Detection of qnr, aac(6')-Ib-cr and qepA genes in Escherichia coli isolated from cooked meat products in Henan, China. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
115601.0000Detection of qnr, aac(6')-Ib-cr and qepA genes in Escherichia coli isolated from cooked meat products in Henan, China. Antimicrobial resistance in Escherichia coli has increased in recent years in China. Antimicrobial resistant isolates and resistance genes of E. coli can be transferred to humans through the food chain and this presents a public health risk. However, few studies have investigated the prevalence of antimicrobial resistance-encoding genes in E. coli isolated from food samples in China. The aim of this study was to investigate the presence of quinolone resistance genes (QRGs) and extended-spectrum β-lactamases (ESBLs) in E. coli isolated from cooked meat products in Henan, China. A total of 75 E. coli isolates (12.1%) were detected from 620 samples. High rates of resistance to the following drugs were observed: tetracycline (56.0%), trimethoprim/sulfamethoxazole (41.3%), streptomycin (29.3%), ampicillin (26.7%) and nalidixic acid (14.7%). Of the 75 isolates, QRGs were present in 10 isolates (13.3%), with qnr and aac(6')-Ib-cr detected alone or in combination in five (6.7%) and eight isolates (10.7%). The qnr genes detected in this study included qnrS (n=3) and qnrA (n=2). The qepA gene was absent among these isolates. Three types of β-lactamase genes were identified in the five ESBL-producing E. coli isolates: blaCTX-M-1, blaCTX-M-9, and blaTEM-1. The qnrS gene was found to be co-transferred with blaCTX-M-1 and blaTEM-1 in one isolate. Our data suggest that cooked meat products may act as reservoirs for multi-resistant bacteria and facilitate the dissemination of antimicrobial resistance genes.201425036771
115710.9999Isolation and Molecular Characterization of Antimicrobial Resistant Escherichia coli from Healthy Broilers in Retail Chicken Outlets of Hotspot Cities in Southern India. E. coli is one of the first commensal bacteria to colonize the chicken gut. It may act as a source for the spread of antibiotic resistance to human via the food chain and contamination of the environment. Isolation and characterization of such E. coli from commercial broilers in retail outlets of Southern India were carried out. Eighty-three E. coli isolates (76.9%) were obtained from cloacal/meat swabs (108 samples). Phenotypically, 78.3% of isolates were ESBL producers, 69.9% were fluoroquinolone-resistant, and 6% were carbapenemase producers. Genotypically, the blaSHV, blaTEM, and blaCTX-M were present in 48.2%, 43.4%, and 10.8% of the isolates, respectively. These isolates also carried fluoroquinolone-resistant genes viz qnrB (31.3%) and qnrS (34.9%) but not carbapenemase genes. Overall, ESBL were identified in 72.3% of isolates and fluoroquinolone-resistance genes in 51.8%. Strikingly, 53% of the isolates were multidrug-resistant, with both ESBL and fluoroquinolone-resistant genes. The study revealed the presence of MDR E. coli strains in broiler meat at retail outlets indicating the potential public health risks.202540778947
115520.9999Prevalence and antimicrobial resistance profiles of Escherichia coli isolated from free-range pigs. INTRODUCTION: Numerous studies about antimicrobial resistant Escherichia coli (E. coli) of animal origins have been conducted around the world, most of them focus on bacteria from animals raised in intensive breeding farms, but systematic studies on antimicrobial resistance in E. coli of free range animals are still lacking. METHODOLOGY: This study aimed to investigate the prevalence and antimicrobial resistance profiles of E. coli from free-range pigs in Laiwu mountainous areas, eastern China. RESULTS: Among 123 fecal samples, 123 non-duplicate E. coli were obtained with an isolation rate of 100.0% (123/123). These E. coli showed the highest resistance rate to tetracycline (77/123, 62.6%), but all were sensitive to amoxicillin/clavulanic acid. Thirty-eight E. coli (38/123, 30.9%) showed multidrug resistance (MDR). Among 123 E. coli isolates, only 39 carried antimicrobial resistant genes detected in this study. Of these 39 isolates, blaTEM-1, blaCTX-M-14, blaCTX-M-15, qnrB, qnrD, qnrS1, floR and cfr genes were detected in 13, 9, 4, 7, 10, 7, 20, and 7 isolates, respectively. blaTEM-1 and blaCTX-M-14 genes were concomitantly detected in 6 isolates, and blaTEM, qnrB, qnrS and qnrD genes were concomitantly detected in 7 isolates. CONCLUSIONS: Free-ranging pigs may be regarded as a potential reservoir for antibiotic resistant genes.201731085827
