Antimicrobial-Resistant Escherichia coli, Enterobacter cloacae, Enterococcus faecium, and Salmonella Kentucky Harboring Aminoglycoside and Beta-Lactam Resistance Genes in Raw Meat-Based Dog Diets, USA. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
120101.0000Antimicrobial-Resistant Escherichia coli, Enterobacter cloacae, Enterococcus faecium, and Salmonella Kentucky Harboring Aminoglycoside and Beta-Lactam Resistance Genes in Raw Meat-Based Dog Diets, USA. The practice of feeding raw meat-based diets to dogs has grown in popularity worldwide in recent years. However, there are public health risks in handling and feeding raw meat-based dog diets (RMDDs) to dogs since there are no pathogen reduction steps to reduce the microbial load, which may include antimicrobial-resistant pathogenic bacteria. A total of 100 RMDDs from 63 suppliers were sampled, and selective media were used to isolate bacteria from the diets. Bacterial identification, antimicrobial susceptibility testing, and whole-genome sequencing (WGS) were conducted to identify antimicrobial resistance (AMR). The primary meat sources for RMDDs included in this study were poultry (37%) and beef (24%). Frozen-dry was the main method of product production (68%). In total, 52 true and opportunistic pathogens, including Enterobacterales (mainly Escherichia coli, Enterobacter cloacae) and Enterococcus faecium, were obtained from 30 RMDDs. Resistance was identified to 19 of 28 antimicrobials tested, including amoxicillin/clavulanic acid (23/52, 44%), ampicillin (19/52, 37%), cephalexin (16/52, 31%), tetracycline (7/52, 13%), marbofloxacin (7/52, 13%), and cefazolin (6/52, 12%). All 19 bacterial isolates submitted for WGS harbored at least one type of AMR gene. The identified AMR genes were found to mediate resistance to aminoglycoside (gentamicin, streptomycin, amikacin/kanamycin, gentamicin/kanamycin/tobramycin), macrolide, beta-lactam (carbapenem, cephalosporin), tetracycline, fosfomycin, quinolone, phenicol/quinolone, and sulfonamide. In conclusion, the results of this study suggest that feeding and handling RMDDs may pose a significant public health risk due to the presence of antimicrobial-resistant pathogens, and further research and intervention may be necessary to minimize these risks.202337615516
297210.9998Genetic characterisation of class 1 integrons among multidrug-resistant Salmonella serotypes in broiler chicken farms. OBJECTIVES: Antimicrobial resistance in Salmonella serotypes has been reported. Integrons play an important role in the dissemination of antimicrobial resistance genes in bacteria. Scarce literature is available on the identification of integrons in Salmonella isolated from broiler chickens. In this study, antimicrobial susceptibility testing and characterisation of class 1 integrons among multidrug-resistant (MDR) Salmonella enterica serotypes in broiler chicken farms in Egypt were performed. METHODS: Antimicrobial susceptibility was determined by the disk diffusion method. PCR was performed to detect antimicrobial resistance genes and class 1 integrons in the tested Salmonella serotypes. Gene sequencing of the variable region of a class 1 integron was performed. RESULTS: Salmonella spp. were detected in 26 (13.5%) of 192 broiler samples, with Salmonella Enteritidis being the most frequently detected serotype, followed by Salmonella Kentucky and Salmonella Typhimurium and other serotypes. A very high resistance rate was observed to trimethoprim/sulfamethoxazole (100%), whilst a low resistance rate was observed to cefuroxime (57.7%). MDR S. enterica isolates displayed resistance to ciprofloxacin and azithromycin. Class 1 integrons were detected in 20 (76.9%) of the 26 Salmonella isolates. A high prevalence of class 1 integrons, as the first recorded percentage in the literature, associated with MDR Salmonella isolates was observed. CONCLUSIONS: Antimicrobial resistance rates in Salmonella serotypes from broiler chicken farms were alarming, especially for ciprofloxacin and azithromycin. Thus, another therapeutic strategy other than antimicrobials is recommended to prevent outbreaks of MDR Salmonella.201829684574
119720.9998Sink survey to investigate multidrug resistance pattern of common foodborne bacteria from wholesale chicken markets in Dhaka city of Bangladesh. Antimicrobial resistance (AMR) among foodborne bacteria is a well-known public health problem. A sink survey was conducted to determine the AMR pattern of common foodborne bacteria in cloacal swab of broiler chickens and sewage samples from five wholesale chicken markets of Dhaka city in Bangladesh. Bacteria were identified by culture-based and molecular methods, and subjected to antimicrobial susceptibility testing. Resistance genes were identified by multiplex PCR and sequencing. Multidrug resistance (MDR) was observed in 93.2% of E. coli, 100% of Salmonella spp., and 97.2% of S. aureus from cloacal swab samples. For sewage samples, 80% of E. coli, and 100% of Salmonella and S. aureus showed MDR. Noteworthy, 8.3% of S. aureus from cloacal swab samples showed possible extensively drug resistance. Antimicrobial resistance genes (beta-lactamase-blaTEM, blaSHV; quinolone resistance gene-qnrS) were detected in a number of E. coli and Salmonella isolates from cloacal swab and sewage samples. The methicillin resistance gene (mecA) was detected in 47.2% and 25% S. aureus from cloacal swab and sewage samples, respectively. The findings envisage the potential public health risk and environmental health hazard through spillover of common foodborne MDR bacteria.202235752640
