# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1186 | 0 | 1.0000 | Multidrug-Resistant Escherichia coli Strain Isolated from Swine in China Harbors mcr-3.1 on a Plasmid of the IncX1 Type That Cotransfers with mcr-1.1. An Escherichia coli strain isolated from the feces of swine at a pork slaughterhouse in Henan province China was found to possess two colistin-resistance genes, mcr-1 and mcr-3, plus 16 additional resistance genes. Genes mcr-1.1 and mcr-3.1 were identified on IncHI2 and IncX1 type plasmids, respectively. Transconjugants (containing mcr-3, mcr-1&mcr-3) were obtained that were 64- and 512-fold higher than the minimum inhibitory concentration of colistin on the recipient bacteria (E. coli C600), respectively. The IncX1 plasmid containing mcr-3.1 displayed a very specific structure compared with previous mcr-3. Variable and stable regions were similar across different plasmids, multiple insertion sequences and transposases. | 2020 | 32077761 |
| 1185 | 1 | 0.9998 | Mobile Colistin Resistance and Plasmid-Mediated Quinolone Resistance Genes in Escherichia coli from China, 1993-2019. Plasmid-mediated quinolone resistance (PMQR) genes and mobile colistin resistance (MCR) genes in Escherichia coli (E. coli) have been widely identified, which is considered a global threat to public health. In the present study, we conducted an analysis of MCR genes (mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5) and PMQR genes [qnrA, qnrB, qnrC, qnrD, qnrE1, qnrVC, qnrS, aac(6')-Ib-cr, qepA, and oqxAB] in E. coli from China, 1993-2019. From the 3,663 E. coli isolates examined, 1,613 (44.0%) tested positive for PMQR genes, either individually or in combination. Meanwhile, 262 isolates (7.0%) carried the MCR genes. Minimum inhibitory concentration (MIC) analyses of 17 antibiotics for the MCR gene-carrying strains revealed universal multidrug resistance. Resistance to polymyxin varied between 4 μg/mL and 64 μg/mL, with MIC50 and MIC90 at 8 μg/mL and 16 μg/mL, respectively. In addition, fluctuations in the detection rates of these resistant genes correlated with the introduction of antibiotic policies, host origin, temporal trends, and geographical distribution. Continuous surveillance of PMQR and MCR variants in bacteria is required to implement control and prevention strategies. | 2024 | 38629721 |
| 2055 | 2 | 0.9997 | Prevalence and characterization of plasmid-mediated quinolone resistance genes in Salmonella isolated from poultry in Korea. The purpose of this study was to investigate the prevalence and characteristics of plasmid-mediated quinolone resistance (PMQR) genes qnr, aac(6')-Ib-cr, and qepA in a total of 185 non-duplicate Salmonella spp. isolated from hatcheries, poultry farms, and poultry slaughterhouses during the period 2001 to 2010 in Korea. Additionally, mutation analysis of quinolone resistance determining regions (QRDRs), conjugation experiments, and plasmid analysis were performed in the PMQR-positive isolates. Among the 185 isolates, six (3.2%) contained qnr genes (two qnrB4 and four qnrS1) but none carried the aac(6')-Ib-cr or qepA genes. Among the six PMQR-positive isolates, one showed a single mutation (Ser83-Phe substitution) in the QRDRs of gyrA. Among them, three were non-susceptible (intermediate or resistant) to nalidixic acid (minimum inhibitory concentration [MIC] ≥256 µg/ml), ciprofloxacin (MIC 2 µg/ml), and levofloxacin (MIC 4 µg/ml), but others were susceptible to all of the three fluoroquinolones. They were resistant to six or more antimicrobial agents tested and were able to transfer quinolone resistance to recipient Escherichia coli J53 by conjugation. By performing a hybridization test, plasmids harbouring qnrB4 and qnrS1 genes were less than 8 kb and about 70 kb in size, respectively. The horizontal dissemination of qnrS1 gene was mediated by IncN plasmid. Compared with the recipient strain, MICs of the transconjugants increased two-fold to four-fold for nalidixic acid, and eight-fold to 16-fold for ciprofloxacin and levofloxacin. This report is the first to describe the detection of qnr genes in Salmonella spp. isolated from poultry in Korea. Widespread horizontal transfer of these genes among bacteria may be a serious public health concern because these can rapidly increase fluoroquinolone resistance. To ensure the public health, it is essential to continuously survey and carefully monitor the spread of PMQR genes in Salmonella from poultry. | 2013 | 23607509 |
