Antimicrobial resistance, virulence factors and genetic diversity of Escherichia coli isolates from household water supply in Dhaka, Bangladesh. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
115301.0000Antimicrobial resistance, virulence factors and genetic diversity of Escherichia coli isolates from household water supply in Dhaka, Bangladesh. BACKGROUND: Unsafe water supplies continue to raise public health concerns, especially in urban areas in low resource countries. To understand the extent of public health risk attributed to supply water in Dhaka city, Bangladesh, Escherichia coli isolated from tap water samples collected from different locations of the city were characterized for their antibiotic resistance, pathogenic properties and genetic diversity. METHODOLOGY/PRINCIPAL FINDINGS: A total of 233 E. coli isolates obtained from 175 tap water samples were analysed for susceptibility to 16 different antibiotics and for the presence of genes associated with virulence and antibiotic resistance. Nearly 36% (n = 84) of the isolates were multi-drug(≥ 3 classes of antibiotics) resistant (MDR) and 26% (n = 22) of these were positive for extended spectrum β-lactamase (ESBL). Of the 22 ESBL-producers, 20 were positive for bla CTX-M-15, 7 for bla OXA-1-group (all had bla OXA-47) and 2 for bla CMY-2. Quinolone resistance genes, qnrS and qnrB were detected in 6 and 2 isolates, respectively. Around 7% (n = 16) of the isolates carried virulence gene(s) characteristic of pathogenic E. coli; 11 of these contained lt and/or st and thus belonged to enterotoxigenic E. coli and 5 contained bfp and eae and thus belonged to enteropathogenic E. coli. All MDR isolates carried multiple plasmids (2 to 8) of varying sizes ranging from 1.2 to >120 MDa. Ampicillin and ceftriaxone resistance were co-transferred in conjugative plasmids of 70 to 100 MDa in size, while ampicillin, trimethoprim-sulfamethoxazole and tetracycline resistance were co-transferred in conjugative plasmids of 50 to 90 MDa. Pulsed-field gel electrophoresis analysis revealed diverse genetic fingerprints of pathogenic isolates. SIGNIFICANCE: Multi-drug resistant E. coli are wide spread in public water supply in Dhaka city, Bangladesh. Transmission of resistant bacteria and plasmids through supply water pose serious threats to public health in urban areas.201323573295
101310.9999Molecular detection and antimicrobial resistance profiles of Extended-Spectrum Beta-Lactamase (ESBL) producing Escherichia coli in broiler chicken farms in Malaysia. Antimicrobial resistance is one of the major public health threats globally. This challenge has been aggravated with the overuse and misuse of antibiotics in food animals and humans. The present study aimed to investigate the prevalence of Extended-Spectrum β-lactamase (ESBL) genes in Escherichia coli (E. coli) isolated from broiler chickens in Kelantan, Malaysia. A total of 320 cloacal swabs were collected from farms in different districts of Kelantan and were analyzed using routine bacteriology, antimicrobial susceptibility test, and molecular techniques for further identification and characterization of ESBL encoding genes. Based on PCR detection for the E. coli species-specific Pho gene, 30.3% (97/320) of isolates were confirmed as E. coli, and 84.5% (82/97) of the isolates were positive for at least one ESBL gene. Majority of the isolates, 62.9% (61/97) were harboring blaCTX-M followed by 45.4% (44/97) of blaTEM genes, while 16.5% (16/97) of the isolates were positive for both mcr-1 and ESBL genes. Overall, 93.8% (90/97) of the E. coli were resistant to three or more antimicrobials; indicating that the isolates were multi-drug resistance. 90.7% of multiple antibiotic resistance (MAR) index value greater than 0.2, would also suggest the isolates were from high-risk sources of contamination. The MLST result shows that the isolates are widely diverse. Our findings provide insight into the alarmingly high distribution of antimicrobial resistant bacteria, mainly ESBL producing E. coli in apparently healthy chickens indicating the role of food animals in the emergence and spread of antimicrobial resistance, and the potential public health threats it may pose.202337205716