117830.9999Molecular Characterization of Plasmid-Mediated Quinolone Resistance Genes in Multidrug-Resistant Escherichia coli Isolated From Wastewater Generated From the Hospital Environment. AIM: This study investigated the carriage of Plasmid-Mediated Quinolone Resistance (PMQR) genes in fluoroquinolone-resistant Escherichia coli recovered from wastewater generated by healthcare institutions. MATERIALS AND METHODS: Isolation of fluoroquinolone-resistant Escherichia coli was done on medium supplemented with 1 µg/mL of ciprofloxacin (a fluoroquinolone). Presumptive isolates were identified via the detection of uidA gene. Susceptibility of the isolates to a panel of antibiotics was done using disc diffusion method. Detection of PMQR genes in the isolates was done using primer-specific PCR. RESULTS: Thirty fluoroquinolone-resistant Escherichia coli were obtained from the wastewater over a period of 6 months. The resistance to each of the antibiotic tested was: ampicillin (100%), ceftriaxone (100%), nalidixic acid (100%), tetracycline (96.7%), cefotaxime (96.7%), amoxicillin-clavulanate (80%), gentamicin (60%), cefoxitin (30%), and imipenem (3.3%). The Multiple Antibiotic Resistance Index (MARI) ranged from 0.6 to 0.9. The detection of PMQR genes in the 30 isolates was: qnrA (76.7%), qnrB (53.3%), qnrS (63.3%), aac(6')-lb-cr (43.3%), and qepA (43.3%). All the fluoroquinolone-resistant Escherichia coli carried at least one PMQR determinant. CONCLUSION: This study revealed that untreated hospital wastewaters are significant hub of multidrug-resistant and fluoroquinolone-resistant Escherichia coli, showing high carriage of PMQR genes, and may be a major contributor to the resistome of fluoroquinolone-resistant bacteria in the Nigerian environment.202540552214
115240.9999Gut Commensal Escherichia coli, a High-Risk Reservoir of Transferable Plasmid-Mediated Antimicrobial Resistance Traits. BACKGROUND: Escherichia coli (E. coli), the main human gut microorganism, is one of the evolved superbugs because of acquiring antimicrobial resistance (AMR) determinants via horizontal gene transfer (HGT). PURPOSE: This study aimed to screen isolates of gut commensal E. coli from healthy adult individuals for antimicrobial susceptibility and plasmid-mediated AMR encoding genes. METHODS: Gut commensal E. coli bacteria were isolated from fecal samples that were taken from healthy adult individuals and investigated phenotypically for their antimicrobial susceptibility against diverse classes of antimicrobials using the Kirby Bauer disc method. PCR-based molecular assays were carried out to detect diverse plasmid-carried AMR encoding genes and virulence genes of different E. coli pathotypes (eaeA, stx, ipaH, est, elt, aggR and pCVD432). The examined AMR genes were β-lactam resistance encoding genes (bla (CTX-M1), bla (TEM), bla (CMY-2)), tetracycline resistance encoding genes (tetA, tetB), sulfonamides resistance encoding genes (sul1, sulII), aminoglycoside resistance encoding genes (aac(3)-II, aac(6')-Ib-cr) and quinolones resistance encoding genes (qnrA, qnrB, qnrS). RESULTS: PCR results revealed the absence of pathotypes genes in 56 isolates that were considered gut commensal isolates. E. coli isolates showed high resistance rates against tested antimicrobial agents belonging to both β-lactams and sulfonamides (42/56, 75%) followed by quinolones (35/56, 62.5%), tetracyclines (31/56, 55.4%), while the lowest resistance rate was to aminoglycosides (24/56, 42.9%). Antimicrobial susceptibility profiles revealed that 64.3% of isolates were multidrug-resistant (MDR). High prevalence frequencies of plasmid-carried AMR genes were detected including bla (TEM) (64%) sulI (60.7%), qnrA (51.8%), aac(3)-II (37.5%), and tetA (46.4%). All isolates harbored more than one gene with the most frequent genetic profile among isolates was bla (TEM)-bla (CTX-M1-like)-qnrA-qnrB-tetA-sulI. CONCLUSION: Results are significant in the evaluation of plasmid-carried AMR genes in the human gut commensal E. coli, suggesting a potential human health risk and the necessity of strict regulation of the use of antibiotics in Egypt. Commensal E. coli bacteria may constitute a potential reservoir of AMR genes that can be transferred to other bacterial species.202235321080