| 1733 | 3 | 0.9997 | Dissemination and Comparison of Genetic Determinants of mcr-Mediated Colistin Resistance in Enterobacteriaceae via Retailed Raw Meat Products. The global food chain may significantly promote the dissemination of bacteria resistant to antibiotics around the world. This study was aimed at determining the prevalence and genetic characteristics of Enterobacteriaceae with mcr-mediated colistin (CT) resistance in retail meat of different origins. Bacteria of the Enterobacteriaceae family carrying the mcr-1 gene were detected in 21% (18/86) of the examined samples, especially in turkey meat and liver originating from EU and non-EU countries (19%) and in rabbit meat imported from China (2%). The examined samples of the meat and liver of chicken and other poultry and of pork and beef were negative for the presence of bacteria carrying the mcr-1 to mcr-5 genes. A huge number of isolates belonging to Escherchia coli (n = 54), Klebsiella pneumoniae (n = 6), and Citrobacter braakii (n = 1) carrying the mcr-1 gene were obtained. Despite the high heterogeneity of the tested isolates, the mcr-1 gene was localized on only three types of plasmids (IncX4, IncHI2, and IncI2). The most frequent type of plasmid was IncX4, which carried the mcr-1 gene in 77% of E. coli and K. pneumoniae isolates from turkey meat and liver samples from the Czechia, Germany, Poland, and Brazil. Our findings indicate highly probable interspecies transfer of IncX4 and IncI2 plasmids within one meat sample. The co-resistance of plasmid-mediated CT resistance encoded by the mcr-1 and ESBL genes was detected in 18% of the isolates. Another noteworthy finding was the fosA3 gene coding for fosfomycin resistance in a multidrug-resistant isolate of E. coli from rabbit meat imported from China. The observed high level of Enterobacteriaceae with plasmids carrying the mcr-1 gene in retail meat reflects the need for Europe-wide monitoring of mcr-mediated CT resistance throughout the whole food chain. | 2019 | 31921017 |
| 2054 | 4 | 0.9997 | A survey of plasmid-mediated fluoroquinolone resistance genes from Escherichia coli isolates and their dissemination in Shandong, China. Bacterial resistance to fluoroquinolones result from mutations in the quinolone resistance-determining regions of the drug targets, overexpression of efflux pumps, and/or the more recently identified plasmid-mediated low-level resistance mechanisms. We investigated the prevalence of and characterized plasmid-mediated fluoroquinolone resistance genes (qnrA, qnrB, qnrS, aac(6')-Ib-cr, and qepA) by polymerase chain reaction in fluoroquinolone-resistant Escherichia coli (n = 530) isolated from a chicken farm, a pig farm, and hospitalized patients in Shandong, China, in 2007. The aac(6')-Ib-cr gene was the most prevalent resistance gene that was detected in bacteria isolated from all sources. Next was the qnrS gene, which was predominantly present in isolates from the pig farm. Only eight (5.8%) isolates from hospital patients were found to possess the qepA gene, and these isolates were first reported in qepA-carrying E. coli from humans in China. The qnrA and qnrB genes were not detected in any of the isolates. Further, most of the isolates were also resistant to beta-lactams and aminoglycosides as determined by the broth microdilution method. Pulsed-field gel electrophoresis analysis of the E. coli isolates with similar resistance patterns that also carried resistance genes showed great genomic diversity among these bacteria, suggesting that the multiresistant E. coli isolates carrying the qnr, aac(6')-Ib-cr, or qepA genes were not derived from a specific clone, but represented a wide variety of different genotypes. The results of Southern hybridization revealed that qepA, qnrS, and parts of aac(6')-Ib-cr genes were localized on plasmids and/or chromosome. qepA and aac(6')-Ib-cr genes were colocalized with aac(6')-Ib-cr and qnrS genes, respectively, on the same plasmids. Our study demonstrated that two different genes (qepA and aac(6')-Ib-cr) were identified on the same plasmid in E. coli strains derived from patients and qnrS and aac(6')-lb-cr genes on the same plasmid in an E. coli strain of animal origin. | 2010 | 19911944 |
