance of CTX-M-15 among ESBL Producers from Environment and Fish Gut from the Shores of Lake Victoria in Mwanza, Tanzania. Extended-Spectrum Beta-Lactamase (ESBL)-producing bacteria are a common cause of healthcare and community-associated infections worldwide. The distribution of such isolates in the environment and their presence in fish as a result of sewage contamination is not well-studied. Here we examined fish and environmental samples from Mwanza city for the presence of ESBL-producing bacteria. From 196 fish sampled from local markets, 26 (13.3%) contained lactose-fermenting ESBL-producing bacteria, while 39/73 (53.4%) environmental samples from the same area were ESBL producers. Antibiotic resistance genes, multi locus sequence types (MLST) and plasmid replicon types in 24 selected isolates from both populations were identified with whole genome sequencing using Illumina MiSeq. Nine of eleven sequenced fish isolates had the bla(CTX-M-15) gene whereas 12/13 from environment carried bla(CTX-M-15). Antibiotic resistance genes encoding resistance to sulfonamides (sul1/sul2), tetracyclines [tet(A)/tet(B)] fluoroquinolones [e.g., aac(6')-Ib-cr, qnrS1], aminoglycosides [e.g., aac(3)-lld, strB, strA,] and trimethoprim (e.g., dfrA14) were detected. E. coli sequence type ST-38 (2) and ST-5173 (2) were detected in isolates both from the environment and fish. IncY plasmids carrying bla(CTX-M-15), qnrS1, strA, and strB were detected in five environmental E. coli isolates and in one E. coli isolate from fish. Our data indicate spillage of resistant environmental isolates into Lake Victoria through the sewage system. Persistence of bla(CTX-M-15) in the Mwanza city environment is complex, and involves both clonal spread of resistant strains as well as dissemination by commonly occurring IncY plasmids circulating in isolates present in humans, the environment as well as in the food chain.201627990135
1198160.9987Third-Generation Cephalosporin- and Tetracycline-Resistant Escherichia coli and Antimicrobial Resistance Genes from Metagenomes of Mink Feces and Feed. American mink (Neovison vison) is a significant source of global fur production. Except for a few studies from Denmark and Canada reporting antimicrobial resistance in bacteria isolated from clinical cases, studies from the general mink population are scarce and absent in the United States. Mink feces (n = 42) and feed (n = 8) samples obtained from a mink farm were cultured for the enumeration and detection of tetracycline-resistant (TET(r))- and third-generation cephalosporin-resistant (TGC(r))-Escherichia coli. Isolates were characterized phenotypically for their resistance to other antibiotics and genotypically for resistance genes. TET(r)E. coli were detected from 98% of feces samples (mean concentration = 6 log(10)) and from 100% of feed samples (mean concentration = 3.2 logs). Among TET(r)E. coli isolates, 44% (n = 41) of fecal- and 50% (n = 8) of feed isolates were multidrug resistant (MDR; resistance to ≥3 antimicrobial classes), and 96% (n = 49) of TET(r) isolates were positive for tet(A) and/or tet(B). TGC(r)E. coli were detected from 95% of feces and 75% of feed samples with 78% (n = 40) of fecal isolates, and all six of the feed isolates were MDR. Nearly two-thirds (65%) of the TGC(r)E. coli isolates (n = 46) were positive for bla(CMY-2); the remaining 35% were positive for bla(CTX-M,) with the bla(CTX-M-14) being the predominant (75%, n = 16) variant detected. Metagenomic DNA was extracted directly from feces and feed samples, and it was tested for 84 antimicrobial resistance genes by using quantitative polymerase chain reaction (PCR) array; selected genes were also quantified by droplet digital PCR. The genes detected from the fecal samples belonged mainly to five antimicrobial classes: macrolide-lincosamide-streptogramin B (MLS(B); 100% prevalence), TETs (88.1%), β-lactams (71.4%), aminoglycosides (66.7%), and fluoroquinolones (47.6%). β-Lactam, MLS(B), and TET resistance genes were also detected from feed samples. Our study serves as a baseline for further studies and to streamline antimicrobial use in mink production in accordance with current regulations as in food animals.202133085531
