# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1143 | 0 | 1.0000 | Antimicrobial Resistance and Virulence Profiles of mcr-1-Positive Escherichia coli Isolated from Swine Farms in Heilongjiang Province of China. ABSTRACT: The emergence and global distribution of the mcr-1 gene for colistin resistance have become a public concern because of threats to the role of colistin as the last line of defense against some bacteria. Because of the prevalence of mcr-1-positive Escherichia coli isolates in food animals, production of these animals has been regarded as one of the major sources of amplification and spread of mcr-1. In this study, 249 E. coli isolates were recovered from 300 fecal samples collected from swine farms in Heilongjiang Province, People's Republic of China. Susceptibility testing revealed that 186 (74.70%) of these isolates were colistin resistant, and 86 were positive for mcr-1. The mcr-1-positive isolates had extensive antimicrobial resistance profiles and additional resistance genes, including blaTEM, blaCTX-M, aac3-IV, tet(A), floR, sul1, sul2, sul3, and oqxAB. No mutations in genes pmrAB and mgrB were associated with colistin resistance. Phylogenetic group analysis revealed that the mcr-1-positive E. coli isolates belonged to groups A (52.33% of isolates), B1 (33.72%), B2 (5.81%), and D (8.14%). The prevalence of the virulence-associated genes iutA, iroN, fimH, vat, ompA, and traT was moderate. Seven mcr-1-positive isolates were identified as extraintestinal pathogenic. Among 20 mcr-1-positive E. coli isolates, multilocus sequence typing revealed that sequence type 10 was the most common (five isolates). The conjugation assays revealed that the majority of mcr-1 genes were transferable at frequencies of 7.05 × 10-7 to 7.57 × 10-4. The results of this study indicate the need for monitoring and minimizing the further dissemination of mcr-1 among E. coli isolates in food animals, particularly swine. | 2020 | 32730609 |
| 1145 | 1 | 0.9999 | Abundance of Mobilized Colistin Resistance Gene (mcr-1) in Commensal Escherichia coli from Diverse Sources. Aims: Antimicrobial resistance (AMR) spreads not only by pathogenic but also by commensal bacteria, and the latter can become a reservoir for resistance genes. This study was aimed to investigate the AMR patterns along with the presence of mobilized colistin resistance (mcr) genes in commensal Escherichia coli circulating in chickens, farm environments, street foods, and human patients. Materials and Methods: By a cross-sectional survey, isolates obtained from 530 samples were tested for their AMR profiles against 9 antimicrobials. Minimum inhibitory concentration (MIC) of the phenotypically colistin-resistant isolates was determined and screened for a set of mcr genes followed by sequencing of mcr-1 gene in the multidrug-resistant (MDR) isolates. Results: A total of 313 E. coli strains were isolated and confirmed by polymerase chain reaction. Antimicrobial susceptibility testing revealed that about 98% (confidence interval [95% CI] 95-99) of the isolates were MDR, and 58% (95% CI 52-63) isolates exhibited resistance to colistin. MIC values of colistin against the isolates ranged from 4 to 64 mg/L. Except for human patients, 20.4% colistin-resistant isolates from other sources of isolation had mcr-1 gene. Conclusions: There is abundance of commensal MDR E. coli strains with the acquisition of mcr-1 gene circulating in chickens and farm environments in Bangladesh. | 2021 | 33909471 |
| 1084 | 2 | 0.9999 | The emergence of colistin-resistant Escherichia coli in chicken meats in Nepal. The emergence and dissemination of colistin resistance among Gram-negative bacteria is a global problem. We initiated a surveillance of colistin-resistant and -susceptible Escherichia coli in raw meats from chicken in Nepal. A total of 180 meat samples were collected; from these, 60 E. coli strains were isolated (33.33%), of which 16 (26.66%) were colistin-resistant and harboured the mcr-1 gene. All isolates were characterised by antibiotic susceptibility testing, the presence of antibiotic resistance genes, phylogenetic analysis and plasmid replicon typing. Most of the colistin-resistant E. coli had the antibiotic resistant pattern CIP/CN/SXT/TE (43.75%). Coexistence of tet, qnr, sul and dfr genes was detected in both colistin-resistant and -susceptible E. coli. Most colistin-resistant E. coli strains belonged to phylogroup C, whereas 10% of isolates belonged to phylogroup D. Inc FIB was the dominant plasmid Inc type in the isolates. Dissemination of antibiotic-resistant E. coli in raw meats is a public health concern in Nepal and requires further investigation to ascertain the sources of contamination. | 2019 | 31755930 |
