Plasmid-mediated quinolone resistance genes transfer among enteric bacteria isolated from human and animal sources. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
118101.0000Plasmid-mediated quinolone resistance genes transfer among enteric bacteria isolated from human and animal sources. This research investigates the transferability of plasmid-mediated quinolone resistance (PMQR) genes among enteric bacteria isolates in human and animal samples, as well as its implication on resistance of recipient cells. A total of 1,964 strains of five different enteric bacteria species (Escherichia coli, Salmonella sp., Shigella sp., Klebsiella sp. and Aeromonas sp.) were screened for plasmid-mediated quinolone resistance (PMQR) genes from a population of quinolone resistant (Q-r) isolates. Screening for PMQR isolates was achieved by plasmid curing using sub-lethal concentration of Sodium Dodecyl Sulphate and PMQR genes (qnrA, qnrB, qnrS, Aac(6')-Ib-crand Qep A) were detected by polymerase chain reaction (PCR). Conjugation and transformation experiments were attempted to ascertain transfer of genes from the Q-r isolates to a susceptible, standard recipient, E. coli J53-2. The minimum inhibitory concentration (MIC) was determined before and after gene transfer, using E-test strips. Results indicate that percentage resistance to the quinolones (Qs): Nalidixic acid, Ciprofloxacin, Pefloxacin and Ofloxacin determined by agar plate diffusion technique stood at 52.6, 47.3, 50.5, 70.6 and 46.0% for Escherichia coli, Salmonella sp., Shigellasp., Klebsiella sp. and Aeromonas sp. respectively. Analysis of variance indicated the occurrence of significant differences (F, 46.77-613.30; 0.00) in the resistance to each tested Qs. Generally, Human isolates showed greater resistance than Animal isolates (57.4 vs 47.2%). Investigation with specific primers indicated 11, 15, 7, 1 and 0 for qnrA, qnrB, qnrS, qepA and Aac(6')-Ib-cr genes respectively, out of 1018 Q-r and 29 PMQR isolates. Gene transfer experiments indicated the transfer of all genes except qepA either by conjugation or transformation. The MIC of tested Qs on recipient bacterium before gene transfer greatly increased from 0.0625 to 0.25 µg/mL, after transfer. This study demonstrates that PMQR genes amongst enteric bacteria in the Niger delta of Nigeria were transferable and transfer conferred a higher Q- resistance on recipient bacterium.202134250375
205510.9998Prevalence and characterization of plasmid-mediated quinolone resistance genes in Salmonella isolated from poultry in Korea. The purpose of this study was to investigate the prevalence and characteristics of plasmid-mediated quinolone resistance (PMQR) genes qnr, aac(6')-Ib-cr, and qepA in a total of 185 non-duplicate Salmonella spp. isolated from hatcheries, poultry farms, and poultry slaughterhouses during the period 2001 to 2010 in Korea. Additionally, mutation analysis of quinolone resistance determining regions (QRDRs), conjugation experiments, and plasmid analysis were performed in the PMQR-positive isolates. Among the 185 isolates, six (3.2%) contained qnr genes (two qnrB4 and four qnrS1) but none carried the aac(6')-Ib-cr or qepA genes. Among the six PMQR-positive isolates, one showed a single mutation (Ser83-Phe substitution) in the QRDRs of gyrA. Among them, three were non-susceptible (intermediate or resistant) to nalidixic acid (minimum inhibitory concentration [MIC] ≥256 µg/ml), ciprofloxacin (MIC 2 µg/ml), and levofloxacin (MIC 4 µg/ml), but others were susceptible to all of the three fluoroquinolones. They were resistant to six or more antimicrobial agents tested and were able to transfer quinolone resistance to recipient Escherichia coli J53 by conjugation. By performing a hybridization test, plasmids harbouring qnrB4 and qnrS1 genes were less than 8 kb and about 70 kb in size, respectively. The horizontal dissemination of qnrS1 gene was mediated by IncN plasmid. Compared with the recipient strain, MICs of the transconjugants increased two-fold to four-fold for nalidixic acid, and eight-fold to 16-fold for ciprofloxacin and levofloxacin. This report is the first to describe the detection of qnr genes in Salmonella spp. isolated from poultry in Korea. Widespread horizontal transfer of these genes among bacteria may be a serious public health concern because these can rapidly increase fluoroquinolone resistance. To ensure the public health, it is essential to continuously survey and carefully monitor the spread of PMQR genes in Salmonella from poultry.201323607509