296730.9998Antibiotic susceptibility and prevalence of foodborne pathogens in poultry meat in Romania. INTRODUCTION: The occurrence of pathogenic strains in poultry meat is of growing concern in Romania. Another problem found on a global level is the continuous increase of antimicrobial resistance in bacteria isolated from food. This study aimed to evaluate the prevalence of pathogenic bacteria in poultry carcasses obtained in Romania in 2012-2013 and to reveal the most prevalent patterns of antimicrobial resistance in the isolated strains. METHODOLOGY: A total of 144 broiler chicken carcasses were evaluated according to classical microbiological methods. The DNA was extracted from the bacterial colonies and the resistance genes were identified by PCR. RESULTS: In 2012, 47.2% of the samples revealed at least one of the following bacteria: Campylobacter jejuni (9.72%; n = 7), Salmonella enterica serotype Enteritidis (4.17%; n = 3), Listeria monocytogenes (15.28%; n = 11), and Escherichia coli (16.67%; n = 12). In 2013, the number of positive samples of pathogenic bacteria decreased, although Campylobacter jejuni was isolated in a higher percentage (20.8% vs. 9.72%). The percentage of multidrug-resistant (MDR) bacteria was high (23%); the most prevalent pattern included resistance to tetracycline, sulfonamides, and quinolones/fluoroquinolones. All the resistant Salmonella and E. coli strains were tested for the presence of characteristic resistance genes (Kn, bla(TEM), tetA, tetB, tetG, DfrIa, aadA1a, Sul) and revealed that these isolates represent an important reservoir in the spread of this phenomenon. CONCLUSIONS: Our findings suggest that Romania urgently needs an integrated surveillance system within the entire chain, for drug-resistant pathogens isolated from poultry meat.201525596569
114640.9998Molecular detection and prevalence of colistin-resistant Escherichia coli in poultry and humans: a one health perspective. Multidrug-resistant (MDR) bacteria significantly threaten humans and animals worldwide. Colistin is the last resort of antibiotics against gram-negative bacterial infections. Its irrational use in poultry is a major factor in transmitting MDR bacteria to humans. The present study investigated the risk factors, prevalence, and molecular detection of colistin resistance associated with poultry and humans. A total of (n = 140) cloacal swabs from chickens and human stool samples (n = 140) were processed to identify E. coli using conventional methods, followed by genotypic confirmation. Phenotypic and genotypic confirmation of antibiotic resistance genes qnrA, blaTEM, tetA, aadA, and mcr genes was performed on these E. coli isolates. These isolates were confirmed at 69.3% and 62.8% in chickens and humans, respectively. Limited education and poor hygiene significantly increased the infection rate (p = 0.0001). The E. coli isolates from commercial poultry showed 100% resistance to amoxicillin/clavulanic acid, 98.9% to ampicillin, and 93.8% to tetracycline. The E. coli isolates from humans exhibited 90% resistance to ciprofloxacin, 88% to ampicillin, and 85% to ceftriaxone. Among these, MDR E. coli isolates of both commercial poultry and humans, colistin resistance was found in 78.6% and 48.1%, respectively. Genotypic confirmation of mcr genes such as mcr-1 (42%), mcr-2 (19.6%), mcr-3 (15.1%), mcr-4 (7.6%), and mcr-5 (4.5%) in commercial poultry. However, only the mcr-1 (15.6%) gene was found in human isolates. The current study findings highlight the prevalence of mcr genes in E. coli, potentially contributing to broader antibiotic resistance concerns.202540956559
270750.9998Emergence of colistin resistance and characterization of antimicrobial resistance and virulence factors of Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae isolated from hybrid red tilapia cage culture. BACKGROUND: Tilapia is a primary aquaculture fish in Thailand, but little is known about the occurrence of antimicrobial resistance (AMR) in Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae colonizing healthy tilapia intended for human consumption and the co-occurrence of these AMR bacteria in the cultivation water. METHODS: This study determined the phenotype and genotype of AMR, extended-spectrum β-lactamase (ESBL) production, and virulence factors of A. hydrophila, Salmonella spp., and V. cholerae isolated from hybrid red tilapia and cultivation water in Thailand. Standard culture methods such as USFDA's BAM or ISO procedures were used for the original isolation, with all isolates confirmed by biochemical tests, serotyping, and species-specific gene detection based on PCR. RESULTS: A total of 278 isolates consisting of 15 A. hydrophila, 188 Salmonella spp., and 75 V. cholerae isolates were retrieved from a