| 1142 | 3 | 0.9999 | Virulence Determinants and Plasmid-Mediated Colistin Resistance mcr Genes in Gram-Negative Bacteria Isolated From Bovine Milk. A major increase of bacterial resistance to colistin, a last-resort treatment for severe infections, was observed globally. Using colistin in livestock rearing is believed to be the ground of mobilized colistin resistance (mcr) gene circulation and is of crucial concern to public health. This study aimed to determine the frequency and virulence characteristics of colistin-resistant Gram-negative bacteria from the milk of mastitic cows and raw unpasteurized milk in Egypt. One hundred and seventeen strains belonging to Enterobacteriaceae (n = 90), Pseudomonas aeruginosa (n = 10), and Aeromonas hydrophila (n = 17) were screened for colistin resistance by antimicrobial susceptibility testing. The genetic characteristics of colistin-resistant strains were investigated for mcr-1-9 genes, phylogenetic groups, and virulence genes. Moreover, we evaluated four commonly used biocides in dairy farms for teat disinfection toward colistin-resistant strains. Multidrug-resistant (MDR) and extensive drug-resistant (XDR) phenotypes were detected in 82.91% (97/117) and 3.42% (4/117) of the isolates, respectively. Of the 117 tested isolates, 61 (52.14%) were colistin resistant (MIC >2 mg/L), distributed as 24/70 (34.29%) from clinical mastitis, 10/11 (90.91%) from subclinical mastitis, and 27/36 (75%) from raw milk. Of these 61 colistin-resistant isolates, 47 (19 from clinical mastitis, 8 from subclinical mastitis, and 20 from raw milk) harbored plasmid-borne mcr genes. The mcr-1 gene was identified in 31.91%, mcr-2 in 29.79%, mcr-3 in 34.04%, and each of mcr-4 and mcr-7 in 2.13% of the colistin-resistant isolates. Among these isolates, 42.55% (20/47) were E. coli, 21.28% (10/47) A. hydrophila, 19.12% (9/47) K. pneumoniae, and 17.02% (8/47) P. aeruginosa. This is the first report of mcr-3 and mcr-7 in P. aeruginosa. Conjugation experiments using the broth-mating technique showed successful transfer of colistin resistance to E. coli J53-recipient strain. Different combinations of virulence genes were observed among colistin-resistant isolates with almost all isolates harboring genes. Hydrogen peroxide has the best efficiency against all bacterial isolates even at a low concentration (10%). In conclusion, the dissemination of mobile colistin resistance mcr gene and its variants between MDR- and XDR-virulent Gram-negative isolates from dairy cattle confirms the spread of mcr genes at all levels; animals, humans, and environmental, and heralds the penetration of the last-resort antimicrobial against MDR bacteria. Consequently, a decision to ban colistin in food animals is urgently required to fight XDR and MDR bacteria. | 2021 | 34888259 |
| 1146 | 4 | 0.9999 | Molecular detection and prevalence of colistin-resistant Escherichia coli in poultry and humans: a one health perspective. Multidrug-resistant (MDR) bacteria significantly threaten humans and animals worldwide. Colistin is the last resort of antibiotics against gram-negative bacterial infections. Its irrational use in poultry is a major factor in transmitting MDR bacteria to humans. The present study investigated the risk factors, prevalence, and molecular detection of colistin resistance associated with poultry and humans. A total of (n = 140) cloacal swabs from chickens and human stool samples (n = 140) were processed to identify E. coli using conventional methods, followed by genotypic confirmation. Phenotypic and genotypic confirmation of antibiotic resistance genes qnrA, blaTEM, tetA, aadA, and mcr genes was performed on these E. coli isolates. These isolates were confirmed at 69.3% and 62.8% in chickens and humans, respectively. Limited education and poor hygiene significantly increased the