130650.9999Escherichia coli from healthy farm animals: Antimicrobial resistance, resistance genes and mobile genetic elements. The use of antibiotics in agriculture and subsequent environmental pollution are associated with the emergence and spread of multidrug-resistant (MDR) bacteria including Escherichia coli. The aim of this study was to detect antimicrobial resistance, resistance genes and mobile genetic elements of 72 E. coli strains isolated from faeces of healthy farm animals. Disk diffusion test showed resistance to ampicillin (59.7%), tetracycline (48.6%), chloramphenicol (16.7%), cefoperazone and ceftriaxone (13.9%), cefepime and aztreonam (12.5%), norfloxacin and ciprofloxacin (8.3%), levofloxacin (6.9%), gentamicin and amikacin (2.8%) among the studied strains. Antibiotic resistance genes (ARGs) were detected by polymerase chain reaction: the prevalence of blaTEM was the highest (59.7% of all strains), followed by tetA (30.6%), blaCTX-M (11.1%), catA1 (9.7%), less than 5% strains contained blaSHV, cmlA, floR, qnrB, qnrS, tetM. 26.4% of E. coli strains had a MDR phenotype. MDR E. coli more often contained class 1 integrons, bacteriophages, conjugative F-like plasmids, than non-MDR strains. ARGs were successfully transferred from faecal E. coli strains into the E. coli Nissle 1917 N4i strain by conjugation. Conjugation frequencies varied from (1.0 ± 0.1) * 10-5 to (7.9 ± 2.6) * 10-4 per recipient. Monitoring mobile genetic elements of E. coli for antibiotic resistance is important for farm animal health, as well as for public health and food safety.202439259602
131260.9999Antimicrobial resistance profiles among Escherichia coli strains isolated from commercial and cooked foods. A total of 4330 food samples of which microbiological standard for Escherichia coli is negative in Korea were determined for the frequency of E. coli. Ninety six samples (2.2%) were positive for E. coli. Detection rate of E. coli varied significantly by food type and ranged from 0.3% to 10.9%. Seasoned raw meat (yukhoe) and cold bean-soup had the highest prevalence for E. coli (10.9%) followed by gimbap (5.2%), meat broth for cold noodle (2.9%) and sprout (2.1%). E. coli isolates (n=96) were investigated for their phenotypic and genotypic antimicrobial resistance patterns. Seventeen E. coli isolates (17.7%) were resistant to one or more antimicrobial agents tested. High rates of resistance to the following drugs were observed: tetracycline (15.6%), streptomycin (12.5%), ampicillin (10.4%), nalidixic acid (9.4%) and ticarcillin (9.4%). All ampicillin resistant isolates were screened for extended-spectrum β-lactamase (ESBL) production by the combination disk test. None of the E. coli isolates produced ESBLs. Seventeen out of 96 E. coli isolates which were resistant to at least one antibiotic were investigated by PCR for the presence of 3 classes of antimicrobial resistance genes (tetracycline, aminoglycosides and beta-lactams). The tetracycline resistance genes tetA and tetB were found in 7 and 5 isolates, respectively. The aminoglycoside resistance genes, strA/B, aphA1, aadA and aac(3)-IV were found in 9, 5, 2 and 2 isolates, respectively. The beta-lactam resistance gene, bla(TEM) was found in 7 isolates. Results of this study show that 13 E. coli isolates were multidrug resistant (to three or more antibiotics) and 12 isolates carried at least one antimicrobial resistance gene. These isolates can act as the reservoir for antimicrobial resistance genes and facilitate the dissemination of these genes to other pathogenic and commensal bacteria. Adequate intervention to reduce microbial contamination of these foods is strongly recommended.201223107506
114970.9999Antimicrobial resistance, Extended-Spectrum β-Lactamase production and virulence genes in Salmonella enterica and Escherichia coli isolates from estuarine environment. The impact of antimicrobial resistance (AMR) on global public health has been widely documented. AMR in the environment poses a serious threat to both human and animal health but is frequently overlooked. This study aimed to characterize the association between phenotype and genotype of AMR, virulence genes and Extended-Spectrum β-Lactamase (ESBL) production from estuarine environment. The Salmonella (n = 126) and E. coli (n = 409) were isolated from oysters and estuarine water in Thailand. The isolates of Salmonella (96.9%) and E. coli (91.4%) showed resistance to at least one antimicrobial agent. Multidrug resistance (MDR) was 40.1% of Salmonella and 23.0% of E. coli. Resistance to sulfamethoxazole was most common in Salmonella (95.2%) and E. coli (77.8%). The common resistance genes found in Salmonella were sul3 (14.3%), followed by blaTEM (11.9%), and cmlA (11.9%), while most E. coli were blaTEM (31.5%) and tetA (25.4%). The ESBL production was detected in Salmonella (1.6%, n = 2) of which one isolate was positive to blaTEM-1. Eight E. coli isolates (2.0%) were ESBL producers, of which three isolates carried blaCTX-M-55 and one isolate was blaTEM-1. Predominant virulence genes identified in Salmonella were invA (77.0%), stn (77.0%), and fimA (69.0%), while those in E. coli isolates were stx1 (17.8%), lt (11.7%), and stx2 (1.2%). Logistic regression models showed the statistical association between resistance phenotype, virulence genes and ESBL production (p < 0.05). The findings highlighted that estuarine environment were potential hotspots of resistance. One Health should be implemented to prevent AMR bacteria spreading.202337115770