previous study. All isolates of A. hydrophila and Salmonella isolates were resistance to at least one antimicrobial, with 26.7% and 72.3% of the isolates being multidrug resistant (MDR), respectively. All A. hydrophila isolates were resistant to ampicillin (100%), followed by oxytetracycline (26.7%), tetracycline (26.7%), trimethoprim (26.7%), and oxolinic acid (20.0%). The predominant resistance genes in A. hydrophila were mcr-3 (20.0%), followed by 13.3% of isolates having floR, qnrS, sul1, sul2, and dfrA1. Salmonella isolates also exhibited a high prevalence of resistance to ampicillin (79.3%), oxolinic acid (75.5%), oxytetracycline (71.8%), chloramphenicol (62.8%), and florfenicol (55.3%). The most common resistance genes in these Salmonella isolates were qnrS (65.4%), tetA (64.9%), bla (TEM) (63.8%), and floR (55.9%). All V. cholerae isolates were susceptible to all antimicrobials tested, while the most common resistance gene was sul1 (12.0%). One isolate of A. hydrophila was positive for int1, while all isolates of Salmonella and V. cholerae isolates were negative for integrons and int (SXT). None of the bacterial isolates in this study were producing ESBL. The occurrence of mcr-3 (20.0%) in these isolates from tilapia aquaculture may signify a serious occupational and consumer health risk given that colistin is a last resort antimicrobial for treatment of Gram-negative bacteria infections. CONCLUSIONS: Findings from this study on AMR bacteria in hybrid red tilapia suggest that aquaculture as practiced in Thailand can select for ubiquitous AMR pathogens, mobile genetic elements, and an emerging reservoir of mcr and colistin-resistant bacteria. Resistant and pathogenic bacteria, such as resistance to ampicillin and tetracycline, or MDR Salmonella circulating in aquaculture, together highlight the public health concerns and foodborne risks of zoonotic pathogens in humans from cultured freshwater fish.202336855429
120060.9998Virulence and Antimicrobial Resistance Patterns of Salmonella spp. Recovered From Migratory and Captive Wild Birds. BACKGROUND: Salmonella spp., especially those are resistant to extended-spectrum β-lactamase (ESBL), are considered as major concern to global health due to their emergence and dissemination. AIM: The aim of this study was to investigate the virulence and antimicrobial resistance (AMR) profile of Salmonella spp. from migratory and captive wild birds. METHOD: A total 262 faecal samples were collected, and the identification of Salmonella spp. was carried out using a standard culture and PCR as well as molecular detection of virulence and AMR genes. RESULTS: The overall prevalence of Salmonella was determined to be 30.92% (95% CI = 25.63-36.75). Migratory birds exhibited highest prevalence (38.10%), whereas wild birds in captivity showed a lower prevalence (23.40%). The agfA gene was detected at a higher rate at 24.69%. Salmonella spp. exhibited 100% resistance to tetracycline, followed by 58% ampicillin and 46% streptomycin. In addition, there was a resistance rate to ceftriaxone of 17% and to colistin sulphate of 25%. Interestingly, levofloxacin alone displayed 100% sensitivity across all isolates, while ciprofloxacin and azithromycin showed 73% and 64% sensitivity, respectively. The MAR index was 0.25 and 0.42, and 74.07% of all isolates showed multidrug resistance (MDR). It was shown that migratory and captive wild birds contained ESBL genes blaTEM (94.34% and 49.06%) and blaSHV (13.33% and 10%), respectively. Genes responsible for sulphonamide (sul1) resistance were detected in 13.33% and 79% of wild and migratory birds, respectively. CONCLUSION: Salmonella has been found in captive wild and migratory birds and could act as reservoirs for the transmission of MDR and ESBL bacteria.202439494993
267570.9998Prevalence and Zoonotic Risk of Multidrug-Resistant Escherichia coli in Bovine Subclinical Mastitis Milk: Insights Into the Virulence and Antimicrobial Resistance. The emergence of antibiotic-resistant microorganisms has made antimicrobial resistance a global issue, and milk is a potential source for the propagation of resistant bacteria causing zoonotic diseases. Subclinical mastitis (SCM) cases, often overlooked and mixed with normal milk in dairy farms, frequently involve E. coli, which can spread through contaminated milk. We conducted this study to determine the prevalence of virulence genes, antibiotic resistance genes (ARGs), antimicrobial susceptibility, and the genetic relatedness of multidrug-resistant (MDR) Shiga toxin-producing E. coli (STEC) isolated from SCM milk. SCM-positive bovine milk was subjected to E. coli detection using cultural, biochemical, and molecular methods. Further, we detected STEC virulence genes including stx1, stx2, and eaeA. STEC isolates were tested for ARGs including blaSHV, CITM, tetA, and aac(3)-IV, and underwent antimicrobial susceptibility tests. Moreover, we performed a phylogenetic analysis of the stx1 gene of MDR-STEC. SCM was detected in 47.2% of milk samples of which 50.54% were E. coli positive. About 17.20% of E. coli isolates contained STEC virulence genes, and stx2 was the most prevalent. Moreover, all STEC isolates harbored at least one of the ARGs, while about 43.75% of the isolates carried multiple ARGs. Additionally, all the STEC isolates showed multidrug resistance, and were found to be fully resistant against amoxicillin, followed by ampicillin (87.50%) and gentamycin (75%); and were mostly sensitive to aztreonam (81.25%) and meropenem (68.75%). In phylogeny analysis, the stx1 gene of isolated MDR-STEC showed close relatedness with disease-causing non-O157 and O157 strains of different sources including cattle, humans, and food.202539816483