202420.9998Research Note: Longitudinal monitoring of chicken houses in a commercial layer farm for antimicrobial resistance in Escherichia coli with special reference to plasmid-mediated quinolone resistance. Plasmid-mediated quinolone resistance (PMQR) genes located on conjugative plasmids can be transferred to other bacteria in the absence of antimicrobial selective pressure. To elucidate the prevalence of resistance, including PMQR in an egg-producing commercial layer farm in western Japan where no antimicrobials were used, minimum inhibitory concentrations (MIC) for a total of 375 Escherichia coli isolates obtained from chicken houses in the farm between 2012 and 2017 were determined using the agar dilution methods. Eighty-seven isolates resistant to oxytetracycline (OTC) accounted for 23.0% of the tested isolates, followed by isolates resistant to dihydrostreptomycin (DSM) (18.4%), sulfisoxazole (18.1%), ampicillin (AMP) (14.4%), trimethoprim (TMP) (14.4%), and nalidixic acid (10.1%). The prevalence rate of multidrug-resistant (MDR) isolates-which are resistant to 3 or more antimicrobial classes, including β-lactams, aminoglycosides, quinolones, folate pathway inhibitors, tetracyclines, and phenicols-was inversely related to the age of chickens at the time of bacterial examination. Probably, the prevalence of MDR isolates in layer chickens may have decreased with age owing to the absence of selective pressure. Furthermore, 45 isolates exhibiting enrofloxacin MICs of more than 0.25 μg/mL were examined for PMQR genes. The transfer of PMQR genes was tested by conjugation analysis. Southern blot analysis of genomic DNA revealed that the qnrS1 (5 isolates), qnrS2 (1 isolate), and qnrS13 genes (1 isolate) were located on plasmids with sizes ranging from approximately 60 to 120 kpb. In 1 of the 5 qnrS1-positive isolates and in an isolate with qnrS13, the qnrS genes were transferred to recipient strains. The plasmid harboring the qnrS1 gene was typed as IncF by PCR-based replicon typing. On this plasmid, the bla(TEM), aadA, tetA, and dfrA1 genes responsible for resistance to AMP, DSM, OTC, and TMP, respectively, were detected. The tetA gene was detected in the plasmid harboring the qnrS13 gene, which was typed as IncI1. These results suggest that despite the low prevalence of quinolone resistance in this farm, various PMQR genes, located on diverse plasmids, exist.202032036966
290730.9998Prevalence of tetracycline resistance genes and identification of tet(M) in clinical isolates of Escherichia coli from sick ducks in China. Tetracycline resistance is one of the most frequently encountered resistance properties in bacteria of animal origin. The aim of the present study was to investigate the prevalence and diversity of tetracycline resistance (tet) genes among Escherichia coli clinical isolates from diseased ducks in China and to report the identification and sequencing of the tet(M) gene. The susceptibility of 85 Escherichia coli strains to tetracyclines was determined by broth microdilution, and the presence of tet genes was investigated by multiplex PCR. All of the 85 isolates were fully resistant to both oxytetracycline and tetracycline, and 76.5 % were resistant to doxycycline. Seventy-seven of the isolates (90.6 %) encoded multiple tet genes, with 17.6, 38.8 and 34.1 % encoding two, three and four tet genes, respectively, and only 7.1 % encoded a single tet(A) gene. The MICs of oxytetracycline and tetracycline for all isolates ranged from 16 to ≥128 µg ml(-1) with a MIC90 of >128 µg ml(-1), regardless of the type or number of tet genes encoded. Isolates containing tet(M) commonly had more than one tet gene per strain. The doxycycline resistance rate in the tet(M)-positive isolates was significantly higher than in the tet(M)-negative isolates (P<0.05). A full-length tet(M) gene, including the promoter region, was obtained by PCR in seven of the 41 tet(M)-positive isolates and was sequenced and cloned. The cloned tet(M) gene conferred resistance to tetracyclines in the recombinant Escherichia coli host strain. These results revealed that, in these isolates, the prevalence of multiple tet genes was strikingly high and that tet(M) played a role in doxycycline resistance.201323475906
117740.9998High carriage of plasmid-mediated quinolone resistance (PMQR) genes by cefotaxime-resistant Escherichia coli recovered from surface-leaking sanitary sewers. There is a rapid rise in the incidence of quinolone resistant bacteria in Nigeria. Most studies in Nigeria have focused on isolates from the clinical settings, with few focusing on isolates of environmental origin. This study aimed to investigate the antibiogram and carriage of plasmid-mediated quinolone resistance (PMQR) genes by quinolone-resistant isolates obtained from a pool of cefotaxime-resistant Escherichia coli (E. coli) recovered from sewage leaking out of some surface-leaking sanitary sewers in a University community in Nigeria. Isolation of E. coli from the sewage samples was done on CHROMagar E. coli, after enrichment of the samples was done in Brain Heart Infusion broth amended