| 1507 | 5 | 0.9997 | Characterization of Five Escherichia coli Isolates Co-expressing ESBL and MCR-1 Resistance Mechanisms From Different Origins in China. Present study characterized five Escherichia coli co-expressing ESBL and MCR-1 recovered from food, food-producing animals, and companion animals in China. Antimicrobial susceptibility tests, conjugation experiments, and plasmid typing were performed. Whole genome sequencing (WGS) was undertaken for all five isolates using either PacBio RS II or Illumina HiSeq 2500 platforms. The cefotaxime and colistin resistance encoded by bla (CTX-M) and mcr-1 genes, respectively, was transferable by conjugation either together or separately for all five strains. Interestingly, the ESBL and mcr-1 genes could be co-selected by cefotaxime, while the colistin only selected the mcr-1-carrying plasmids during the conjugation experiments. Five E. coli sequence types (ST88, ST93, ST602, ST162, and ST457) were detected. Although diverse plasmid profiles were identified, IncI2, IncFIB, and IncFII plasmid types were predominant. These five clonally unrelated isolates harbored the mcr-1 gene located on similar plasmid backbones, which showed high nucleotide similarity to plasmid pHNSHP45. The mcr-1 gene can be co-transmitted with bla (CTX-M) genes through IncI2 plasmids with or without ISApl1 in our study. Characterization of these co-existence ESBL and mcr-1 isolates extends our understanding on the dissemination of these resistance markers among bacteria of diverse origins. | 2019 | 31555232 |
| 884 | 6 | 0.9997 | Fecal carriage and molecular epidemiology of mcr-1-harboring Escherichia coli from children in southern China. BACKGROUND: The increase of multidrug-resistant Enterobacteriaceae bacteria has led to the reintroduction of colistin for clinical treatments, and colistin has become a last resort for infections caused by multidrug-resistant bacteria. Enterobacteriaceae bacteria carrying the mcr-1 gene are majorly related to colistin resistance, which may be the main reason for the continued increase in the colistin resistance rate of Enterobacteriaceae. The study aimed to investigate the sequence type and prevalence of Escherichia coli (E. coli) harboring the mcr-1 gene in the gut flora of children in southern China. METHODS: Fecal samples (n = 2632) of children from three medical centers in Guangzhou were cultured for E. coli. The mcr-1-harboring isolates were screened via polymerase chain reaction (PCR). The colistin resistance transfer frequency was studied by conjugation experiments. DNA sequencing data of seven housekeeping genes were used for multi-locus sequence typing analysis (MLST). RESULTS: PCR indicated that 21 of the 2632 E. coli (0.80%) isolates were positive for mcr-1; these strains were resistant to colistin. Conjugation experiments indicated that 18 mcr-1-harboring isolates could transfer colistin resistance phenotypes to E. coli J53. MLST analysis revealed that the 21 isolates were divided into 18 sequence types (STs); E. coli ST69 was the most common (14.3%), followed by E. coli ST58 (9.5%). CONCLUSION: These results demonstrate the colonization dynamics and molecular epidemiology of E. coli harboring mcr-1 in the gut flora of children in southern China. The mcr-1 gene can be horizontally transmitted within species; hence, it is necessary to monitor bacteria that harbor mcr-1 in children. | 2023 | 37196369 |
| 1734 | 7 | 0.9997 | Identification and characterization of plasmid-mediated quinolone resistance determinants in Enterobacteriaceae isolated from healthy poultry in Brazil. The expression of plasmid-mediated quinolone resistance (PMQR) genes confers low-level quinolone and fluoroquinolones resistance alone. However, the association to chromosomal resistance mechanisms determines an expressively higher resistance in Enterobacteriaceae. These mechanisms are horizontally disseminated within plasmids and have contributed to the emergence of bacteria with reduced susceptibility or resistant to therapies worldwide. The epidemiological characterization of PMQR dissemination is highly relevant in the scientific and medical context, to investigate the dissemination within enterobacteria, from different populations, including humans and food-producing animals. In the present study, 200 Enterobacteriaceae isolates were harvested from poultry with cloacal swabs and identified as Escherichia coli (90.5%), Escherichia fergusonii (5.5%), Klebsiella oxytoca (2.5%) and Klebsiella pneumoniae (1.5%). Among isolates evaluated, 46 (23%) harboured PMQR genes including qnrB (43/200), qnrS (2/200) and aac(6')-Ib-cr (1/200). All isolates carrying PMQR genes showed multidrug-resistance phenotype. The 36 E. coli isolates showed 18 different PFGE types. All E. fergusonii isolates showed the same PFGE type. The two Klebsiella oxytoca belonged to two different PFGE types. The phylogenetic groups A, B1, and D were found among the E. coli harboring PMQR genes. Based on the phylogenetic analysis and PFGE, the population structure of E. coli isolates was diverse, even within the same farm. All isolates carrying qnrB and qnrS genes also harboured ColE-like plasmids. The Southern blot hybridization using the S1-PFGE revealed that the qnrB genes were located on low molecular weight plasmids, smaller than 10Kb. Resistance plasmids were sequenced and showed 100% identity with plasmid pPAB19-3. The association of PMQR genes with mobile genetic elements, such as transferable plasmids, favours the selection and dissemination of (fluoro) quinolones resistant bacteria among food-producing animals, and may play an important role in the current increased prevalence of resistant bacteria in different environments reported worldwide. | 2018 | 29427764 |