1178170.9987Molecular Characterization of Plasmid-Mediated Quinolone Resistance Genes in Multidrug-Resistant Escherichia coli Isolated From Wastewater Generated From the Hospital Environment. AIM: This study investigated the carriage of Plasmid-Mediated Quinolone Resistance (PMQR) genes in fluoroquinolone-resistant Escherichia coli recovered from wastewater generated by healthcare institutions. MATERIALS AND METHODS: Isolation of fluoroquinolone-resistant Escherichia coli was done on medium supplemented with 1 µg/mL of ciprofloxacin (a fluoroquinolone). Presumptive isolates were identified via the detection of uidA gene. Susceptibility of the isolates to a panel of antibiotics was done using disc diffusion method. Detection of PMQR genes in the isolates was done using primer-specific PCR. RESULTS: Thirty fluoroquinolone-resistant Escherichia coli were obtained from the wastewater over a period of 6 months. The resistance to each of the antibiotic tested was: ampicillin (100%), ceftriaxone (100%), nalidixic acid (100%), tetracycline (96.7%), cefotaxime (96.7%), amoxicillin-clavulanate (80%), gentamicin (60%), cefoxitin (30%), and imipenem (3.3%). The Multiple Antibiotic Resistance Index (MARI) ranged from 0.6 to 0.9. The detection of PMQR genes in the 30 isolates was: qnrA (76.7%), qnrB (53.3%), qnrS (63.3%), aac(6')-lb-cr (43.3%), and qepA (43.3%). All the fluoroquinolone-resistant Escherichia coli carried at least one PMQR determinant. CONCLUSION: This study revealed that untreated hospital wastewaters are significant hub of multidrug-resistant and fluoroquinolone-resistant Escherichia coli, showing high carriage of PMQR genes, and may be a major contributor to the resistome of fluoroquinolone-resistant bacteria in the Nigerian environment.202540552214
967180.9987Characterization of Integrons and Quinolone Resistance in Clinical Escherichia coli Isolates in Mansoura City, Egypt. Escherichia coli is a common pathogen in both humans and animals. Quinolones are used to treat infections caused by Gram-negative bacteria, but resistance genes emerged. Only scarce studies investigated the association between plasmid-mediated quinolone resistance (PMQR) genes and integrons in clinical isolates of E. coli. The current study investigated the prevalence of quinolone resistance and integrons among 134 clinical E. coli isolates. Eighty (59.70%) isolates were quinolone-resistant, and 60/134 (44.77%) isolates were integron positive with the predominance of class I integrons (98.33%). There was a significant association between quinolone resistance and the presence of integrons (P < 0.0001). Isolates from Urology and Nephrology Center and Gastroenterology Hospital were significantly quinolone-resistant and integron positive (P ≤ 0.0005). Detection of PMQR genes on plasmids of integron-positive isolates showed that the active efflux pump genes oqxAB and qepA had the highest prevalence (72.22%), followed by the aminoglycoside acetyltransferase gene (aac(6')-Ib-cr, 66.67%) and the quinolone resistance genes (qnr, 61.11%). Amplification and sequencing of integrons' variable regions illustrated that no quinolone resistance genes were detected, and the most predominant gene cassettes were for trimethoprim and aminoglycoside resistance including dfrA17, dfrB4, and dfrA17-aadA5. In conclusion, this study reported the high prevalence of PMQR genes and integrons among clinical E. coli isolates. Although PMQR genes are not cassette-born, they were associated with integrons' presence, which contributes to the widespread of quinolone resistance in Egypt.202134527054
1095190.9987Short communication: Extended-spectrum cephalosporin-resistant Escherichia coli in colostrum from New Brunswick, Canada, dairy cows harbor bla(CMY-2) and bla(TEM) resistance genes. Dairy calves are colonized shortly after birth by multidrug resistant (MDR) bacteria, including Escherichia coli. The role of dairy colostrum fed to calves as a potential source of MDR bacteria resistance genes has not been investigated. This study determined the recovery rate of extended-spectrum cephalosporin-resistant (ESC-R) E. coli in colostrum from cows. The ESC-R E. coli isolates were further investigated to determine their phenotypic antimicrobial resistance pattern and the genes conferring ESC-R. Fresh colostrum was collected from 452 cows from 8 dairy herds in New Brunswick, Canada. The ESC-R E. coli was isolated from the colostrum by using the VACC agar, a selective media for extended-spectrum β-lactamase producing Enterobacteriaceae. Minimum inhibitory concentration was determined for all the suspected ESC-R E. coli isolates using a commercial gram-negative broth microdilution method. Two multiplex PCR were conducted on all the suspected ESC-R E. coli isolates to determine the presence of the bla(CTX-M) (groups 1, 2, 9, and 8/25) bla(CMY-2), bla(SHV), and bla(TEM) resistance genes. The ESC-R E. coli were detected in 20 (4.43%) of the colostrum samples. At least 1 ESC-R E. coli isolate was detected in 6 (75%) of the dairy herds. All ESC-R E. coli had MDR profiles based on minimum inhibitory concentration testing. No bla(CTX-M) groups genes were detected; however, the bla(CMY-2) gene was detected in 9 or 20 (45%) and bla(TEM) was detected in 7 of 20 (35%) of the ESC-R E. coli. No ESC-R E. coli had both bla(CMY-2) and bla(TEM) resistance genes. This is the first report of bla(CMY-2) and bla(TEM) genes found in E. coli isolates cultured from dairy colostrum to our knowledge.201728780105