with 6 µg/mL of cefotaxime. Identification of presumptive E. coli was done using molecular methods (detection of uidA gene), while susceptibility to antibiotics was carried out using the disc diffusion method. Detection of PMQR genes (qnrA, qnrB, qnrS, aac(6')-lb-cr, qepA and oqxAB) was carried out using primer-specific PCR. A total of 32 non-repetitive cefotaxime-resistant E. coli were obtained from the sewage, with 21 being quinolone-resistant. The quinolone-resistant isolates showed varying level of resistance to the tested antibiotics, with imipenem being the only exception with 0% resistance. The PMQR genes: aac(6')-lb-cr, qnrA, qnrB, qnrS and qepA and oqxAB were detected in 90.5%, 61.9%, 47.6%, 38.1%, 4.8% and 0% respectively of the isolates. The findings of this study showed a high level of resistance to antibiotics and carriage of PMQR genes by quinolone-resistant E. coli obtained from the leaking sanitary sewers, suggesting a potential environmental and public health concern.202235000007
127450.9998Characterization of antimicrobial resistance among Escherichia coli isolates from chickens in China between 2001 and 2006. Escherichia coli is a common commensal bacterium and is regarded as a good indicator organism for antimicrobial resistance for a wide range of bacteria in the community and on farms. Antimicrobial resistance of E. coli isolated from chickens from 49 farms in China between 2001 and 2006 was studied. A total of 536 E. coli isolates were collected, and minimal inhibitory concentrations (MICs) of eight antimicrobials were determined by the broth microdilution method. Isolates exhibited high levels of resistance to ampicillin (80.2%), doxycycline (75.0%) and enrofloxacin (67.5%). Relatively lower resistance rates to cephalothin (32.8%), cefazolin (17.0%) and amikacin (6.5%) were observed. Strains were comparatively susceptible to colistin (MIC(50) = 1 microg mL(-1)). A marked increase in isolates with elevated MICs for florfenicol was observed over the study period. Therefore, five resistance genes leading to the dissemination of phenicol resistance in the isolates (n = 113) with florfenicol MICs > or = 32 microg mL(-1) were analyzed. The gene floR was the most prevalent resistance gene and was detected in 92% of the 113 isolates, followed by the cmlA (53%), catA1 (23%) and catA2 (10%) genes. catA3 was not detected in these isolates. Eight isolates with florfenicol MICs = 32 microg mL(-1) and one with MIC = 64 microg mL(-1) were negative for the floR gene.200818680521
117960.9998Detection of 5 Kinds of Genes Related to Plasmid-Mediated Quinolone Resistance in Four Species of Nonfermenting Bacteria with 2 Drug Resistant Phenotypes. OBJECTIVE: This study aimed to detect 5 kinds of genes related to plasmid-mediated quinolone resistance in four species of nonfermenting bacteria with 2 drug resistance phenotypes (multidrug resistance and pandrug resistance), which were Acinetobacter baumannii (Ab), Pseudomonas aeruginosa (Pa), Stenotrophomonas maltophilia (Sm), and Elizabethkingia meningoseptica (Em). METHODS: The Phoenix NMIC/ID-109 panel and API 20NE panel were applied to 19 isolated strains, including 6 Ab strains (2 strains with multidrug resistance and 4 strains with pandrug resistance), 6 Pa strains (3 strains with multidrug resistance and 3 strains with pandrug resistance), 4 Sm strains (2 strains with multidrug resistance and 2 strains with pandrug resistance), and 3 Cm strains (2 strains with multidrug resistance and 1 strain with pandrug resistance). After strain identification and drug susceptibility test, PCR was applied to detect 5 genes related to plasmid-mediated quinolone resistance. The genes detected were quinolone resistance A (qnrA), aminoglycoside acetyltransferase ciprofloxacin resistance variant, acc(6')-Ib-cr, and 3 integrons (intI1, intI2, and intI3). The amplified products were analyzed by 1% agarose gel electrophoresis and sequenced. Sequence alignment was carried out using the bioinformatics technique. RESULTS: Of 19 strains tested, 8 strains carried acc(6')-Ib-cr and 6 of them were of pandrug resistance phenotype (3 Ab strains, 2 Pa strains, and 1 Sm strain). The carrying rate of acc(6')-Ib-cr was 60.0% for strains of pandrug resistance (6/10). Two strains were of multidrug resistance (1 Ab strain and 1 Pa strain), and the carrying rate of acc(6')-Ib-cr was 22.0% (2/9). The carrying rate was significantly different between strains of multidrug resistance and pandrug resistance (P < 0.05). The class 1 integron was detected in 11 strains, among which 6 strains were of pandrug resistance (3 Ab strains, 2 Pa strains, and 1 Sm strain). The carrying rate of the class 1 integron was 60.0% (6/10). Five strains were of multidrug resistance (3 Pa strains, 1 Ab strain, and 1 Em strain), and the carrying rate was 55.6% (5/9). The carrying rate of the class 1 integron was not significantly different between strains of multidrug resistance and pandrug resistance (P > 0.05). Both acc(6')-Ib-cr and intI1 were detected in 6 strains, which were negative for qnrA, intI2, and intI3. CONCLUSION: Quinolone resistance of isolated strains was related to acc(6')-Ib-cr and intI1 but not to qnrA, intI2, or intI3. The carrying rate of acc(6')-Ib-cr among the strains of pandrug resistance was much higher than that among the strains of multidrug resistance. But, the strains of two drug resistant phenotypes were not significantly different in the carrying rate of intI1. The detection rates of the two genes were high and similar in Ab and Pa strains. 