270280.9998Assessment of the presence of multidrug-resistant Escherichia coli, Salmonella and Staphylococcus in chicken meat, eggs and faeces in Mymensingh division of Bangladesh. The emergence of bacteria that is resistant to several drugs of clinical importance poses a threat to successful treatment, a phenomenon known as multidrug resistance that affects diverse classes of antibiotics. The purpose of this study was to evaluate the prevalence of multidrug-resistant Escherichia coli, Salmonella spp. and Staphylococcus aureus in chicken egg, meat and faeces from four districts of Bangladesh. A total of 120 chicken samples were collected from different poultry farms. Conventional culture and molecular detection methods were used for identification of bacterial isolates from the collected samples followed by antibiotic susceptibility test through the disc diffusion method, finally antibiotic resistant genes were detected by PCR. E. coli, Salmonella spp. and Staphylococcus aureus were detected in meat, egg and faecal samples. Antimicrobial susceptibility results revealed isolates from faeces were 100 % resistant to amoxicillin, while all S. aureus and Salmonella sp. from faeces were resistant to doxycycline, tetracycline and erythromycin. Salmonella spp. isolates from eggs indicated 100 % resistance to erythromycin, amoxycillin, while E. coli were 100 % resistant to erythromycin. E. coli and S. aureus from meat were 100 % resistant to amoxicillin and erythromycin. However, Salmonella spp. from eggs were 100 % susceptible to doxycycline, gentamicin, levofloxacin and tetracycline. The mecA and aac(3)-IV genes were only found in S. aureus and E. coli, respectively. The Sul1, tetB, and aadA1 were highest in Salmonella spp. and S. aureus, while the sul1, tetA and bla (SHV) were higher in E. coli. Isolates from all samples were multidrug resistant. These findings indicate a high risk of transmission of resistance genes from microbial contamination to food of animal origin. The study emphasizes the need for effective biosecurity measures, responsible antibiotic use, and strict regulations in poultry production to prevent the spread of antibiotic resistance.202439281621
137190.9998Presence of antimicrobial resistance in coliform bacteria from hatching broiler eggs with emphasis on ESBL/AmpC-producing bacteria. Antimicrobial resistance is recognized as one of the most important global health challenges. Broilers are an important reservoir of antimicrobial resistant bacteria in general and, more particularly, extended-spectrum β-lactamases (ESBL)/AmpC-producing Enterobacteriaceae. Since contamination of 1-day-old chicks is a potential risk factor for the introduction of antimicrobial resistant Enterobacteriaceae in the broiler production chain, the presence of antimicrobial resistant coliform bacteria in broiler hatching eggs was explored in the present study. Samples from 186 hatching eggs, collected from 11 broiler breeder farms, were inoculated on MacConkey agar with or without ceftiofur and investigated for the presence of antimicrobial resistant lactose-positive Enterobacteriaceae, particularly, ESBL/AmpC-producers. Escherichia coli and Enterobacter cloacae were obtained from the eggshells in 10 out of 11 (10/11) sampled farms. The majority of the isolates were recovered from crushed eggshells after external decontamination suggesting that these bacteria are concealed from the disinfectants in the egg shell pores. Antimicrobial resistance testing revealed that approximately 30% of the isolates showed resistance to ampicillin, tetracycline, trimethoprim and sulphonamides, while the majority of isolates were susceptible to amoxicillin-clavulanic acid, nitrofurantoin, aminoglycosides, florfenicol, neomycin and apramycin. Resistance to extended-spectrum cephalosporins was detected in eight Enterobacteriaceae isolates from five different broiler breeder farms. The ESBL phenotype was confirmed by the double disk synergy test and blaSHV-12, blaTEM-52 and blaACT-39 resistance genes were detected by PCR. This report is the first to present broiler hatching eggs as carriers and a potential source of ESBL/AmpC-producing Enterobacteriaceae for broiler chicks.201627011291