115220.9999Gut Commensal Escherichia coli, a High-Risk Reservoir of Transferable Plasmid-Mediated Antimicrobial Resistance Traits. BACKGROUND: Escherichia coli (E. coli), the main human gut microorganism, is one of the evolved superbugs because of acquiring antimicrobial resistance (AMR) determinants via horizontal gene transfer (HGT). PURPOSE: This study aimed to screen isolates of gut commensal E. coli from healthy adult individuals for antimicrobial susceptibility and plasmid-mediated AMR encoding genes. METHODS: Gut commensal E. coli bacteria were isolated from fecal samples that were taken from healthy adult individuals and investigated phenotypically for their antimicrobial susceptibility against diverse classes of antimicrobials using the Kirby Bauer disc method. PCR-based molecular assays were carried out to detect diverse plasmid-carried AMR encoding genes and virulence genes of different E. coli pathotypes (eaeA, stx, ipaH, est, elt, aggR and pCVD432). The examined AMR genes were β-lactam resistance encoding genes (bla (CTX-M1), bla (TEM), bla (CMY-2)), tetracycline resistance encoding genes (tetA, tetB), sulfonamides resistance encoding genes (sul1, sulII), aminoglycoside resistance encoding genes (aac(3)-II, aac(6')-Ib-cr) and quinolones resistance encoding genes (qnrA, qnrB, qnrS). RESULTS: PCR results revealed the absence of pathotypes genes in 56 isolates that were considered gut commensal isolates. E. coli isolates showed high resistance rates against tested antimicrobial agents belonging to both β-lactams and sulfonamides (42/56, 75%) followed by quinolones (35/56, 62.5%), tetracyclines (31/56, 55.4%), while the lowest resistance rate was to aminoglycosides (24/56, 42.9%). Antimicrobial susceptibility profiles revealed that 64.3% of isolates were multidrug-resistant (MDR). High prevalence frequencies of plasmid-carried AMR genes were detected including bla (TEM) (64%) sulI (60.7%), qnrA (51.8%), aac(3)-II (37.5%), and tetA (46.4%). All isolates harbored more than one gene with the most frequent genetic profile among isolates was bla (TEM)-bla (CTX-M1-like)-qnrA-qnrB-tetA-sulI. CONCLUSION: Results are significant in the evaluation of plasmid-carried AMR genes in the human gut commensal E. coli, suggesting a potential human health risk and the necessity of strict regulation of the use of antibiotics in Egypt. Commensal E. coli bacteria may constitute a potential reservoir of AMR genes that can be transferred to other bacterial species.202235321080
114630.9999Molecular detection and prevalence of colistin-resistant Escherichia coli in poultry and humans: a one health perspective. Multidrug-resistant (MDR) bacteria significantly threaten humans and animals worldwide. Colistin is the last resort of antibiotics against gram-negative bacterial infections. Its irrational use in poultry is a major factor in transmitting MDR bacteria to humans. The present study investigated the risk factors, prevalence, and molecular detection of colistin resistance associated with poultry and humans. A total of (n = 140) cloacal swabs from chickens and human stool samples (n = 140) were processed to identify E. coli using conventional methods, followed by genotypic confirmation. Phenotypic and genotypic confirmation of antibiotic resistance genes qnrA, blaTEM, tetA, aadA, and mcr genes was performed on these E. coli isolates. These isolates were confirmed at 69.3% and 62.8% in chickens and humans, respectively. Limited education and poor hygiene significantly increased the infection rate (p = 0.0001). The E. coli isolates from commercial poultry showed 100% resistance to amoxicillin/clavulanic acid, 98.9% to ampicillin, and 93.8% to tetracycline. The E. coli isolates from humans exhibited 90% resistance to ciprofloxacin, 88% to ampicillin, and 85% to ceftriaxone. Among these, MDR E. coli isolates of both commercial poultry and humans, colistin resistance was found in 78.6% and 48.1%, respectively. Genotypic confirmation of mcr genes such as mcr-1 (42%), mcr-2 (19.6%), mcr-3 (15.1%), mcr-4 (7.6%), and mcr-5 (4.5%) in commercial poultry. However, only the mcr-1 (15.6%) gene was found in human isolates. The current study findings highlight the prevalence of mcr genes in E. coli, potentially contributing to broader antibiotic resistance concerns.202540956559