1 Em strain carried the class 1 integron.202032351636
205270.9998Plasmid-mediated quinolone resistance in Escherichia coli isolates from commercial broiler chickens and selection of fluoroquinolone-resistant mutants. Plasmid-mediated quinolone resistance (PMQR) is a potential concern for animal husbandry and public health. Escherichia coli isolates from a total of 109 fecal samples collected from 6 commercial broiler farms between 2007 and 2011 were examined for PMQR genes, and transfer of these genes was tested by conjugation analysis to elucidate the prevalence and spread of PMQR in broiler chickens. Two isolates from 2 farms harbored the aac(6')-Ib-cr gene that was not detected in plasmids using Southern blot analysis of S1 nuclease-digested genomic DNA separated by pulsed-field gel electrophoresis. In these 2 isolates, nucleotide mutations in the gyrA and parC genes that result in amino acid substitutions were detected. Additionally, a total of 6 isolates originating from 6 chickens from the 2 farms were positive for the qnrS1 gene. In 2 of the 6 isolates, the qnrS1 gene was transferred to a recipient strain. Two transconjugants harboring the qnrS1 gene were cultured on media supplemented with successively higher concentrations of enrofloxacin (ERFX). After a 5-time subcultivation, the ERFX MICs reached 8 and 16 μg/mL, and no nucleotide mutations were detected in the gyrA, gyrB, parC, and parE genes. Our results suggest that the prevalence of PMQR was relatively low in broiler chickens and that exposure of bacteria carrying PMQR genes to the selective pressure of fluoroquinolones can result in resistance to fluoroquinolone, which is not caused by mutations in genes encoding topoisomerases.201931198966
117880.9997Molecular Characterization of Plasmid-Mediated Quinolone Resistance Genes in Multidrug-Resistant Escherichia coli Isolated From Wastewater Generated From the Hospital Environment. AIM: This study investigated the carriage of Plasmid-Mediated Quinolone Resistance (PMQR) genes in fluoroquinolone-resistant Escherichia coli recovered from wastewater generated by healthcare institutions. MATERIALS AND METHODS: Isolation of fluoroquinolone-resistant Escherichia coli was done on medium supplemented with 1 µg/mL of ciprofloxacin (a fluoroquinolone). Presumptive isolates were identified via the detection of uidA gene. Susceptibility of the isolates to a panel of antibiotics was done using disc diffusion method. Detection of PMQR genes in the isolates was done using primer-specific PCR. RESULTS: Thirty fluoroquinolone-resistant Escherichia coli were obtained from the wastewater over a period of 6 months. The resistance to each of the antibiotic tested was: ampicillin (100%), ceftriaxone (100%), nalidixic acid (100%), tetracycline (96.7%), cefotaxime (96.7%), amoxicillin-clavulanate (80%), gentamicin (60%), cefoxitin (30%), and imipenem (3.3%). The Multiple Antibiotic Resistance Index (MARI) ranged from 0.6 to 0.9. The detection of PMQR genes in the 30 isolates was: qnrA (76.7%), qnrB (53.3%), qnrS (63.3%), aac(6')-lb-cr (43.3%), and qepA (43.3%). All the fluoroquinolone-resistant Escherichia coli carried at least one PMQR determinant. CONCLUSION: This study revealed that untreated hospital wastewaters are significant hub of multidrug-resistant and fluoroquinolone-resistant Escherichia coli, showing high carriage of PMQR genes, and may be a major contributor to the resistome of fluoroquinolone-resistant bacteria in the Nigerian environment.202540552214