| 1191 | 8 | 0.9997 | IncFII plasmid carrying antimicrobial resistance genes in Shigella flexneri: Vehicle for dissemination. OBJECTIVES: Plasmids harbouring antimicrobial resistance determinants in clinical strains are a significant public-health concern worldwide. The present study investigated such plasmids in clinical isolates of Shigella flexneri. METHODS: A total of 162 Shigella isolates were obtained from stool specimens in the year 2015. Among the 70 multidrug-resistant (MDR) Shigella spp., 27 S. flexneri isolates were randomly selected for further characterisation. Antimicrobial resistance genes (ARGs) and plasmid incompatibility (Inc) types were analysed. RESULTS: IncFII plasmids were found in 63% (17/27) of the studied S. flexneri isolates. ARGs such as dhfr1a (81%), sulII (74%), bla(OXA) (74%), bla(TEM) (33%), bla(AmpC) (30%), qnrS (15%) and qnrB (4%) were identified by PCR, whereas bla(CTX-M) was not detected. Next-generation sequencing of a representative S. flexneri IncFII-type plasmid (pSF470) revealed the presence of bla(TEM1-B), bla(DHA-1), qnrB10, mphA, sulI, sulII, strA, strB and tetR ARGs along with the intI1 integrase gene. In addition, pMLST analysis showed that the replicon belonged to F2:A-:B- type. CONCLUSIONS: This study helps to know the prevalent plasmid types in MDR Shigella isolates and will improve our understanding of resistance dissemination among enteric bacteria. ARGs in plasmids further highlight the importance of such studies in enteric bacteria. | 2019 | 30342929 |
| 1731 | 9 | 0.9997 | Prevalence of Colistin Resistance in Escherichia coli in Eastern Turkey and Genomic Characterization of an mcr-1 Positive Strain from Retail Chicken Meat. Colistin is one of the most effective antibiotics against multidrug resistant Gram-negative bacteria. However, the recent emergence of plasmid-borne mobilized colistin resistance (mcr) genes is considered a serious antimicrobial resistance challenge worldwide. In this study, we report detection of an mcr-1 carrying Escherichia coli isolate (named ATAVET mcr-1 Turkey) from retail raw chicken meat in Turkey. Of the 11 (from 500 total tested) phenotypically colistin-resistant isolates, 1 was shown to carry the mcr-1 gene by PCR. Whole-genome sequencing indicated that mcr-1 was located on a ∼13 kb-long contig that was almost identical to the corresponding part in pZJ1635, an IncI2 plasmid encoding mcr-1 in the same genetic context in another E. coli strain. In addition, ATAVET mcr-1 Turkey harbored bla(CTX-M-8), qnrB19, mdf(A), tet(A), sul2, aph(3″)-Ib, aph(6)-Id, and floR resistance genes. Phylogenetic analysis based on whole genome and multilocus sequence typing indicated that ATAVET mcr-1 Turkey was more closely related to mcr-1 carrying E. coli isolates from food and human clinical samples previously reported from different parts of the world than to those from Turkey. These findings further emphasize the worldwide emergence and spread of mcr meditated colistin resistance in bacteria with zoonotic potential within animals and the food chain. | 2021 | 32721263 |
| 969 | 10 | 0.9997 | Dissemination of the rmtB gene carried on IncF and IncN plasmids among Enterobacteriaceae in a pig farm and its environment. OBJECTIVES: To investigate the prevalence and characterization of 16S rRNA methylase-producing bacteria in a pig farm and its environment in East China. METHODS: Enterobacteriaceae isolates and metagenomic DNA from 102 pig faecal samples from a pig farm and 97 soil samples taken in or around the farm were screened for the presence of 16S rRNA methylase genes. The clonal relationships of 16S rRNA methylase-positive isolates, plasmid content and other associated resistance genes were also characterized. RESULTS: Fifty-six rmtB-positive Enterobacteriaceae isolates, including 54 Escherichia coli, 1 Morganella morganii and 1 Proteus mirabilis, were recovered from 55 pig faecal samples. Nineteen rmtB-positive bacteria, including 13 E. coli, 2 M. morganii, 2 Leclercia adecarboxylata, 1 Enterobacter aerogenes and 1 Enterobacter cloacae, were recovered from 16 soil samples. Among the 75 rmtB-positive isolates, 31 and 25 also carried the qepA and bla(CTX-M) genes, respectively. The qepA