114940.9999Antimicrobial resistance, Extended-Spectrum β-Lactamase production and virulence genes in Salmonella enterica and Escherichia coli isolates from estuarine environment. The impact of antimicrobial resistance (AMR) on global public health has been widely documented. AMR in the environment poses a serious threat to both human and animal health but is frequently overlooked. This study aimed to characterize the association between phenotype and genotype of AMR, virulence genes and Extended-Spectrum β-Lactamase (ESBL) production from estuarine environment. The Salmonella (n = 126) and E. coli (n = 409) were isolated from oysters and estuarine water in Thailand. The isolates of Salmonella (96.9%) and E. coli (91.4%) showed resistance to at least one antimicrobial agent. Multidrug resistance (MDR) was 40.1% of Salmonella and 23.0% of E. coli. Resistance to sulfamethoxazole was most common in Salmonella (95.2%) and E. coli (77.8%). The common resistance genes found in Salmonella were sul3 (14.3%), followed by blaTEM (11.9%), and cmlA (11.9%), while most E. coli were blaTEM (31.5%) and tetA (25.4%). The ESBL production was detected in Salmonella (1.6%, n = 2) of which one isolate was positive to blaTEM-1. Eight E. coli isolates (2.0%) were ESBL producers, of which three isolates carried blaCTX-M-55 and one isolate was blaTEM-1. Predominant virulence genes identified in Salmonella were invA (77.0%), stn (77.0%), and fimA (69.0%), while those in E. coli isolates were stx1 (17.8%), lt (11.7%), and stx2 (1.2%). Logistic regression models showed the statistical association between resistance phenotype, virulence genes and ESBL production (p < 0.05). The findings highlighted that estuarine environment were potential hotspots of resistance. One Health should be implemented to prevent AMR bacteria spreading.202337115770
115150.9999Genomic Analysis of Third Generation Cephalosporin Resistant Escherichia coli from Dairy Cow Manure. The production of extended-spectrum β-lactamases (ESBLs) conferring resistance to new derivatives of β-lactams is a major public health threat if present in pathogenic Gram-negative bacteria. The objective of this study was to characterize ceftiofur (TIO)- or cefotaxime (FOX)-resistant Escherichia coli isolated from dairy cow manure. Twenty-four manure samples were collected from four farms and incubated under anaerobic conditions for 20 weeks at 4 °C or at 25 °C. A total of 37 TIO- or FOX-resistant E. coli were isolated from two of the four farms to determine their susceptibility to 14 antibiotics. Among the 37 resistant E. coli, 10 different serotypes were identified, with O8:H1 being the predominant serotype (n = 17). Five isolates belonged to each of serotypes O9:NM and O153:H42, respectively. All 37 cephalosporin resistant isolates were multi-resistant with the most prevalent resistance spectrum being amoxicillin-clavulanic acid-ampicillin-cefoxitin-ceftiofur-ceftriaxone-chloramphenicol-streptomycin-sulfisoxazole-tetracycline-trimethoprim-sulfamethoxazole. The genomes of 18 selected isolates were then sequenced and compared to 14 selected human pathogenic E. coli reference genomes obtained from public repositories using different bioinformatics approaches. As expected, all 18 sequenced isolates carried at least one β-lactamase bla gene: TEM-1, TEM-81, CTX-M115, CTX-M15, OXA-1, or CMY-2. Several other antibiotic resistance genes (ARGs) and virulence determinants were detected in the sequenced isolates and all of them harbored antimicrobial resistance plasmids belonging to classic Inc groups. Our results confirm the presence of diverse ESBL producing E. coli isolates in dairy cow manure stored for a short period of time. Such manure might constitute a reservoir of resistance and virulence genes for other bacteria that share the same environment.201729149094
114360.9999Antimicrobial Resistance and Virulence Profiles of mcr-1-Positive Escherichia coli Isolated from Swine Farms in Heilongjiang Province of China. ABSTRACT: The emergence and global distribution of the mcr-1 gene for colistin resistance have become a public concern because of threats to the role of colistin as the last line of defense against some bacteria. Because of the prevalence of mcr-1-positive Escherichia coli isolates in food animals, production of these animals has been regarded as one of the major sources of amplification and spread of mcr-1. In this study, 249 E. coli isolates were recovered from 300 fecal samples collected from swine farms in Heilongjiang Province, People's Republic of China. Susceptibility testing revealed that 186 (74.70%) of these isolates were colistin resistant, and 86 were positive for mcr-1. The mcr-1-positive isolates had extensive antimicrobial resistance profiles and additional resistance genes, including blaTEM, blaCTX-M, aac3-IV, tet(A), floR, sul1, sul2, sul3, and oqxAB. No mutations in genes pmrAB and mgrB were associated with colistin resistance. Phylogenetic group analysis revealed that the