205490.9997A survey of plasmid-mediated fluoroquinolone resistance genes from Escherichia coli isolates and their dissemination in Shandong, China. Bacterial resistance to fluoroquinolones result from mutations in the quinolone resistance-determining regions of the drug targets, overexpression of efflux pumps, and/or the more recently identified plasmid-mediated low-level resistance mechanisms. We investigated the prevalence of and characterized plasmid-mediated fluoroquinolone resistance genes (qnrA, qnrB, qnrS, aac(6')-Ib-cr, and qepA) by polymerase chain reaction in fluoroquinolone-resistant Escherichia coli (n = 530) isolated from a chicken farm, a pig farm, and hospitalized patients in Shandong, China, in 2007. The aac(6')-Ib-cr gene was the most prevalent resistance gene that was detected in bacteria isolated from all sources. Next was the qnrS gene, which was predominantly present in isolates from the pig farm. Only eight (5.8%) isolates from hospital patients were found to possess the qepA gene, and these isolates were first reported in qepA-carrying E. coli from humans in China. The qnrA and qnrB genes were not detected in any of the isolates. Further, most of the isolates were also resistant to beta-lactams and aminoglycosides as determined by the broth microdilution method. Pulsed-field gel electrophoresis analysis of the E. coli isolates with similar resistance patterns that also carried resistance genes showed great genomic diversity among these bacteria, suggesting that the multiresistant E. coli isolates carrying the qnr, aac(6')-Ib-cr, or qepA genes were not derived from a specific clone, but represented a wide variety of different genotypes. The results of Southern hybridization revealed that qepA, qnrS, and parts of aac(6')-Ib-cr genes were localized on plasmids and/or chromosome. qepA and aac(6')-Ib-cr genes were colocalized with aac(6')-Ib-cr and qnrS genes, respectively, on the same plasmids. Our study demonstrated that two different genes (qepA and aac(6')-Ib-cr) were identified on the same plasmid in E. coli strains derived from patients and qnrS and aac(6')-lb-cr genes on the same plasmid in an E. coli strain of animal origin.201019911944
1182100.9997Disinfectant and heavy metal resistance profiles in extended spectrum β-lactamase (ESBL) producing Escherichia coli isolates from chicken meat samples. Biocidal compounds are frequently used as disinfectants in poultry industry and their widespread usage has risen concern due to the co-selection and persistence of antimicrobial resistance among bacteria. In this study, extended spectrum β-lactamase producing (ESBL) Escherichia coli isolates (n = 60) obtained from chicken meat were characterized by Pulsed Field Gel Electrophoresis (PFGE) and further tested for disinfectant and heavy metal resistance phenotypically and genotypically. Plasmid replicon types of these isolates were also determined. ESBL producing E. coli isolates were found to be resistant to ciprofloxacin (48.3 %) and gentamicin (15 %). The majority of these isolates (46.5 %) carried bla(CTX-M-55) gene. The isolates showed higher minimal inhibitory concentrations to cetylpyridinium chloride (90 %), cetyltrimethylammonium bromide (50 %), hexadecyltrimethylammonium bromide (46.7 %), triclosan (38.3 %), benzalkonium chloride (28.3 %), chlorhexidine (21.7 %), acriflavine (3.3 %), benzethonium chloride (1.7 %) and N-alkyl dimethyl benzyl ammonium chloride (1.7 %), but 18.3 % of the isolates were resistant to triclosan. Of the quaternary ammonium compounds (QACs) tolerance genes, mdfA, sugE(c), ydgE and ydgF were most present in all isolates, but the qacE, qacG, oqxA and oqxB genes were not detected. Of genes mediating the heavy metal resistance, the zitB gene was detected in all isolates, whereas the copA and cueO genes were detected in 96.67 % and 95 % of isolates, respectively. The IncFIB plasmid was commonly present (93.3 %) in ESBL producing E. coli isolates. Consequently, given the detection of genes mediating disinfectant and heavy metal resistance commonly in ESBL producing E. coli isolates as well as high rate of MICs against disinfectant compounds, the use of QACs for decontamination of the facilities may not be as effective as expected in poultry sector in Turkey.202235843029
2048110.9997The Role of Plasmids in the Multiple Antibiotic Resistance Transfer in ESBLs-Producing Escherichia coli Isolated From Wastewater Treatment Plants. We compared the diversity of extended-spectrum β-lactamases (ESBLs) producing Escherichia coli (E. coli) in wastewater of a municipal wastewater treatment plant. This was done by analyzing multiple antibiotic resistant phenotypes and genotypes. Also, we investigated the antibiotic resistance transfer mechanism of the plasmid by comparing the antibiotic resistance gene linked transfer using a conjugative test, and by analyzing the full-length DNA sequence of one plasmid. The results showed that 50 ESBLs-producing E. coli isolates were isolated from 80 wastewater samples at the rate of 62.5% (50/80), out of which 35 transconjugants were obtained with the multiple antibiotic resistant transfer rate as high as 70.0% (35/50). Multiple antibiotic resistance was shown in all transconjugants and donor bacteria, which were capable of resistance to 11 out of 15 kinds of antibiotics. Both transconjugants and donors were capable of resistance to the Ampicillin and Cefalotin at a rate of 