115480.9999Migratory wild birds carrying multidrug-resistant Escherichia coli as potential transmitters of antimicrobial resistance in China. Migratory birds play an important role in the spread of multidrug-resistant (MDR) bacteria. To investigate the prevalence of MDR Escherichia coli in migratory birds in China and potential relationships with the environment, a total of 1387 samples (fecal samples, cloacal swabs, or throat swabs) were collected from migratory birds from three different river basins in China. The collected samples were processed and subjected to bacteriological examinations. Antimicrobial susceptibility testing of the recovered isolates was performed using the E-test for the detection of minimum inhibitory concentrations (MICs). Some antibiotic resistance genes were detected and the PCR products were confirmed by sequencing. In total, 478 (34.7%) E. coli isolates were recovered. The results showed that the drug-resistant E. coli isolates were highly resistant to β-lactams (43.7%) and tetracycline (22.6%), and 73 (15.3%) were MDR, including eight that were extended spectrum β-lactamase-positive. The retrieved strains harbored the blaCTX-M, blaTEM-1, tet(A), tet(B), tet(M), sul1, sul2, sul3, cmlA, floR, and intI1 genes with a prevalence of 5.9%, 36.4%, 80.5%, 11.9%, 6.8%, 6.8%, 47.5%, 12.7%, 50.8%, 37.3%, and 61.0%, respectively. The drug resistance rate of the isolates from southern China was higher than those from northern China. The E. coli samples collected for migratory birds in the Pearl River Basin had the highest proportion (46.7%) MDR isolates. Furthermore, MDR bacteria carried by migratory birds were closely related to the antibiotic content in the basin, which confirms that MDR bacteria carried by migratory birds are likely acquired from the environment. This study also confirmed that migratory birds are potential transmitters of MDR bacteria, demonstrating the need to reduce the use and emission of antibiotics and further in-depth studies on the mechanisms underlying drug resistance of bacteria.202134910771
130590.9999Characterization of antibiotic resistance in Escherichia coli isolated from shrimps and their environment. Antimicrobial resistance in bacteria associated with food and water is a global concern. To survey the risk, 312 Escherichia coli isolates from shrimp farms and markets in Thailand were examined for susceptibility to 10 antimicrobials. The results showed that 17.6% of isolates (55 of 312) were resistant to at least one of the tested drugs, and high resistance rates were observed to tetracycline (14.4%; 45 of 312), ampicillin (8.0%; 25 of 312), and trimethroprim (6.7%; 21 of 312); 29.1% (16 of 55) were multidrug resistant. PCR assay of the tet (A), tet (B), tet (C), tet (D), tet (E), and tet (G) genes detected one or more of these genes in 47 of the 55 resistant isolates. Among these genes, tet (A) (69.1%; 38 of 55) was the most common followed by tet (B) (56.4%; 31 of 55) and tet (C) (3.6%; 2 of 55). The resistant isolates were further investigated for class 1 integrons. Of the 55 resistant isolates, 16 carried class 1 integrons and 7 carried gene cassettes encoding trimethoprim resistance (dfrA12 or dfrA17) and aminoglycosides resistance (aadA2 or aadA5). Two class 1 integrons, In54 (dfrA17-aadA5) and In27 (dfrA12-orfF-aadA2), were found in four and three isolates, respectively. These results indicate a risk of drug-resistant E. coli contamination in shrimp farms and selling places. The occurrence of multidrug-resistant E. coli carrying tet genes and class 1 integrons indicates an urgent need to monitor the emergence of drug-resistant E. coli to control the dissemination of drug-resistant strains and the further spread of resistance genes to other pathogenic bacteria.201425198603