mcr-1-positive E. coli isolates belonged to groups A (52.33% of isolates), B1 (33.72%), B2 (5.81%), and D (8.14%). The prevalence of the virulence-associated genes iutA, iroN, fimH, vat, ompA, and traT was moderate. Seven mcr-1-positive isolates were identified as extraintestinal pathogenic. Among 20 mcr-1-positive E. coli isolates, multilocus sequence typing revealed that sequence type 10 was the most common (five isolates). The conjugation assays revealed that the majority of mcr-1 genes were transferable at frequencies of 7.05 × 10-7 to 7.57 × 10-4. The results of this study indicate the need for monitoring and minimizing the further dissemination of mcr-1 among E. coli isolates in food animals, particularly swine.202032730609
115570.9999Prevalence and antimicrobial resistance profiles of Escherichia coli isolated from free-range pigs. INTRODUCTION: Numerous studies about antimicrobial resistant Escherichia coli (E. coli) of animal origins have been conducted around the world, most of them focus on bacteria from animals raised in intensive breeding farms, but systematic studies on antimicrobial resistance in E. coli of free range animals are still lacking. METHODOLOGY: This study aimed to investigate the prevalence and antimicrobial resistance profiles of E. coli from free-range pigs in Laiwu mountainous areas, eastern China. RESULTS: Among 123 fecal samples, 123 non-duplicate E. coli were obtained with an isolation rate of 100.0% (123/123). These E. coli showed the highest resistance rate to tetracycline (77/123, 62.6%), but all were sensitive to amoxicillin/clavulanic acid. Thirty-eight E. coli (38/123, 30.9%) showed multidrug resistance (MDR). Among 123 E. coli isolates, only 39 carried antimicrobial resistant genes detected in this study. Of these 39 isolates, blaTEM-1, blaCTX-M-14, blaCTX-M-15, qnrB, qnrD, qnrS1, floR and cfr genes were detected in 13, 9, 4, 7, 10, 7, 20, and 7 isolates, respectively. blaTEM-1 and blaCTX-M-14 genes were concomitantly detected in 6 isolates, and blaTEM, qnrB, qnrS and qnrD genes were concomitantly detected in 7 isolates. CONCLUSIONS: Free-ranging pigs may be regarded as a potential reservoir for antibiotic resistant genes.201731085827
115480.9999Migratory wild birds carrying multidrug-resistant Escherichia coli as potential transmitters of antimicrobial resistance in China. Migratory birds play an important role in the spread of multidrug-resistant (MDR) bacteria. To investigate the prevalence of MDR Escherichia coli in migratory birds in China and potential relationships with the environment, a total of 1387 samples (fecal samples, cloacal swabs, or throat swabs) were collected from migratory birds from three different river basins in China. The collected samples were processed and subjected to bacteriological examinations. Antimicrobial susceptibility testing of the recovered isolates was performed using the E-test for the detection of minimum inhibitory concentrations (MICs). Some antibiotic resistance genes were detected and the PCR products were confirmed by sequencing. In total, 478 (34.7%) E. coli isolates were recovered. The results showed that the drug-resistant E. coli isolates were highly resistant to β-lactams (43.7%) and tetracycline (22.6%), and 73 (15.3%) were MDR, including eight that were extended spectrum β-lactamase-positive. The retrieved strains harbored the blaCTX-M, blaTEM-1, tet(A), tet(B), tet(M), sul1, sul2, sul3, cmlA, floR, and intI1 genes with a prevalence of 5.9%, 36.4%, 80.5%, 11.9%, 6.8%, 6.8%, 47.5%, 12.7%, 50.8%, 37.3%, and 61.0%, respectively. The drug resistance rate of the isolates from southern China was higher than those from northern China. The E. coli samples collected for migratory birds in the Pearl River Basin had the highest proportion (46.7%) MDR isolates. Furthermore, MDR bacteria carried by migratory birds were closely related to the antibiotic content in the basin, which confirms that MDR bacteria carried by migratory birds are likely acquired from the environment. This study also confirmed that migratory birds are potential transmitters of MDR bacteria, demonstrating the need to reduce the use and emission of antibiotics and further in-depth studies on the mechanisms underlying drug resistance of bacteria.202134910771