100.00% (35/35), while the total antibiotic resistant spectrum of transconjugants narrowed at the rate of 94.29% (33/35) and broadened at the rate of 5.71% (2/35) after conjugate to the donor bacteria. PCR showed that the resistant genotypes decreased or remained unchanged when compared to donor bacteria with transconjugants while the bla(TEM) and bla(CTX-M) genes were transferred and linked at a rate of 100.00% (35/35) and the bla(SHV) gene was at the rate as high as 94.29% (33/35). However, the qnrS gene was transferred at a low rate of 4.17% (1/24). In addition, the major resistance gene subtypes were bla(TEM-) (1), bla(SHV -11) , and bla(CTX-M-15) according to sequencing and Blast comparison. Plasmid wwA8 is a closed-loop DNA molecule with 83157 bp, and contains 45 predicted genes, including three antibiotic resistant resistance genes, bla(CTX-M-15) , bla(TEM-1) and qnrS1, which can be transferred with E. coli in vitro. This study shows that E. coli isolated from wastewater was capable of transferring resistance genes and producing antibiotic resistant phenotypes. The plasmids containing different resistance genes in E. coli play an important role in the multiple antibiotic resistant transfer. Most importantly, antibiotic resistant resistance genes have different transfer efficiencies, the bla(TEM) and bla(CTX-M) genes transferred at a rate of 100.00% and linked transfer in all 35 transconjugants.201931001218
2922120.9997Tetracycline-resistance genes in gram-negative isolates from estuarine waters. AIMS: To investigate the diversity and dissemination of tetracycline resistance genes in isolates from estuarine waters. METHODS AND RESULTS: Forty-two out of 164 multi-resistant isolates previously obtained were resistant or less-susceptible to tetracycline, as evaluated by the disc diffusion method. Minimal inhibitory concentration for resistant bacteria ranged from 16 to 256 mg l(-1). Screening of tet genes by polymerase chain reaction showed that 88% of the isolates carried at least one of the genes tested, namely tet(A) (present in 13 isolates), tet(B) (present in 13 isolates), tet(C) (present in 3 isolates), tet(D) (present in 1 isolate), tet(E) (present in 6 isolates) and tet(M) (present in 1 isolate). One isolate carried tet(A) and tet(M). To our knowledge, this study presents the first description of a tet(D) gene in Morganella morganii. Hybridization revealed that tet genes were plasmid-located in 31% of the isolates. Those isolates were included as donors in conjugation experiments and 38% transferred tetracycline resistance. CONCLUSIONS: A considerable diversity of tet genes was detected in the estuary. Frequently, these genes were associated with plasmids and could be transferred to Escherichia coli. SIGNIFICANCE AND IMPACT OF THE STUDY: The results presented provide further evidence of the role played by estuarine reservoirs in antibiotic resistance maintenance and dissemination.200819120920
968130.9997Molecular analysis of antimicrobial resistance in gram-negative bacteria isolated from fish farms in Egypt. As little is known about antimicrobial resistance genes in fish farms, this study was conducted to monitor the incidence and prevalence of a wide range of antimicrobial resistance genes in Gram-negative bacteria isolated from water samples taken from fish farms in the northern part of Egypt. Ninety-one out of two hundred seventy-four (33.2%) non-repetitive isolates of Gram-negative bacteria showed multidrug resistance phenotypes and harbored at least one antimicrobial resistance gene. PCR and DNA sequencing results showed that 72 (26.3%) isolates contain tetracycline resistance genes and 19 (6.9%) isolates were positive for class 1 integrons with 12 different gene cassettes. The beta-lactamase-encoding genes were identified in 14 (5.1%) isolates. The plasmid-mediated quinolone resistance genes, qnr and aac(6')-Ib-cr, were identified in 16 (5.8%) and 3 (1.1%) isolates, respectively. Finally, the florphenicol resistance gene, floR, was identified in four (1.5%) isolates. To the best of our knowledge, this is the first report for molecular characterization of antimicrobial resistance in Gram-negative bacteria isolated from fish farms in Africa.201020145377