1196100.9998Prediction of Phenotypic Antimicrobial Resistance Profiles From Whole Genome Sequences of Non-typhoidal Salmonella enterica. Surveillance of antimicrobial resistance (AMR) in non-typhoidal Salmonella enterica (NTS), is essential for monitoring transmission of resistance from the food chain to humans, and for establishing effective treatment protocols. We evaluated the prediction of phenotypic resistance in NTS from genotypic profiles derived from whole genome sequencing (WGS). Genes and chromosomal mutations responsible for phenotypic resistance were sought in WGS data from 3,491 NTS isolates received by Public Health England's Gastrointestinal Bacteria Reference Unit between April 2014 and March 2015. Inferred genotypic AMR profiles were compared with phenotypic susceptibilities determined for fifteen antimicrobials using EUCAST guidelines. Discrepancies between phenotypic and genotypic profiles for one or more antimicrobials were detected for 76 isolates (2.18%) although only 88/52,365 (0.17%) isolate/antimicrobial combinations were discordant. Of the discrepant results, the largest number were associated with streptomycin (67.05%, n = 59). Pan-susceptibility was observed in 2,190 isolates (62.73%). Overall, resistance to tetracyclines was most common (26.27% of isolates, n = 917) followed by sulphonamides (23.72%, n = 828) and ampicillin (21.43%, n = 748). Multidrug resistance (MDR), i.e., resistance to three or more antimicrobial classes, was detected in 848 isolates (24.29%) with resistance to ampicillin, streptomycin, sulphonamides and tetracyclines being the most common MDR profile (n = 231; 27.24%). For isolates with this profile, all but one were S. Typhimurium and 94.81% (n = 219) had the resistance determinants bla(TEM-1,)strA-strB, sul2 and tet(A). Extended-spectrum β-lactamase genes were identified in 41 isolates (1.17%) and multiple mutations in chromosomal genes associated with ciprofloxacin resistance in 82 isolates (2.35%). This study showed that WGS is suitable as a rapid means of determining AMR patterns of NTS for public health surveillance.201829636749
1205110.9998Prevalence and Genomic Investigation of Multidrug-Resistant Salmonella Isolates from Companion Animals in Hangzhou, China. Salmonella is a group of bacteria that constitutes the leading cause of diarrheal diseases, posing a great disease burden worldwide. There are numerous pathways for zoonotic Salmonella transmission to humans; however, the role of companion animals in spreading these bacteria is largely underestimated in China. We aimed to investigate the prevalence of Salmonella in pet dogs and cats in Hangzhou, China, and characterize the antimicrobial resistance profile and genetic features of these pet-derived pathogens. In total, 137 fecal samples of pets were collected from an animal hospital in Hangzhou in 2018. The prevalence of Salmonella was 5.8% (8/137) in pets, with 9.3% (5/54) of cats and 3.6% (3/83) of dogs being Salmonella positive. By whole-genome sequencing (WGS), in silico serotyping, and multilocus sequence typing (MLST), 26 pet-derived Salmonella isolates were identified as Salmonella Dublin (ST10, n = 22) and Salmonella Typhimurium (ST19, n = 4). All of the isolates were identified as being multidrug-resistant (MDR), by conducting antimicrobial susceptibility testing under both aerobic and anaerobic conditions. The antibiotics of the most prevalent resistance were streptomycin (100%), cotrimoxazole (100%), tetracycline (96.20%), and ceftriaxone (92.30%). Versatile antimicrobial-resistant genes were identified, including floR (phenicol-resistant gene), blaCTX-M-15, and blaCTX-M-55 (extended-spectrum beta-lactamase genes). A total of 11 incompatible (Inc) plasmids were identified, with IncA/C2, IncFII(S), and IncX1 being the most predominant among Salmonella Dublin, and IncFIB(S), IncFII(S), IncI1, and IncQ1 being the most prevailing among Salmonella Typhimurium. Our study applied WGS to characterize pet-derived Salmonella in China, showing the presence of MDR Salmonella in pet dogs and cats with a high diversity of ARGs and plasmids. These data indicate a necessity for the regular surveillance of pet-derived pathogens to mitigate zoonotic diseases.202235625269
2710120.9998Isolation and molecular characterization of multidrug‑resistant Escherichia coli from chicken meat. Antibiotics in animal farms play a significant role in the proliferation and spread of antibiotic-resistant genes (ARGs) and antibiotic-resistant bacteria (ARB). The dissemination of antibiotic resistance from animal facilities to the nearby environment has become an emerging concern. The present study was focused on the isolation and molecular identification of Escherichia coli (E. coli) isolates from broiler chicken meat and further access their antibiotic-resistant profile against different antibiotics. Broiler chicken meat samples were collected from 44 retail poultry slaughter shops in Prayagraj district, Uttar Pradesh, India. Standard bacteriological protocols were followed to first isolate the E. coli, and molecular characterization was performed with genus-specific PCR. Phenotypic and genotypic antibiotic-resistant profiles of all confirmed 154 E. coli isolates were screened against 09 antibiotics using the disc diffusion and PCR-based method for selected resistance genes. In antibiotic sensitivity testing, the isolates have shown maximum resistance potential against tetracycline (78%), ciprofloxacin (57.8%), trimethoprim (54.00%) and erythromycin (49.35%). E. coli bacterial isolates have shown relative resistant to amoxicillin-clavulanic acid (43.00%) and against ampicillin (44.15%). Notably, 64.28% E. coli bacteria were found to be multidrug resistant. The results of PCR assays exposed that tetA and blaTEM genes were the most abundant genes harboured by 83 (84.0%) and 82 (82.0%) out of all 99 targeted E. coli isolates, followed by 48.0% for AmpC (CITM) gene and cmlA (23.00%) for chloramphenicol resistance. It is notable that most of the isolates collected from chicken meat samples were multidrug resistant (> 3 antibiotics), with more than 80% of them carrying tetracycline (tetA) and beta-lactam gene (blaTEM). This study highlights the high risk associated with poultry products due to MDR-E. coli and promote the limited use of antibiotics in poultry farms. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-024-03950-7.202438476645
2962130.9998Prevalence of antimicrobial resistance in fecal Escherichia coli and Salmonella enterica in Canadian commercial meat, companion, laboratory, and shelter rabbits (Oryctolagus cuniculus) and its association with routine antimicrobial use in commercial meat rabbits. Antimicrobial resistance (AMR) in zoonotic (e.g. Salmonella spp.), pathogenic, and opportunistic (e.g. E. coli) bacteria in animals represents a potential reservoir of antimicrobial resistant bacteria and resistance genes to bacteria infecting humans and other animals. This study evaluated the prevalence of E. coli and Salmonella enterica, and the presence of associated AMR in commercial meat, companion, research, and shelter rabbits in Canada. Associations between antimicrobial usage and prevalence of AMR in bacterial isolates were also examined in commercial meat rabbits. Culture and susceptibility testing was conducted on pooled fecal samples from weanling and adult commercial meat rabbits taken during both summer and winter months (n=100, 27 farms), and from pooled laboratory (n=14, 8 laboratory facilities), companion (n=53), and shelter (n=15, 4 shelters) rabbit fecal samples. At the facility level, E. coli was identified in samples from each commercial rabbit farm, laboratory facility, and 3 of 4 shelters, and in 6 of 53 companion rabbit fecal samples. Seventy-nine of 314 (25.2%; CI: 20.7-30.2%) E. coli isolates demonstrated resistance to >1 antimicrobial agent. At least one E. coli isolate resistant to at least one antimicrobial agent was present in samples from 55.6% of commercial farms, and from 25% of each laboratory and shelter facilities, with resistance to tetracycline being most common; no resistance was identified in companion animal samples. Salmonella enterica subsp. was identified exclusively in pooled fecal samples from commercial rabbit farms; Salmonella enterica serovar London from one farm and Salmonella enterica serovar Kentucky from another. The S. Kentucky isolate was resistant to amoxicillin/clavulanic acid, ampicillin, cefoxitin, ceftiofur, ceftriaxone, streptomycin, and tetracycline, whereas the S. London isolate was pansusceptible. Routine use of antimicrobials on commercial meat rabbit farms was not significantly associated with the presence of antimicrobial resistant E. coli or S. enterica on farms; trends towards resistance were present when resistance to specific antimicrobial classes was examined. E. coli was widely prevalent in many Canadian domestic rabbit populations, while S. enterica was rare. The prevalence of AMR in isolated bacteria was variable and most common in isolates from commercial meat rabbits (96% of the AMR isolates were from commercial meat rabbit fecal samples). Our results highlight that domestic rabbits, and particularly meat rabbits, may be carriers of phenotypically antimicrobial-resistant bacteria and AMR genes, possibly contributing to transmission of these bacteria and their genes to bacteria in humans through food or direct contact, as well as to other co-housed animal species.201729254727
2681140.9998Determination of the Prevalence and Antimicrobial Resistance of Enterococcus faecalis and Enterococcus faecium Associated with Poultry in Four Districts in Zambia. The presence of antimicrobial-resistant Enterococci in poultry is a growing public health concern worldwide due to its potential for transmission to humans. The aim of this study was to determine the prevalence and patterns of antimicrobial resistance and to detect drug-resistant genes in Enterococcus faecalis and E. faecium in poultry from four districts in Zambia. Identification of Enterococci was conducted using phenotypic methods. Antimicrobial resistance was determined using the disc diffusion method and antimicrobial resistance genes were detected using polymerase chain reaction and gene-specific primers. The overall prevalence of Enterococci was 31.1% (153/492, 95% CI: 27.1-35.4). Enterococcus faecalis had a significantly higher prevalence at 37.9% (58/153, 95% CI: 30.3-46.1) compared with E. faecium, which had a prevalence of 10.5% (16/153, 95% CI: 6.3-16.7). Most of the E. faecalis and E. faecium isolates were resistant to tetracycline (66/74, 89.2%) and ampicillin and erythromycin (51/74, 68.9%). The majority of isolates were susceptible to vancomycin (72/74, 97.3%). The results show that poultry are a potential source of multidrug-resistant E. faecalis and E. faecium strains, which can be transmitted to humans. Resistance genes in the Enterococcus species can also be transmitted to pathogenic bacteria if they colonize the same poultry, thus threatening the safety of poultry production, leading to significant public health concerns.202337107019