101090.9999Prevalence of Antibiotic Resistance and Virulence Genes in Escherichia coli Carried by Migratory Birds on the Inner Mongolia Plateau of Northern China from 2018 to 2023. (1) Background: Antibiotic resistance in bacteria is an urgent global threat to public health. Migratory birds can acquire antibiotic-resistant and pathogenic bacteria from the environment or through contact with each other and spread them over long distances. The objectives of this study were to explore the relationship between migratory birds and the transmission of drug-resistant pathogenic Escherichia coli. (2) Methods: Faeces and swab samples from migratory birds were collected for isolating E. coli on the Inner Mongolia Plateau of northern China from 2018 to 2023. The resistant phenotypes and spectra of isolates were determined using a BD Phoenix 100 System. Conjugation assays were performed on extended-spectrum β-lactamase (ESBL)-producing strains, and the genomes of multidrug-resistant (MDR) and ESBL-producing isolates were sequenced and analysed. (3) Results: Overall, 179 isolates were antibiotic-resistant, with 49.7% MDR and 14.0% ESBL. Plasmids were successfully transferred from 32% of ESBL-producing strains. Genome sequencing analysis of 91 MDR E. coli strains identified 57 acquired resistance genes of 13 classes, and extraintestinal pathogenic E. coli and avian pathogenic E. coli accounted for 26.4% and 9.9%, respectively. There were 52 serotypes and 54 sequence types (STs), including ST48 (4.4%), ST69 (4.4%), ST131 (2.2%) and ST10 (2.2%). The international high-risk clonal strains ST131 and ST10 primarily carried bla(CTX-M-27) and bla(TEM-176). (4) Conclusions: There is a high prevalence of multidrug-resistant virulent E. coli in migratory birds on the Inner Mongolian Plateau. This indicates a risk of intercontinental transmission from migratory birds to livestock and humans.202438930458
1014100.9999Contamination of retail market meat with extended-spectrum beta-lactamase genes in Vietnam. The contamination of retail meat with antibiotic-resistant bacteria poses a substantial public health risk because of the potential spread of these bacteria within communities. The contamination of retail meat with extended-spectrum beta-lactamase (ESBL)-producing bacteria was investigated in four cities in Vietnam using real-time PCR, employing ESBL marker genes. This method provides a more comprehensive assessment of ESBL-producing bacterial contamination in meat samples than culture-based methods because it directly detects resistance genes from the extracted sample DNA. Retail meats in Vietnam were substantially contaminated with ESBL genes [54 % (n = 46) and 48 % (n = 49) of chicken and pork samples, respectively]. No significant differences in ESBL gene detection rates were observed between chicken and pork. The most frequently detected ESBL gene was blaTEM, followed by blaSHV, whereas blaCTX-M was found in only 4-8 % of the samples. Ho Chi Minh City showed significantly higher contamination rates for both chicken and pork than those in other cities. ESBL-producing Escherichia coli strains were isolated from contaminated meat samples and genomically analyzed. All isolated strains carried blaCTX-M, with some harboring blaTEM, whereas blaSHV was not detected. Although IncFIB plasmids were prevalent among the ESBL-producing E. coli strains, the variability in resistance gene profiles suggested that the endemic spread of specific resistance gene-carrying plasmids was unlikely. Overall, these findings highlight the effectiveness of the ESBL gene detection method and the high levels of ESBL-producing E. coli in retail meat.202539827751
1015110.9999Antimicrobial-resistant and extended-spectrum β-lactamase-producing Escherichia coli in raw cow's milk. The occurrence of antimicrobial-resistant bacteria is an important public health issue. The aim of this study was the monitoring of resistant Escherichia coli in raw cow's milk with a focus on the detection of extended-spectrum β-lactamase (ESBL)-producing strains. In total, 263 samples of raw milk from 40 farms were collected and investigated in 2010 to 2013 in the Czech Republic. Detection of E. coli was performed and evaluated according to ISO 16649-2, and antibiotic resistance was screened by the disk diffusion method. The presence of E. coli was detected in 243 (92.4%) samples. In total, 270 isolates were obtained. Resistance to β-lactam (31.8%) and tetracycline (13.0%) antibiotics was detected most often and also multiresistant strains (5.5%) were observed. E. coli isolates found to be resistant to β-lactam, tetracycline, and quinolone antibiotics were assayed by PCR to detect selected genes encoding those resistance mechanisms. In isolates in which any bla genes were detected, a double-disk synergy test was performed. ESBL production was confirmed in 2 (0.7%) isolates. The genetic analysis identified the presence of the blaCTX-M gene and other resistance genes (tet(B) and qnrB). Both ESBL-positive isolates originated from the same farm and had an identical pulsed-field gel electrophoresis profile. The findings of our study indicate that milk can be a reservoir of bacteria carrying resistance genes with a potential for spreading through the food chain.201525581180