gene co-localized with rmtB on the F2:A-:B1 plasmids and the bla(CTX-M-65) gene co-localized with rmtB on the F33:A-:B- plasmids. The rmtB gene was also found to be associated with the IncN plasmids. Clonal transmission of rmtB-positive E. coli isolates was observed between different pig groups and soil samples. CONCLUSIONS: Both horizontal gene transfer and clonal spread could be responsible for the dissemination of the rmtB gene in the pig farm and its environment. To our knowledge, this study is the first report of rmtB-positive bacteria from farmland soils and indicates that these antibiotic-resistant bacteria and/or resistance genes could be acquired by humans through the food chain. | 2011 | 21852287 |
| 2064 | 11 | 0.9997 | Co-spread of metal and antibiotic resistance within ST3-IncHI2 plasmids from E. coli isolates of food-producing animals. Concerns have been raised in recent years regarding co-selection for antibiotic resistance among bacteria exposed to heavy metals, particularly copper and zinc, used as growth promoters for some livestock species. In this study, 25 IncHI2 plasmids harboring oqxAB (20/25)/blaCTX-M (18/25) were found with sizes ranging from ∼260 to ∼350 kb and 22 belonged to the ST3-IncHI2 group. In addition to blaCTX-M and oqxAB, pcoA-E (5/25) and silE-P (5/25), as well as aac(6')-Ib-cr (18/25), floR (16/25), rmtB (6/25), qnrS1(3/25) and fosA3 (2/25), were also identified on these IncHI2 plasmids. The plasmids carried pco and sil contributed to increasing in the MICs of CuSO4 and AgNO3. The genetic context surrounding the two operons was well conserved except some variations within the pco operon. The ~32 kb region containing the two operons identified in the IncHI2 plasmids was also found in chromosomes of different Enterobacteriaceae species. Further, phylogenetic analysis of this structure showed that Tn7-like transposon might play an important role in cross-genus transfer of the sil and pco operons among Enterobacteriaceae. In conclusion, co-existence of the pco and sil operons, and oqxAB/blaCTX-M as well as other antibiotic resistance genes on IncHI2 plasmids may promote the development of multidrug-resistant bacteria. | 2016 | 27143648 |
| 1143 | 12 | 0.9997 | Antimicrobial Resistance and Virulence Profiles of mcr-1-Positive Escherichia coli Isolated from Swine Farms in Heilongjiang Province of China. ABSTRACT: The emergence and global distribution of the mcr-1 gene for colistin resistance have become a public concern because of threats to the role of colistin as the last line of defense against some bacteria. Because of the prevalence of mcr-1-positive Escherichia coli isolates in food animals, production of these animals has been regarded as one of the major sources of amplification and spread of mcr-1. In this study, 249 E. coli isolates were recovered from 300 fecal samples collected from swine farms in Heilongjiang Province, People's Republic of China. Susceptibility testing revealed that 186 (74.70%) of these isolates were colistin resistant, and 86 were positive for mcr-1. The mcr-1-positive isolates had extensive antimicrobial resistance profiles and additional resistance genes, including blaTEM, blaCTX-M, aac3-IV, tet(A), floR, sul1, sul2, sul3, and oqxAB. No mutations in genes pmrAB and mgrB were associated with colistin resistance. Phylogenetic group analysis revealed that the mcr-1-positive E. coli isolates belonged to groups A (52.33% of isolates), B1 (33.72%), B2 (5.81%), and D (8.14%). The prevalence of the virulence-associated genes iutA, iroN, fimH, vat, ompA, and traT was moderate. Seven mcr-1-positive isolates were identified as extraintestinal pathogenic. Among 20 mcr-1-positive E. coli isolates, multilocus sequence typing revealed that sequence type 10 was the most common (five isolates). The conjugation assays revealed that the majority of mcr-1 genes were transferable at frequencies of 7.05 × 10-7 to 7.57 × 10-4. The results of this study indicate the need for monitoring and minimizing the further dissemination of mcr-1 among E. coli isolates in food animals, particularly swine. | 2020 | 32730609 |