2680150.9998Antimicrobial Resistance, Biofilm Formation, and Virulence Genes in Enterococcus Species from Small Backyard Chicken Flocks. Backyard birds are small flocks that are more common in developing countries. They are used for poultry meat and egg production. However, they are also implicated in the maintenance and transmission of several zoonotic diseases, including multidrug-resistant bacteria. Enterococci are one of the most common zoonotic bacteria. They colonize numerous body sites and cause a wide range of serious nosocomial infections in humans. Therefore, the objective of the present study was to investigate the diversity in Enterococcus spp. in healthy birds and to determine the occurrence of multidrug resistance (MDR), multi-locus sequence types, and virulence genes and biofilm formation. From March 2019 to December 2020, cloacal swabs were collected from 15 healthy backyard broiler flocks. A total of 90 enterococci strains were recovered and classified according to the 16S rRNA sequence into Enterococcus faecalis (50%); Enterococcus faecium (33.33%), Enterococcus hirae (13.33%), and Enterococcus avium (3.33%). The isolates exhibited high resistance to tetracycline (55.6%), erythromycin (31.1%), and ampicillin (30%). However, all of the isolates were susceptible to linezolid. Multidrug resistance (MDR) was identified in 30 (33.3%) isolates. The enterococci AMR-associated genes ermB, ermA, tetM, tetL, vanA, cat, and pbp5 were identified in 24 (26.6%), 11 (12.2%), 39 (43.3%), 34 (37.7%), 1 (1.1%), 4 (4.4%), and 23 (25.5%) isolates, respectively. Of the 90 enterococci, 21 (23.3%), 27 (30%), and 36 (40%) isolates showed the presence of cylA, gelE, and agg virulence-associated genes, respectively. Seventy-three (81.1%) isolates exhibited biofilm formation. A statistically significant correlation was obtained for biofilm formation versus the MAR index and MDR. Multi-locus sequence typing (MLST) identified eleven and eight different STs for E. faecalis and E. faecium, respectively. Seven different rep-family plasmid genes (rep1-2, rep3, rep5-6, rep9, and rep11) were detected in the MDR enterococci. Two-thirds (20/30; 66.6%) of the enterococci were positive for one or two rep-families. In conclusion, the results show that healthy backyard chickens could act as a reservoir for MDR and virulent Enterococcus spp. Thus, an effective antimicrobial stewardship program and further studies using a One Health approach are required to investigate the role of backyard chickens as vectors for AMR transmission to humans.202235326843
1286160.9998High prevalence of antibiotic resistance in pathogenic foodborne bacteria isolated from bovine milk. This study aimed to investigate the prevalence of foodborne pathogenic bacteria in bovine milk, their antibiogram phenotype, and the carriage of antibiotic resistance genes. Raw bovine milk samples (n = 100) were randomly collected from different suppliers in the northwest of Iran. Antibiotic-resistant patterns and the presence of antibiotic resistance genes were evaluated in the isolates. Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, and Salmonella spp. were isolated from 78%, 47%, 25%, and 21% of samples, respectively. All isolates showed high rates of resistance to amoxicillin, penicillin, and cefalexin. The bla(TEM) and bla(SHV) genes were detected in 50.0% and 6.4% of E. coli isolates, respectively. Also, 28.5% and 19.0% of Salmonella isolates were positive for bla(TEM) and bla(SHV). The frequency of mecA and bla(Z) in S. aureus isolates was 20.0% and 12.0%, respectively. The high prevalence of bovine milk contamination with antimicrobial-resistant species in this study necessitates precise control on antibiotic prescription in veterinary medicine.202235264647
2709170.9998Isolation, genotyping and antibiotic resistance analysis in Salmonella species isolated from turkey meat in Isfahan, Iran. Salmonella is one of the mainzoonotic bacteria in the poultry industry.The knowledge about biological characteristics and antibiotic resistance pattern can help medication in poultry and human. This research aimed to study Salmonella spp contamination and its antibiotic resistance in turkey meat in Isfahan province, Iran.400 samples were collected from the turkey meat in slaughter line (May 2021 to May 2022). The conventional microbiological and biochemical tests were applied for isolation and typing of Salmonella spp. The polymerase chain reaction (PCR) was utilized for detection and typing of Salmonella strains. The antibiotic sensitivity test was achieved and all strains were evaluated for resistance genes of Act (3)-IV, Sul1 and qnrA. In microbiological examination, 32 Salmonella strains (8 %) were identified. All tested strains were positive for invA gene. By amplifying the FlicC and Prot6E genes, 28 and 4 strains had genes