1157120.9999Isolation and Molecular Characterization of Antimicrobial Resistant Escherichia coli from Healthy Broilers in Retail Chicken Outlets of Hotspot Cities in Southern India. E. coli is one of the first commensal bacteria to colonize the chicken gut. It may act as a source for the spread of antibiotic resistance to human via the food chain and contamination of the environment. Isolation and characterization of such E. coli from commercial broilers in retail outlets of Southern India were carried out. Eighty-three E. coli isolates (76.9%) were obtained from cloacal/meat swabs (108 samples). Phenotypically, 78.3% of isolates were ESBL producers, 69.9% were fluoroquinolone-resistant, and 6% were carbapenemase producers. Genotypically, the blaSHV, blaTEM, and blaCTX-M were present in 48.2%, 43.4%, and 10.8% of the isolates, respectively. These isolates also carried fluoroquinolone-resistant genes viz qnrB (31.3%) and qnrS (34.9%) but not carbapenemase genes. Overall, ESBL were identified in 72.3% of isolates and fluoroquinolone-resistance genes in 51.8%. Strikingly, 53% of the isolates were multidrug-resistant, with both ESBL and fluoroquinolone-resistant genes. The study revealed the presence of MDR E. coli strains in broiler meat at retail outlets indicating the potential public health risks.202540778947
1306130.9999Escherichia coli from healthy farm animals: Antimicrobial resistance, resistance genes and mobile genetic elements. The use of antibiotics in agriculture and subsequent environmental pollution are associated with the emergence and spread of multidrug-resistant (MDR) bacteria including Escherichia coli. The aim of this study was to detect antimicrobial resistance, resistance genes and mobile genetic elements of 72 E. coli strains isolated from faeces of healthy farm animals. Disk diffusion test showed resistance to ampicillin (59.7%), tetracycline (48.6%), chloramphenicol (16.7%), cefoperazone and ceftriaxone (13.9%), cefepime and aztreonam (12.5%), norfloxacin and ciprofloxacin (8.3%), levofloxacin (6.9%), gentamicin and amikacin (2.8%) among the studied strains. Antibiotic resistance genes (ARGs) were detected by polymerase chain reaction: the prevalence of blaTEM was the highest (59.7% of all strains), followed by tetA (30.6%), blaCTX-M (11.1%), catA1 (9.7%), less than 5% strains contained blaSHV, cmlA, floR, qnrB, qnrS, tetM. 26.4% of E. coli strains had a MDR phenotype. MDR E. coli more often contained class 1 integrons, bacteriophages, conjugative F-like plasmids, than non-MDR strains. ARGs were successfully transferred from faecal E. coli strains into the E. coli Nissle 1917 N4i strain by conjugation. Conjugation frequencies varied from (1.0 ± 0.1) * 10-5 to (7.9 ± 2.6) * 10-4 per recipient. Monitoring mobile genetic elements of E. coli for antibiotic resistance is important for farm animal health, as well as for public health and food safety.202439259602
1084140.9999The emergence of colistin-resistant Escherichia coli in chicken meats in Nepal. The emergence and dissemination of colistin resistance among Gram-negative bacteria is a global problem. We initiated a surveillance of colistin-resistant and -susceptible Escherichia coli in raw meats from chicken in Nepal. A total of 180 meat samples were collected; from these, 60 E. coli strains were isolated (33.33%), of which 16 (26.66%) were colistin-resistant and harboured the mcr-1 gene. All isolates were characterised by antibiotic susceptibility testing, the presence of antibiotic resistance genes, phylogenetic analysis and plasmid replicon typing. Most of the colistin-resistant E. coli had the antibiotic resistant pattern CIP/CN/SXT/TE (43.75%). Coexistence of tet, qnr, sul and dfr genes was detected in both colistin-resistant and -susceptible E. coli. Most colistin-resistant E. coli strains belonged to phylogroup C, whereas 10% of isolates belonged to phylogroup D. Inc FIB was the dominant plasmid Inc type in the isolates. Dissemination of antibiotic-resistant E. coli in raw meats is a public health concern in Nepal and requires further investigation to ascertain the sources of contamination.201931755930