1015100.9999Antimicrobial-resistant and extended-spectrum β-lactamase-producing Escherichia coli in raw cow's milk. The occurrence of antimicrobial-resistant bacteria is an important public health issue. The aim of this study was the monitoring of resistant Escherichia coli in raw cow's milk with a focus on the detection of extended-spectrum β-lactamase (ESBL)-producing strains. In total, 263 samples of raw milk from 40 farms were collected and investigated in 2010 to 2013 in the Czech Republic. Detection of E. coli was performed and evaluated according to ISO 16649-2, and antibiotic resistance was screened by the disk diffusion method. The presence of E. coli was detected in 243 (92.4%) samples. In total, 270 isolates were obtained. Resistance to β-lactam (31.8%) and tetracycline (13.0%) antibiotics was detected most often and also multiresistant strains (5.5%) were observed. E. coli isolates found to be resistant to β-lactam, tetracycline, and quinolone antibiotics were assayed by PCR to detect selected genes encoding those resistance mechanisms. In isolates in which any bla genes were detected, a double-disk synergy test was performed. ESBL production was confirmed in 2 (0.7%) isolates. The genetic analysis identified the presence of the blaCTX-M gene and other resistance genes (tet(B) and qnrB). Both ESBL-positive isolates originated from the same farm and had an identical pulsed-field gel electrophoresis profile. The findings of our study indicate that milk can be a reservoir of bacteria carrying resistance genes with a potential for spreading through the food chain.201525581180
1177110.9999High carriage of plasmid-mediated quinolone resistance (PMQR) genes by cefotaxime-resistant Escherichia coli recovered from surface-leaking sanitary sewers. There is a rapid rise in the incidence of quinolone resistant bacteria in Nigeria. Most studies in Nigeria have focused on isolates from the clinical settings, with few focusing on isolates of environmental origin. This study aimed to investigate the antibiogram and carriage of plasmid-mediated quinolone resistance (PMQR) genes by quinolone-resistant isolates obtained from a pool of cefotaxime-resistant Escherichia coli (E. coli) recovered from sewage leaking out of some surface-leaking sanitary sewers in a University community in Nigeria. Isolation of E. coli from the sewage samples was done on CHROMagar E. coli, after enrichment of the samples was done in Brain Heart Infusion broth amended with 6 µg/mL of cefotaxime. Identification of presumptive E. coli was done using molecular methods (detection of uidA gene), while susceptibility to antibiotics was carried out using the disc diffusion method. Detection of PMQR genes (qnrA, qnrB, qnrS, aac(6')-lb-cr, qepA and oqxAB) was carried out using primer-specific PCR. A total of 32 non-repetitive cefotaxime-resistant E. coli were obtained from the sewage, with 21 being quinolone-resistant. The quinolone-resistant isolates showed varying level of resistance to the tested antibiotics, with imipenem being the only exception with 0% resistance. The PMQR genes: aac(6')-lb-cr, qnrA, qnrB, qnrS and qepA and oqxAB were detected in 90.5%, 61.9%, 47.6%, 38.1%, 4.8% and 0% respectively of the isolates. The findings of this study showed a high level of resistance to antibiotics and carriage of PMQR genes by quinolone-resistant E. coli obtained from the leaking sanitary sewers, suggesting a potential environmental and public health concern.202235000007
1378120.9999Antimicrobial resistance and resistance genes in Escherichia coli strains isolated from commercial fish and seafood. The purpose of this study was to investigate the antimicrobial resistance and to characterize the implicated genes in Escherichia coli isolated from commercial fish and seafood. Fish and seafood samples (n=2663) were collected from wholesale and retail markets in Seoul, Korea between 2005 and 2008. A total of 179 E. coli isolates (6.7%) from those samples were tested for resistance to a range of antimicrobial agents. High rates of resistance to the following drugs were observed: tetracycline (30.7%), streptomycin (12.8%), cephalothin (11.7%), ampicillin (6.7%) and ticarcillin (6.1%). No resistances to amikacin, amoxicillin/clavulanic acid and cefoxitin were observed. Seventy out of 179 isolates which were resistant to one or more drugs were investigated by PCR for the presence of 3 classes of antimicrobial resistance genes (tetracycline, aminoglycosides and beta-lactams), class 1, 2 and 3 integrons. Gene cassettes of classes 1 and 2 integrons were further characterized by amplicon sequencing. The tetracycline resistance genes tetB and tetD were found in 29 (41.4%) isolates and 14 (20%) isolates, respectively. The beta-lactam resistance gene, bla(TEM) was found in 15 (21.4%) isolates. The aminoglycoside resistance gene, aadA was found in 18 (25.7%) isolates. Class 1 integron was detected in 41.4% (n=29) of the isolates, while only 2.9% (n=2) of the isolates were positive for the presence of class 2 integron. Two different gene cassettes arrangements were identified in class 1 integron-positive isolates: dfrA12-aadA2 (1.8 kb, five isolates) and aadB-aadA2 (1.6 kb, four isolates). One isolate containing class 2 integron presented the dfrA1-sat-aadA1 gene cassette array. These data suggest that commercial fish and seafood may act as the reservoir for multi-resistant bacteria and facilitate the dissemination of the resistance genes.201222071288