related to enteritidis and typhimurium, respectively. In disc diffusion test, the highest antibiotic resistance was to oxytetracycline (50 %) and the lowest was to gentamicin, amoxiclavulanic acid, cefotaxime and ceftriaxone. The results showed that 6 (18.75 %) and 10 (31.25 %) of the Salmonella spp were able to amplify Sul1 and qnrA genes, respectively. No Salmonella strain could amplify Act (3)-IV gene. 100 % of the strains carried the Sul1 and qnrA genes were resistant to sulfonamide, and enrofloxacin. Furthermore, 3 sulfonamide resistant strains (75 %) and 5 enrofloxacin resistant strains (83.33 %) were harbored Sul1 and qnrA genes, respectively. The prevalence and antibiotic resistance of Salmonella spp in turkey meat can induce health risk concern. However, the wide spectrum antibiotic resistance complicates the proper treatment of Salmonella infection in human.202539944349
1198180.9998Third-Generation Cephalosporin- and Tetracycline-Resistant Escherichia coli and Antimicrobial Resistance Genes from Metagenomes of Mink Feces and Feed. American mink (Neovison vison) is a significant source of global fur production. Except for a few studies from Denmark and Canada reporting antimicrobial resistance in bacteria isolated from clinical cases, studies from the general mink population are scarce and absent in the United States. Mink feces (n = 42) and feed (n = 8) samples obtained from a mink farm were cultured for the enumeration and detection of tetracycline-resistant (TET(r))- and third-generation cephalosporin-resistant (TGC(r))-Escherichia coli. Isolates were characterized phenotypically for their resistance to other antibiotics and genotypically for resistance genes. TET(r)E. coli were detected from 98% of feces samples (mean concentration = 6 log(10)) and from 100% of feed samples (mean concentration = 3.2 logs). Among TET(r)E. coli isolates, 44% (n = 41) of fecal- and 50% (n = 8) of feed isolates were multidrug resistant (MDR; resistance to ≥3 antimicrobial classes), and 96% (n = 49) of TET(r) isolates were positive for tet(A) and/or tet(B). TGC(r)E. coli were detected from 95% of feces and 75% of feed samples with 78% (n = 40) of fecal isolates, and all six of the feed isolates were MDR. Nearly two-thirds (65%) of the TGC(r)E. coli isolates (n = 46) were positive for bla(CMY-2); the remaining 35% were positive for bla(CTX-M,) with the bla(CTX-M-14) being the predominant (75%, n = 16) variant detected. Metagenomic DNA was extracted directly from feces and feed samples, and it was tested for 84 antimicrobial resistance genes by using quantitative polymerase chain reaction (PCR) array; selected genes were also quantified by droplet digital PCR. The genes detected from the fecal samples belonged mainly to five antimicrobial classes: macrolide-lincosamide-streptogramin B (MLS(B); 100% prevalence), TETs (88.1%), β-lactams (71.4%), aminoglycosides (66.7%), and fluoroquinolones (47.6%). β-Lactam, MLS(B), and TET resistance genes were also detected from feed samples. Our study serves as a baseline for further studies and to streamline antimicrobial use in mink production in accordance with current regulations as in food animals.202133085531
1151190.9998Genomic Analysis of Third Generation Cephalosporin Resistant Escherichia coli from Dairy Cow Manure. The production of extended-spectrum β-lactamases (ESBLs) conferring resistance to new derivatives of β-lactams is a major public health threat if present in pathogenic Gram-negative bacteria. The objective of this study was to characterize ceftiofur (TIO)- or cefotaxime (FOX)-resistant Escherichia coli isolated from dairy cow manure. Twenty-four manure samples were collected from four farms and incubated under anaerobic conditions for 20 weeks at 4 °C or at 25 °C. A total of 37 TIO- or FOX-resistant E. coli were isolated from two of the four farms to determine their susceptibility to 14 antibiotics. Among the 37 resistant E. coli, 10 different serotypes were identified, with O8:H1 being the predominant serotype (n = 17). Five isolates belonged to each of serotypes O9:NM and O153:H42, respectively. All 37 cephalosporin resistant isolates were multi-resistant with the most prevalent resistance spectrum being amoxicillin-clavulanic acid-ampicillin-cefoxitin-ceftiofur-ceftriaxone-chloramphenicol-streptomycin-sulfisoxazole-tetracycline-trimethoprim-sulfamethoxazole. The genomes of 18 selected isolates were then sequenced and compared to 14 selected human pathogenic E. coli reference genomes obtained from public repositories using different bioinformatics approaches. As expected, all 18 sequenced isolates carried at least one β-lactamase bla gene: TEM-1, TEM-81, CTX-M115, CTX-M15, OXA-1, or CMY-2. Several other antibiotic resistance genes (ARGs) and virulence determinants were detected in the sequenced isolates and all of them harbored antimicrobial resistance plasmids belonging to classic Inc groups. Our results confirm the presence of diverse ESBL producing E. coli isolates in dairy cow manure stored for a short period of time. Such manure might constitute a reservoir of resistance and virulence genes for other bacteria that share the same environment.201729149094