1306140.9997Escherichia coli from healthy farm animals: Antimicrobial resistance, resistance genes and mobile genetic elements. The use of antibiotics in agriculture and subsequent environmental pollution are associated with the emergence and spread of multidrug-resistant (MDR) bacteria including Escherichia coli. The aim of this study was to detect antimicrobial resistance, resistance genes and mobile genetic elements of 72 E. coli strains isolated from faeces of healthy farm animals. Disk diffusion test showed resistance to ampicillin (59.7%), tetracycline (48.6%), chloramphenicol (16.7%), cefoperazone and ceftriaxone (13.9%), cefepime and aztreonam (12.5%), norfloxacin and ciprofloxacin (8.3%), levofloxacin (6.9%), gentamicin and amikacin (2.8%) among the studied strains. Antibiotic resistance genes (ARGs) were detected by polymerase chain reaction: the prevalence of blaTEM was the highest (59.7% of all strains), followed by tetA (30.6%), blaCTX-M (11.1%), catA1 (9.7%), less than 5% strains contained blaSHV, cmlA, floR, qnrB, qnrS, tetM. 26.4% of E. coli strains had a MDR phenotype. MDR E. coli more often contained class 1 integrons, bacteriophages, conjugative F-like plasmids, than non-MDR strains. ARGs were successfully transferred from faecal E. coli strains into the E. coli Nissle 1917 N4i strain by conjugation. Conjugation frequencies varied from (1.0 ± 0.1) * 10-5 to (7.9 ± 2.6) * 10-4 per recipient. Monitoring mobile genetic elements of E. coli for antibiotic resistance is important for farm animal health, as well as for public health and food safety.202439259602
1185150.9997Mobile Colistin Resistance and Plasmid-Mediated Quinolone Resistance Genes in Escherichia coli from China, 1993-2019. Plasmid-mediated quinolone resistance (PMQR) genes and mobile colistin resistance (MCR) genes in Escherichia coli (E. coli) have been widely identified, which is considered a global threat to public health. In the present study, we conducted an analysis of MCR genes (mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5) and PMQR genes [qnrA, qnrB, qnrC, qnrD, qnrE1, qnrVC, qnrS, aac(6')-Ib-cr, qepA, and oqxAB] in E. coli from China, 1993-2019. From the 3,663 E. coli isolates examined, 1,613 (44.0%) tested positive for PMQR genes, either individually or in combination. Meanwhile, 262 isolates (7.0%) carried the MCR genes. Minimum inhibitory concentration (MIC) analyses of 17 antibiotics for the MCR gene-carrying strains revealed universal multidrug resistance. Resistance to polymyxin varied between 4 μg/mL and 64 μg/mL, with MIC50 and MIC90 at 8 μg/mL and 16 μg/mL, respectively. In addition, fluctuations in the detection rates of these resistant genes correlated with the introduction of antibiotic policies, host origin, temporal trends, and geographical distribution. Continuous surveillance of PMQR and MCR variants in bacteria is required to implement control and prevention strategies.202438629721
1180160.9997Examination of Quaternary Ammonium Compound Resistance in Proteus mirabilis Isolated from Cooked Meat Products in China. The aim of this study was to examine the presence of genes responsible for resistance to quaternary ammonium compounds (QACs) and the association of qac genes with class 1 integrons in Proteus mirabilis isolated from cooked meat products. A total of 52 P. mirabilis isolates (29.2%) were detected from 178 samples, and their minimum inhibitory concentrations (MICs) of benzalkonium chloride (BC) ranged from 4 to >32 μg/mL. The isolates with BC MICs of 24 μg/mL were observed most frequently. PCR assays indicated that mdfA, ydgE/ydgF, qacE, qacEΔ1, emrE, sugE(c), and sugE(p) were commonly present (32.7%-100%) in these isolates, but qacH was less prevalent (3.8%). Five groups of resistance gene cassettes were identified in 10 intI1-positive isolates. An unusual gene cassette array dfrA32-ereA-aadA2 was found in one foodborne isolate of P. mirabilis. Two isolates harbored qacH- and sul3- associated non-classic integrons: aadA2-cmlA1-aadA1-qacH-IS440-sul3 and a new arrangement dfrA32-ereA1-aadA2-cmlA1-aadA1-qacH-IS440-sul3, which is first reported in P. mirabilis. Non-classic class 1 integrons were located on conjugative plasmids of 100 kb in two tested isolates. Our data showed that the QAC resistance genes were commonly present among P. mirabilis isolates from cooked meats and qacH was associated with non-classic class 1 integrons. The creation of transconjugants demonstrated that qacH-associated non-classic class 1 integrons were located on conjugative plasmids and therefore could facilitate the co-dissemination of disinfectant and antimicrobial resistance genes among bacteria, an increasing area of concern.201729312157
2906170.9997The mef(A) gene predominates among seven macrolide resistance genes identified in gram-negative strains representing 13 genera, isolated from healthy Portuguese children. Of the 176 randomly selected, commensal, gram-negative bacteria isolated from healthy children with low exposure to antibiotics, 138 (78%) carried one or more of the seven macrolide resistance genes tested in this study. These isolates included 79 (91%) isolates from the oral cavity and 59 (66%) isolates from urine samples. The mef(A) gene, coding for an efflux protein, was found in 73 isolates (41%) and was the most frequently carried gene. The mef(A) gene could be transferred from the donors into a gram-positive E. faecalis recipient and a gram-negative Escherichia coli recipient. The erm(B) gene transferred and was maintained in the E. coli transconjugants but was found in 0 to 100% of the E. faecalis transconjugants tested, while the other five genes could be transferred only into the E. coli recipient. The individual macrolide resistance genes were identified in 3 to 12 new genera. Eight (10%) of the oral isolates and 30 (34%) of the urine isolates for which the MICs were 2 to >500 microg of erythromycin per ml did not hybridize with any of the seven genes and may carry novel macrolide resistance genes.200415328110