1105130.9999Cross-Sectional Survey of Antibiotic Resistance in Extended Spectrum β-Lactamase-Producing Enterobacteriaceae Isolated from Pigs in Greece. This study aimed to estimate the prevalence of extended-spectrum β-lactamase-producing (ESBL) bacteria in swine. Thus, 214 fecal samples were collected from suckling and weaned piglets from 34 farms in Greece (out of an overall population of about 14,300 sows). A subset of 78 (36.5%) ESBL producers were identified as E. coli (69/78, 88.5%), K. pneumoniae spp. pneumoniae (3.8%), P. mirabilis (5.1%), E. cloacae complex (1.3%) and S. enterica spp. diarizonae (1.3%). Resistance to at least one class of non-β-lactam antibiotics was detected in 78 isolates. Among the E. coli strains, resistance was identified with regard to aminoglycosides (n = 31), fluoroquinolones (n = 49), tetracycline (n = 26) and trimethoprim/sulfamethoxazole (n = 46). Of the three K. pneumoniae spp. pneumoniae, two displayed resistances to aminoglycosides and all were resistant to fluoroquinolones, tetracyclines and trimethoprim/sulfamethoxazole. As for the four P. mirabilis isolates, three had a resistant phenotype for aminoglycosides and all were resistant to imipenem, fluoroquinolones, tetracyclines and trimethoprim/sulfamethoxazole. Molecular characterization of the isolates revealed the presence of CTX-M, SHV and TEM genes, as well as of genes conferring resistance to fluoroquinolones, aminoglycosides, sulfonamides, trimethoprim, macrolides and colistin. High levels of antimicrobial resistance (AMR) were demonstrated in Greek swine herds posing a concern for the efficacy of treatments at the farm level as well as for public health.202235739896
1310140.9999Antimicrobial Resistance of Escherichia fergusonii Isolated from Broiler Chickens. The objective of this study was to investigate the antibiotic resistance of Escherichia fergusonii isolated from commercial broiler chicken farms. A total of 245 isolates from cloacal and cecal samples of 28- to 36-day-old chickens were collected from 32 farms. Isolates were identified using PCR, and their susceptibility to 16 antibiotics was determined by disk diffusion assay. All isolates were susceptible to meropenem, amikacin, and ciprofloxacin. The most common resistances were against ampicillin (75.1%), streptomycin (62.9%), and tetracycline (57.1%). Of the 184 ampicillin-resistant isolates, 127 were investigated using a DNA microarray carrying 75 probes for antibiotic resistance genetic determinants. Of these 127 isolates, the β-lactamase blaCMY2, blaTEM, blaACT, blaSHV, and blaCTX-M-15 genes were detected in 120 (94.5%), 31 (24.4%), 8 (6.3%), 6 (4.7%), and 4 (3.2%) isolates, respectively. Other detected genes included those conferring resistance to aminoglycosides (aadA1, strA, strB), trimethoprims (dfrV, dfrA1), tetracyclines (tetA, tetB, tetC, tetE), and sulfonamides (sul1, sul2). Class 1 integron was found in 35 (27.6%) of the ampicillin-resistant isolates. However, our data showed that the tested E. fergusonii did not carry any carbapenemase blaOXA genes. Pulsed-field gel electrophoresis revealed that the selected ampicillin-resistant E. fergusonii isolates were genetically diverse. The present study indicates that the monitoring of antimicrobial-resistant bacteria should include enteric bacteria such as E. fergusonii, which could be a reservoir of antibiotic resistance genes. The detection of isolates harboring extended-spectrum β-lactamase genes, particularly blaCTX-M-15, in this work suggests that further investigations on the occurrence of such genes in broilers are warranted.201627296596