| 1084 | 13 | 0.9997 | The emergence of colistin-resistant Escherichia coli in chicken meats in Nepal. The emergence and dissemination of colistin resistance among Gram-negative bacteria is a global problem. We initiated a surveillance of colistin-resistant and -susceptible Escherichia coli in raw meats from chicken in Nepal. A total of 180 meat samples were collected; from these, 60 E. coli strains were isolated (33.33%), of which 16 (26.66%) were colistin-resistant and harboured the mcr-1 gene. All isolates were characterised by antibiotic susceptibility testing, the presence of antibiotic resistance genes, phylogenetic analysis and plasmid replicon typing. Most of the colistin-resistant E. coli had the antibiotic resistant pattern CIP/CN/SXT/TE (43.75%). Coexistence of tet, qnr, sul and dfr genes was detected in both colistin-resistant and -susceptible E. coli. Most colistin-resistant E. coli strains belonged to phylogroup C, whereas 10% of isolates belonged to phylogroup D. Inc FIB was the dominant plasmid Inc type in the isolates. Dissemination of antibiotic-resistant E. coli in raw meats is a public health concern in Nepal and requires further investigation to ascertain the sources of contamination. | 2019 | 31755930 |
| 2024 | 14 | 0.9997 | Research Note: Longitudinal monitoring of chicken houses in a commercial layer farm for antimicrobial resistance in Escherichia coli with special reference to plasmid-mediated quinolone resistance. Plasmid-mediated quinolone resistance (PMQR) genes located on conjugative plasmids can be transferred to other bacteria in the absence of antimicrobial selective pressure. To elucidate the prevalence of resistance, including PMQR in an egg-producing commercial layer farm in western Japan where no antimicrobials were used, minimum inhibitory concentrations (MIC) for a total of 375 Escherichia coli isolates obtained from chicken houses in the farm between 2012 and 2017 were determined using the agar dilution methods. Eighty-seven isolates resistant to oxytetracycline (OTC) accounted for 23.0% of the tested isolates, followed by isolates resistant to dihydrostreptomycin (DSM) (18.4%), sulfisoxazole (18.1%), ampicillin (AMP) (14.4%), trimethoprim (TMP) (14.4%), and nalidixic acid (10.1%). The prevalence rate of multidrug-resistant (MDR) isolates-which are resistant to 3 or more antimicrobial classes, including β-lactams, aminoglycosides, quinolones, folate pathway inhibitors, tetracyclines, and phenicols-was inversely related to the age of chickens at the time of bacterial examination. Probably, the prevalence of MDR isolates in layer chickens may have decreased with age owing to the absence of selective pressure. Furthermore, 45 isolates exhibiting enrofloxacin MICs of more than 0.25 μg/mL were examined for PMQR genes. The transfer of PMQR genes was tested by conjugation analysis. Southern blot analysis of genomic DNA revealed that the qnrS1 (5 isolates), qnrS2 (1 isolate), and qnrS13 genes (1 isolate) were located on plasmids with sizes ranging from approximately 60 to 120 kpb. In 1 of the 5 qnrS1-positive isolates and in an isolate with qnrS13, the qnrS genes were transferred to recipient strains. The plasmid harboring the qnrS1 gene was typed as IncF by PCR-based replicon typing. On this plasmid, the bla(TEM), aadA, tetA, and dfrA1 genes responsible for resistance to AMP, DSM, OTC, and TMP, respectively, were detected. The tetA gene was detected in the plasmid harboring the qnrS13 gene, which was typed as IncI1. These results suggest that despite the low prevalence of quinolone resistance in this farm, various PMQR genes, located on diverse plasmids, exist. | 2020 | 32036966 |
| 888 | 15 | 0.9997 | Identification of New Delhi metallo-β-lactamase 1 in Acinetobacter lwoffii of food animal origin. BACKGROUND: To investigate the presence of metallo-β-lactamase (MBL) genes and the genetic environment of the New Delhi metallo-β-lactamase gene bla(NDM-1) in bacteria of food animal origin. METHODOLOGY/PRINCIPAL FINDINGS: Gram-negative bacteria with low susceptibility to imipenem (MIC>8 µg/mL) were isolated from swab samples collected from 15 animal farms and one slaughterhouse in eastern China. These bacteria were selected for phenotypic and molecular detection of known MBL genes and antimicrobial susceptibility testing. For the bla(NDM-1) positive isolate, conjugation and transformation experiments were carried out to assess plasmid transfer. Southern blotting was conducted to localize the bla(NDM-1) genes, and DNA sequencing was performed to determine the sequences of bla(NDM-1) and the flanking genes. In total, nine gram-negative bacteria of four different species presented a MBL phenotype. bla(NDM-1) was identified on a mobile plasmid named pAL-01 in an Acinetobacter lwoffii isolate of chicken origin. Transfer of pAL-01 from this isolate to E. coli J53 and JM109 resulted in resistance to multiple β-lactams. Sequence analysis revealed that the bla(NDM-1) gene is attached to an intact insertion element ISAba125, whose right inverted repeat (IR-R) overlaps with the promoter sequence of bla(NDM-1). Thus, insertion of ISAba125 likely enhances the expression of bla(NDM-1). CONCLUSION: The identification of a bla(NDM-1)- carrying strain of A. lwoffii in chickens suggests the potential for zoonotic transmission of bla(NDM-1) and has important implications for food safety. | 2012 | 22629360 |