2969150.9999Colistin-Resistant Escherichia coli Isolated from Houseflies and Feces of Cattle and Pigs at a Slaughterhouse in Lima, Peru. Background: Pigs and cattle have been implicated as reservoirs of antimicrobial resistance genes (ARGs) that can spread to humans, and houseflies are considered potential carriers of bacteria with ARGs that could contribute to their spread to the environment, including food, animals, and humans. Methods: In this study, 107, 145, and 127 Escherichia coli strains were isolated from houseflies, pigs, and cattle, respectively, from a slaughterhouse in Lima, Peru. Antimicrobial susceptibility testing was performed using the Kirby-Bauer method, where thirteen antibiotics were used. Strains were also plated on CHROMagar COL-APSE agar, and colistin's minimum inhibitory concentration (MIC) was determined. Colistin-resistant E. coli strains were subjected to whole genome sequencing. Results: 7.8% (8/107), 1.38% (2/145), and 0.79% (1/127) of E. coli strains isolated from houseflies, pigs, and cattle, respectively, were resistant to colistin (MIC ≥ 4 µg/mL). ARGs associated with resistance to more than 6 different antibiotic classes were identified, including tetracyclines, beta-lactams, fluoroquinolones, nitroimidazoles, trimethoprim and amphenicols. Conclusions: This study suggests that flies could contribute to the dissemination of ARG carrying bacteria and shows the potential risk of animals and meat production systems as reservoirs of ARG carrying bacteria.202540868012
1012160.9999Antimicrobial resistance profile and prevalence of extended-spectrum beta-lactamases (ESBL), AmpC beta-lactamases and colistin resistance (mcr) genes in Escherichia coli from swine between 1999 and 2018. The frequent usage of antibiotics in livestock has led to the spread of resistant bacteria within animals and their products, with a global warning in public health and veterinarians to monitor such resistances. This study aimed to determine antibiotic resistance patterns and genes in pig farms from Spain during the last twenty years. Susceptibility to six antibiotics commonly used in pig production was tested by qualitative (disk diffusion) and quantitative (minimum inhibitory concentration, MIC) methods in 200 strains of Escherichia coli which had been isolated between 1999 and 2018 from clinical cases of diarrhoea in neonatal and post-weaned piglets. Results showed resistance around 100% for amoxicillin and tetracycline since 1999, and a progressive increase in ceftiofur resistance throughout the studied period. For colistin, it was detected a resistance peak (17.5% of the strains) in the 2011-2014 period. Concerning gentamicin, 11 of 30 strains with intermediate susceptibility by the disk diffusion method were resistant by MIC. Besides, the most frequent antimicrobial resistance genes were the extended-spectrum beta-lactamase (ESBL) bla (CTX-M) (13.5% of strains, being CTX-M-14, CTX-M-1 and CTX-M-32 the most prevalent genomes, followed by CTX-M-27, CTX-M-9 and CTX-M-3), AmpC-type beta-lactamase (AmpC) bla (CMY-2) (3%) and colistin resistance genes mcr-4 (13%), mcr-1 (7%) and in less proportion mcr-5 (3%). Interestingly, these mcr genes were already detected in strains isolated in 2000, more than a decade before their first description. However, poor concordance between the genotypic mcr profile and the phenotypical testing by MIC was found in this study. These results indicate that although being a current concern, resistance genes and therefore antimicrobial resistant phenotypes were already present in pig farms at the beginning of the century.202032266079
1614170.9999Dissemination of Multidrug-Resistant Commensal Escherichia coli in Feedlot Lambs in Southeastern Brazil. Antimicrobial resistance (AR) is a public health issue since it limits the choices to treat infections by Escherichia coli in humans and animals. In Brazil, the ovine meat market has grown in recent years, but studies about AR in sheep are still scarce. Thus, this study aims to investigate the presence of AR in E. coli isolated from lambs during feedlot. To this end, feces from 112 lambs with 2 months of age, after weaning, were collected on the first day of the animals in the feedlot (day 0), and on the last day before slaughtering (day 42). Isolates were selected in MacConkey agar supplemented with 4 mg/L