2025180.9997Diverse Gene Cassette Arrays Prevail in Commensal Escherichia coli From Intensive Farming Swine in Four Provinces of China. Multiple-drug resistance bacteria containing antimicrobial resistance genes (ARGs) are a concern for public health. Integrons are bacterial genetic elements that can capture, rearrange, and express mobile gene cassettes responsible for the spread of ARGs. Few studies link genotype and phenotype of swine-related ARGs in the context of mobile gene cassette arrays among commensal Escherichia coli (E. coli) in nonclinical livestock isolates from intensive farms. In the present study, a total of 264 isolates were obtained from 330 rectal swabs to determine the prevalence and characteristics of antibiotic-resistant gene being carried by commensal E. coli in the healthy swine from four intensive farms at Anhui, Hebei, Shanxi, and Shaanxi, in China. Antimicrobial resistance phenotypes of the recovered isolates were determined for 19 antimicrobials. The E. coli isolates were commonly nonsusceptible to doxycycline (75.8%), tetracycline (73.5%), sulfamethoxazole-trimethoprim (71.6%), amoxicillin (68.2%), sulfasalazine (67.1%), ampicillin (58.0%), florfenicol (56.1%), and streptomycin (53.0%), but all isolates were susceptible to imipenem (100%). Isolates [184 (69.7%)] exhibited multiple drug resistance with 11 patterns. Moreover, 197 isolates (74.6%) were detected carrying the integron-integrase gene (intI1) of class 1 integrons. A higher incidence of antimicrobial resistance was observed in the intI1-positive E. coli isolates than in the intI1-negative E. coli isolates. Furthermore, there were 17 kinds of gene cassette arrays in the 70 integrons as detected by sequencing amplicons of variable regions, with 66 isolates (94.3%) expressing their gene cassettes encoding for multiple drug resistance phenotypes for streptomycin, neomycin, gentamicin, kanamycin, amikacin, sulfamethoxazole-trimethoprim, sulfasalazine, and florfenicol. Notably, due to harboring multiple, hybrid, and recombination cassettes, complex cassette arrays were attributed to multiple drug resistance patterns than simple arrays. In conclusion, we demonstrated that the prevalence of multiple drug resistance and the incidence of class 1 integrons were 69.7 and 74.6% in commensal E. coli isolated from healthy swine, which were lower in frequency than that previously reported in China.202033154738
2023190.9997Class 1 and class 2 integrons and plasmid-mediated antibiotic resistance in coliforms isolated from ten rivers in northern Turkey. We aimed to determine the molecular mechanisms of antibiotic resistance in coliforms isolated from ten rivers in northern region of Turkey. A total of 183 isolates were tested for antimicrobial susceptibility by disk diffusion and agar dilution methods. Resistance to ampicillin, streptomycin, trimethoprim, tetracycline, and chloramphenicol was detected in 58%, 51.9%, 24%, 28.4%, and 12.5%, respectively. Twelve (6.5%) phylogenetically distant organisms were detected to harbor self-transmissible plasmids ranging 52 to >147 kb in sizes. Resistances to ampicillin, tetracycline, trimethoprim, streptomycin, and nalidixic acid were commonly transferable traits. Transferable nalidixic acid-resistant strains harbored qnrS gene, which was the first report of plasmid-mediated quinolone resistance in bacteria of environmental origin in Turkey. Fourteen and five coliforms harbored class 1 and class 2 integrons, respectively, and some of them were located on transferable plasmids. Sequence analyses of variable regions of the class 1 and 2 integrons harbored various gene cassettes, dfrA1, dfr2d, dfrA7, dfrA16, dfrA17, aadA1, aadA5, bla(oxA-30), and sat1. A gene cassette array, dfrA16 has been demonstrated for the first time in a Citrobacter koseri isolate. Class 1 and class 2-bearing strains were clustered in different groups by BOX-PCR fingerprinting. Rivers in the northern Turkey may act as receptacle for the multi-drug resistant enterobacteria and can serve as reservoirs of the antimicrobial resistance determinants in the environment. The actual risk to public health is the transfer of resistance genes from the environmental bacteria to human pathogens.200919229487