| 2052 | 16 | 0.9997 | Plasmid-mediated quinolone resistance in Escherichia coli isolates from commercial broiler chickens and selection of fluoroquinolone-resistant mutants. Plasmid-mediated quinolone resistance (PMQR) is a potential concern for animal husbandry and public health. Escherichia coli isolates from a total of 109 fecal samples collected from 6 commercial broiler farms between 2007 and 2011 were examined for PMQR genes, and transfer of these genes was tested by conjugation analysis to elucidate the prevalence and spread of PMQR in broiler chickens. Two isolates from 2 farms harbored the aac(6')-Ib-cr gene that was not detected in plasmids using Southern blot analysis of S1 nuclease-digested genomic DNA separated by pulsed-field gel electrophoresis. In these 2 isolates, nucleotide mutations in the gyrA and parC genes that result in amino acid substitutions were detected. Additionally, a total of 6 isolates originating from 6 chickens from the 2 farms were positive for the qnrS1 gene. In 2 of the 6 isolates, the qnrS1 gene was transferred to a recipient strain. Two transconjugants harboring the qnrS1 gene were cultured on media supplemented with successively higher concentrations of enrofloxacin (ERFX). After a 5-time subcultivation, the ERFX MICs reached 8 and 16 μg/mL, and no nucleotide mutations were detected in the gyrA, gyrB, parC, and parE genes. Our results suggest that the prevalence of PMQR was relatively low in broiler chickens and that exposure of bacteria carrying PMQR genes to the selective pressure of fluoroquinolones can result in resistance to fluoroquinolone, which is not caused by mutations in genes encoding topoisomerases. | 2019 | 31198966 |
| 1520 | 17 | 0.9997 | Colistin resistance in Salmonella and Escherichia coli isolates from a pig farm in Great Britain. OBJECTIVES: The objective of this study was to characterize colistin-resistant bacteria isolated from pigs on a farm in Great Britain following identification of a plasmid-borne colistin resistance mechanism in Escherichia coli from China. METHODS: Phenotypic antimicrobial susceptibility testing was undertaken by broth dilution and WGS was performed to detect the presence of genes encoding resistance and virulence. Transferable colistin resistance was investigated by conjugation. RESULTS: Two E. coli and one Salmonella Typhimurium variant Copenhagen were shown to be MDR, including resistance to colistin, with one E. coli and the Salmonella carrying the mcr-1 gene; all three harboured chromosomal mutations in genes conferring colistin resistance and both E. coli harboured β-lactamase resistance. The Salmonella mcr-1 plasmid was highly similar to pHNSHP45, from China, while the E. coli mcr-1 plasmid only had the ISApII and mcr-1 genes in common. The frequency of mcr-1 plasmid transfer by conjugation to recipient Enterobacteriaceae from Salmonella was low, lying between 10(-7) and 10(-9) cfu/recipient cfu. We were unable to demonstrate mcr-1 plasmid transfer from the E. coli. Plasmid profiling indicated transfer of multiple plasmids from the Salmonella resulting in some MDR transconjugants. CONCLUSIONS: Identification of the mcr-1 gene in Enterobacteriaceae from pigs confirms its presence in livestock in Great Britain. The results suggest dissemination of resistance through different horizontally transferable elements. The in vitro transfer of multiple plasmids carrying colistin and other resistances from the Salmonella isolate underlines the potential for wider dissemination and recombination. | 2016 | 27147305 |
| 1498 | 18 | 0.9997 | Resistance of Klebsiella pneumoniae Strains Carrying bla (NDM-1) Gene and the Genetic Environment of bla (NDM-1). OBJECTIVE: Regional dissemination is the major cause of the widespread prevalence of a plasmid-encoding NDM-1 enzyme. We investigated the drug resistance, joint efficiency, and gene environment of a Klebsiella pneumoniae strain carrying bla (NDM-1) gene. MATERIALS AND METHODS: Carbapenem-non-susceptible strains were analyzed using the VITEK 2 Compact. Strains carrying bla (NDM-1) were identified using polymerase chain reaction and sequencing. Antimicrobial susceptibility testing and plasmid conjugation experiments were then conducted. Strains carrying bla (NDM-1) were subjected to Southern blot analysis. After the gene mapping of bla (NDM-1), library construction, and sequencing, plasmids were subsequently spliced and genotyped using the software Glimmer 3.0, and then analyzed using Mauve