of ceftiofur and identified by biochemical methods. Isolates were submitted to an antimicrobial susceptibility test by disc-diffusion and PCR to investigate genes for phylogenetic group, virulence determinants and resistance to the several antimicrobial classes tested. The genetic localization of the bla genes detected was elucidated by S1-PFGE followed by Southern blot-hybridizations. The isolates were typed by XbaI-PFGE and MLST methods. Seventy-eight E. coli were isolated from 8/112 (7.1%) animals on day 0, and from 55/112 (49.1%) animals on day 42. Since only fimH was present in almost all E. coli (97.4%) as a virulence gene, and also 88.5% belonged to phylogroups B1 or A, we consider that isolates represent intestinal commensal bacteria. The dendrogram separated the 78 non-virulent isolates in seven clusters, two of which comprised 50 E. coli belonging to ST/CC 1727/446 or ST 3994 recovered on day 42 commonly harboring the genotype bla (CMY -2)-aac(3)-IIa -tetA-sul1-sul2-floR-cmlA. Special attention should be given to the presence of bla (CTX-M-15), a worldwide gene spread, and bla (CTX-M-14), a hitherto undetected gene in Enterobacteriaceae from food-producing animals in Brazil. Importantly, E. coli lineages and plasmids carrying bla genes detected here have already been reported as sources of infection in humans either from animals, food, or the environment, which raises public health concerns. Hence, two types of commensal E. coli carrying important AR genes clearly prevailed during feedlot, but lambs are also reservoirs of bacteria carrying important AR genes such as bla (CTX-M-14) and bla (CTX-M-15), mostly related to antimicrobial treatment failure.201931293542
2624180.9999Dissemination of ESBL-producing Escherichia coli of chicken origin to the nearby river water. The dissemination of drug-resistant bacteria from animal farms to aquatic environments can pose a potential threat to public health. In this study, antimicrobial resistance, resistance genes, and genetic similarity of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli of different origins (chicken feces and upstream and downstream river waters) were analyzed to track the spread of drug-resistant bacteria of animals. The results showed that a total of 29 ESBL-producing E. coli were obtained from 258 samples, and isolation rates of the ESBL-producing E. coli from chicken feces and upstream and downstream waters were 10.7% (16/150), 3.7% (1/27), and 14.8% (12/81), respectively. The ESBL-producing E. coli from upstream water was resistant to 7 antibiotics, but isolates from feces and downstream water had a higher resistance rate. In 29 ESBL-producing E. coli, the most common gene was CTX-M and the SHV gene was not detected. Five ESBL-producing isolates from downstream water showed >90% similarity with the fecal isolates, while the only one isolate from upstream water had <70% similarity with fecal isolates. The results suggest that animal farms' effluent, especially the untreated wastewater, could contribute to the spread of resistance genes.201425277838
1197190.9999Sink survey to investigate multidrug resistance pattern of common foodborne bacteria from wholesale chicken markets in Dhaka city of Bangladesh. Antimicrobial resistance (AMR) among foodborne bacteria is a well-known public health problem. A sink survey was conducted to determine the AMR pattern of common foodborne bacteria in cloacal swab of broiler chickens and sewage samples from five wholesale chicken markets of Dhaka city in Bangladesh. Bacteria were identified by culture-based and molecular methods, and subjected to antimicrobial susceptibility testing. Resistance genes were identified by multiplex PCR and sequencing. Multidrug resistance (MDR) was observed in 93.2% of E. coli, 100% of Salmonella spp., and 97.2% of S. aureus from cloacal swab samples. For sewage samples, 80% of E. coli, and 100% of Salmonella and S. aureus showed MDR. Noteworthy, 8.3% of S. aureus from cloacal swab samples showed possible extensively drug resistance. Antimicrobial resistance genes (beta-lactamase-blaTEM, blaSHV; quinolone resistance gene-qnrS) were detected in a number of E. coli and Salmonella isolates from cloacal swab and sewage samples. The methicillin resistance gene (mecA) was detected in 47.2% and 25% S. aureus from cloacal swab and sewage samples, respectively. The findings envisage the potential public health risk and environmental health hazard through spillover of common foodborne MDR bacteria.202235752640