1141150.9999Abundance of Colistin-Resistance Genes in Retail Meats in Vietnam. The degree of contamination of retail meat with colistin-resistant bacteria and its potential contribution to dissemination within communities remains to be determined. Thus, we aimed to elucidate the contamination status of colistin-resistance genes, indicative of colistin-resistant bacteria, in retail meats in Vietnam. In total, 46 chicken and 49 pork meats from stores in Vietnam and Japan were examined. Multiplex real-time polymerase chain reaction with TaqMan probes was performed for detecting mcr-1, mcr-3, and Escherichia coli 16S rRNA. Colistin-resistant bacteria in meats were isolated using selective media. The minimum inhibitory concentrations of colistin were determined using the broth microdilution method. The results showed that 70.7% of chicken meats in Vietnam were contaminated with both mcr-1 and mcr-3. Meanwhile, mcr-1 and mcr-3 were detected in 15.9% and 40.9% of pork meat, respectively. Only mcr-3 was detected in 40% of chicken in Japan. In addition, mcr-1-harboring E. coli and mcr-3-harboring Aeromonas were isolated from chicken meats in Vietnam. Some of these isolates showed colistin resistance. These results showed that most retail meats were highly contaminated with colistin-resistance genes. Notably, our results suggest that mcr-3 is more prevalent in the contaminated samples compared with mcr-1.202438700849
1014160.9999Contamination of retail market meat with extended-spectrum beta-lactamase genes in Vietnam. The contamination of retail meat with antibiotic-resistant bacteria poses a substantial public health risk because of the potential spread of these bacteria within communities. The contamination of retail meat with extended-spectrum beta-lactamase (ESBL)-producing bacteria was investigated in four cities in Vietnam using real-time PCR, employing ESBL marker genes. This method provides a more comprehensive assessment of ESBL-producing bacterial contamination in meat samples than culture-based methods because it directly detects resistance genes from the extracted sample DNA. Retail meats in Vietnam were substantially contaminated with ESBL genes [54 % (n = 46) and 48 % (n = 49) of chicken and pork samples, respectively]. No significant differences in ESBL gene detection rates were observed between chicken and pork. The most frequently detected ESBL gene was blaTEM, followed by blaSHV, whereas blaCTX-M was found in only 4-8 % of the samples. Ho Chi Minh City showed significantly higher contamination rates for both chicken and pork than those in other cities. ESBL-producing Escherichia coli strains were isolated from contaminated meat samples and genomically analyzed. All isolated strains carried blaCTX-M, with some harboring blaTEM, whereas blaSHV was not detected. Although IncFIB plasmids were prevalent among the ESBL-producing E. coli strains, the variability in resistance gene profiles suggested that the endemic spread of specific resistance gene-carrying plasmids was unlikely. Overall, these findings highlight the effectiveness of the ESBL gene detection method and the high levels of ESBL-producing E. coli in retail meat.202539827751
1199170.9999Multi-drug resistant pathogenic bacteria in the gut of young children in Bangladesh. BACKGROUND: The gut of human harbors diverse commensal microbiota performing an array of beneficial role for the hosts. In the present study, the major commensal gut bacteria isolated by culturing methods from 15 children of moderate income families, aged between 10 and 24 months, were studied for their response to different antibiotics, and the molecular basis of drug resistance. RESULTS: Of 122 bacterial colonies primarily selected from Luria-Bertani agar, bacterial genera confirmed by analytical profile index (API) 20E(®) system included Escherichia as the predominant (52%) organism, followed by Enterobacter (16%), Pseudomonas (12%), Klebsiella (6%), Pantoea (6%), Vibrio (3%), and Citrobacter (3%); while Aeromonas and Raoultella were identified as the infrequently occurring genera. An estimated 11 and 22% of the E. coli isolates carried virulence marker genes stx-2 and eae, respectively. Antimicrobial susceptibility assay revealed 78% of the gut bacteria to be multidrug resistant (MDR) with highest resistance to erythromycin (96%), followed by ampicillin (63%), tetracycline (59%), azithromycin (53%), sulfamethoxazole-trimethoprim (43%), cefixime (39%), and ceftriaxone (33%). PCR assay results revealed 56% of the gut bacteria to possess gene cassette Class 1 integron; while 8, 17.5 and 6% of the strains carried tetracycline resistance-related genes tetA, tetB, and tetD, respectively. The macrolide (erythromycin and azithromycin) resistance marker genes mphA, ereB, and ermB were found in 28, 3 and 5% of bacterial isolates, respectively; while 26, 12, 17, 32, 7, 4 and 3% of the MDR bacterial isolates carried the extended spectrum β-lactamase (ESBL)-related genes e.g., bla(TEM), bla(SHV), bla(CMY-9), bla(CTX-M1), bla(CTX-M2), bla(CMY-2) and bla(OXA) respectively. Majority of the MDR gut bacteria harbored large plasmids [e.g., 140 MDa (43%), 105 MDa (30%), 90 MDa (14%)] carrying invasion and related antibiotic resistance marker genes. CONCLUSIONS: Our results suggest gut of young Bangladeshi children to be an important reservoir for multi-drug resistant pathogenic bacteria carrying ESBL related genes.201728439298