software. RESULTS: Among 1735 carbapenem-non-susceptible strains, 54 strains of bla (NDM-1)-positive bacteria were identified, which consisted of 44 strains of K. pneumoniae, 8 strains of Acinetobacter baumannii and 2 strains of Escherichia coli. Strains carrying bla (NDM-1) had a resistance rate of more than 50% in most antibiotics. Plasmid conjugation between strains carrying bla (NDM-1) and E. coli strain J53 had a success rate of 50%. Southern blot analysis indicated that each strain had multiple plasmids containing bla (NDM-1). Among the five plasmids containing bla (NDM-1) in K. pneumoniae for sequencing, two plasmids with complete sequences were obtained. The findings were as follows: (i) The p11106 and p12 plasmids were highly similar to pNDM-BTR; (ii) the p11106 and p12 plasmids showed differences in the 20-30 kb region (orf00032-orf00043) from the other six plasmids; and (iii) bla (NDM-1) was located at orf00037, while ble was found at orf00038. Two tnpA genes were located in the upstream region, and orf00052 (tnpA) in the 36 kb region was in the downstream sequence. CONCLUSION: bla (NDM-1)-containing bacteria exhibit multidrug resistance, which rapidly spreads and is transferred through efficient plasmid conjugation; the multidrug resistance of these bacteria may be determined by analyzing their drug-resistant plasmids. The presence of ble and tnpA genes suggests a possible hypothesis that bla (NDM-1) originates from A. baumannii, which is retained in K. pneumoniae over a long period by transposition of mobile elements. | 2020 | 32425903 |
| 1179 | 19 | 0.9997 | Detection of 5 Kinds of Genes Related to Plasmid-Mediated Quinolone Resistance in Four Species of Nonfermenting Bacteria with 2 Drug Resistant Phenotypes. OBJECTIVE: This study aimed to detect 5 kinds of genes related to plasmid-mediated quinolone resistance in four species of nonfermenting bacteria with 2 drug resistance phenotypes (multidrug resistance and pandrug resistance), which were Acinetobacter baumannii (Ab), Pseudomonas aeruginosa (Pa), Stenotrophomonas maltophilia (Sm), and Elizabethkingia meningoseptica (Em). METHODS: The Phoenix NMIC/ID-109 panel and API 20NE panel were applied to 19 isolated strains, including 6 Ab strains (2 strains with multidrug resistance and 4 strains with pandrug resistance), 6 Pa strains (3 strains with multidrug resistance and 3 strains with pandrug resistance), 4 Sm strains (2 strains with multidrug resistance and 2 strains with pandrug resistance), and 3 Cm strains (2 strains with multidrug resistance and 1 strain with pandrug resistance). After strain identification and drug susceptibility test, PCR was applied to detect 5 genes related to plasmid-mediated quinolone resistance. The genes detected were quinolone resistance A (qnrA), aminoglycoside acetyltransferase ciprofloxacin resistance variant, acc(6')-Ib-cr, and 3 integrons (intI1, intI2, and intI3). The amplified products were analyzed by 1% agarose gel electrophoresis and sequenced. Sequence alignment was carried out using the bioinformatics technique. RESULTS: Of 19 strains tested, 8 strains carried acc(6')-Ib-cr and 6 of them were of pandrug resistance phenotype (3 Ab strains, 2 Pa strains, and 1 Sm strain). The carrying rate of acc(6')-Ib-cr was 60.0% for strains of pandrug resistance (6/10). Two strains were of multidrug resistance (1 Ab strain and 1 Pa strain), and the carrying rate of acc(6')-Ib-cr was 22.0% (2/9). The carrying rate was significantly different between strains of multidrug resistance and pandrug resistance (P < 0.05). The class 1 integron was detected in 11 strains, among which 6 strains were of pandrug resistance (3 Ab strains, 2 Pa strains, and 1 Sm strain). The carrying rate of the class 1 integron was 60.0% (6/10). Five strains were of multidrug resistance (3 Pa strains, 1 Ab strain, and 1 Em strain), and the carrying rate was 55.6% (5/9). The carrying rate of the class 1 integron was not significantly different between strains of multidrug resistance and pandrug resistance (P > 0.05). Both acc(6')-Ib-cr and intI1 were detected in 6 strains, which were negative for qnrA, intI2, and intI3. CONCLUSION: Quinolone resistance of isolated strains was related to acc(6')-Ib-cr and intI1 but not to qnrA, intI2, or intI3. The carrying rate of acc(6')-Ib-cr among the strains of pandrug resistance was much higher than that among the strains of multidrug resistance. But, the strains of two drug resistant phenotypes were not significantly different in the carrying rate of intI1. The detection rates of the two genes were high and similar in Ab and Pa strains. 1 Em strain carried the class 1 integron. | 2020 | 32351636 |