1198180.9999Third-Generation Cephalosporin- and Tetracycline-Resistant Escherichia coli and Antimicrobial Resistance Genes from Metagenomes of Mink Feces and Feed. American mink (Neovison vison) is a significant source of global fur production. Except for a few studies from Denmark and Canada reporting antimicrobial resistance in bacteria isolated from clinical cases, studies from the general mink population are scarce and absent in the United States. Mink feces (n = 42) and feed (n = 8) samples obtained from a mink farm were cultured for the enumeration and detection of tetracycline-resistant (TET(r))- and third-generation cephalosporin-resistant (TGC(r))-Escherichia coli. Isolates were characterized phenotypically for their resistance to other antibiotics and genotypically for resistance genes. TET(r)E. coli were detected from 98% of feces samples (mean concentration = 6 log(10)) and from 100% of feed samples (mean concentration = 3.2 logs). Among TET(r)E. coli isolates, 44% (n = 41) of fecal- and 50% (n = 8) of feed isolates were multidrug resistant (MDR; resistance to ≥3 antimicrobial classes), and 96% (n = 49) of TET(r) isolates were positive for tet(A) and/or tet(B). TGC(r)E. coli were detected from 95% of feces and 75% of feed samples with 78% (n = 40) of fecal isolates, and all six of the feed isolates were MDR. Nearly two-thirds (65%) of the TGC(r)E. coli isolates (n = 46) were positive for bla(CMY-2); the remaining 35% were positive for bla(CTX-M,) with the bla(CTX-M-14) being the predominant (75%, n = 16) variant detected. Metagenomic DNA was extracted directly from feces and feed samples, and it was tested for 84 antimicrobial resistance genes by using quantitative polymerase chain reaction (PCR) array; selected genes were also quantified by droplet digital PCR. The genes detected from the fecal samples belonged mainly to five antimicrobial classes: macrolide-lincosamide-streptogramin B (MLS(B); 100% prevalence), TETs (88.1%), β-lactams (71.4%), aminoglycosides (66.7%), and fluoroquinolones (47.6%). β-Lactam, MLS(B), and TET resistance genes were also detected from feed samples. Our study serves as a baseline for further studies and to streamline antimicrobial use in mink production in accordance with current regulations as in food animals.202133085531
1311190.9999Prevalence and Molecular Characterization of Antimicrobial Resistance in Escherichia coli Isolated from Raw Milk and Raw Milk Cheese in Egypt. The goal of this study was to examine antimicrobial resistance and characterize the implicated genes in 222 isolates of Escherichia coli from 187 samples of raw milk and the two most popular cheeses in Egypt. E. coli isolates were tested for susceptibility to 12 antimicrobials by a disk diffusion method. Among the 222 E. coli isolates, 66 (29.7%) were resistant to one or more antimicrobials, and half of these resistant isolates showed a multidrug resistance phenotype (resistance to at least three different drug classes). The resistance traits were observed to tetracycline (27.5%), ampicillin (18.9%), streptomycin (18.5%), sulfamethoxazole-trimethoprim (11.3%), cefotaxime (4.5%), kanamycin (4.1%), ceftazidime (3.6%), chloramphenicol (2.3%), nalidixic acid (1.8%), and ciprofloxacin (1.4%). No resistance to fosfomycin and imipenem was observed. Tetracycline resistance genes tetA, tetB, and tetD were detected in 53 isolates, 9 isolates, and 1 isolate, respectively, but tetC was not detected. Aminoglycoside resistance genes strA, strB, aadA, and aphA1 were detected in 41, 41, 11, and 9 isolates, respectively. Sulfonamide resistance genes sul1, sul2, and sul3 were detected in 7, 25, and 3 isolates, respectively. Of 42 ampicillin-resistant isolates, bla(TEM), bla(CTX-M), and bla(SHV) were detected in 40, 9, and 3 isolates, respectively, and 10 (23.8%) ampicillin-resistant isolates were found to produce extended-spectrum β-lactamase. Each bla gene of extended-spectrum β-lactamase-producing E. coli was further subtyped to be bla(CTX-M-15), bla(CTX-M-104), bla(TEM-1), and bla(SHV-12). The class 1 integron was also detected in 28 resistant isolates, and three different patterns were obtained by PCR-restriction fragment length polymorphism. Sequencing analysis of the variable region revealed that four isolates had dfrA12/orfF/aadA2, two had aadA22, and one had dfrA1/aadA1. These data suggest that antimicrobial-resistant E. coli are widely distributed in the milk production and processing environment in Egypt and may play a role in dissemination of antimicrobial resistance to other pathogenic and commensal bacteria.201829323530