infection rate (p = 0.0001). The E. coli isolates from commercial poultry showed 100% resistance to amoxicillin/clavulanic acid, 98.9% to ampicillin, and 93.8% to tetracycline. The E. coli isolates from humans exhibited 90% resistance to ciprofloxacin, 88% to ampicillin, and 85% to ceftriaxone. Among these, MDR E. coli isolates of both commercial poultry and humans, colistin resistance was found in 78.6% and 48.1%, respectively. Genotypic confirmation of mcr genes such as mcr-1 (42%), mcr-2 (19.6%), mcr-3 (15.1%), mcr-4 (7.6%), and mcr-5 (4.5%) in commercial poultry. However, only the mcr-1 (15.6%) gene was found in human isolates. The current study findings highlight the prevalence of mcr genes in E. coli, potentially contributing to broader antibiotic resistance concerns. | 2025 | 40956559 |
| 1153 | 5 | 0.9999 | Antimicrobial resistance, virulence factors and genetic diversity of Escherichia coli isolates from household water supply in Dhaka, Bangladesh. BACKGROUND: Unsafe water supplies continue to raise public health concerns, especially in urban areas in low resource countries. To understand the extent of public health risk attributed to supply water in Dhaka city, Bangladesh, Escherichia coli isolated from tap water samples collected from different locations of the city were characterized for their antibiotic resistance, pathogenic properties and genetic diversity. METHODOLOGY/PRINCIPAL FINDINGS: A total of 233 E. coli isolates obtained from 175 tap water samples were analysed for susceptibility to 16 different antibiotics and for the presence of genes associated with virulence and antibiotic resistance. Nearly 36% (n = 84) of the isolates were multi-drug(≥ 3 classes of antibiotics) resistant (MDR) and 26% (n = 22) of these were positive for extended spectrum β-lactamase (ESBL). Of the 22 ESBL-producers, 20 were positive for bla CTX-M-15, 7 for bla OXA-1-group (all had bla OXA-47) and 2 for bla CMY-2. Quinolone resistance genes, qnrS and qnrB were detected in 6 and 2 isolates, respectively. Around 7% (n = 16) of the isolates carried virulence gene(s) characteristic of pathogenic E. coli; 11 of these contained lt and/or st and thus belonged to enterotoxigenic E. coli and 5 contained bfp and eae and thus belonged to enteropathogenic E. coli. All MDR isolates carried multiple plasmids (2 to 8) of varying sizes ranging from 1.2 to >120 MDa. Ampicillin and ceftriaxone resistance were co-transferred in conjugative plasmids of 70 to 100 MDa in size, while ampicillin, trimethoprim-sulfamethoxazole and tetracycline resistance were co-transferred in conjugative plasmids of 50 to 90 MDa. Pulsed-field gel electrophoresis analysis revealed diverse genetic fingerprints of pathogenic isolates. SIGNIFICANCE: Multi-drug resistant E. coli are wide spread in public water supply in Dhaka city, Bangladesh. Transmission of resistant bacteria and plasmids through supply water pose serious threats to public health in urban areas. | 2013 | 23573295 |
| 2972 | 6 | 0.9999 | Genetic characterisation of class 1 integrons among multidrug-resistant Salmonella serotypes in broiler chicken farms. OBJECTIVES: Antimicrobial resistance in Salmonella serotypes has been reported. Integrons play an important role in the dissemination of antimicrobial resistance genes in bacteria. Scarce literature is available on the identification of integrons in Salmonella isolated from broiler chickens. In this study, antimicrobial susceptibility testing and characterisation of class 1 integrons among multidrug-resistant (MDR) Salmonella enterica serotypes in broiler chicken farms in Egypt were performed. METHODS: Antimicrobial susceptibility was determined by the disk diffusion method. PCR was performed to detect antimicrobial resistance genes and class 1 integrons in the tested Salmonella serotypes. Gene sequencing of the variable region of a class 1 integron was performed. RESULTS: Salmonella spp. were detected in 26 (13.5%) of 192 broiler samples, with Salmonella Enteritidis being the most frequently detected serotype, followed by Salmonella Kentucky and Salmonella Typhimurium and other serotypes. A very high resistance rate was observed to trimethoprim/sulfamethoxazole (100%), whilst a low resistance rate was observed to cefuroxime (57.7%). MDR S. enterica isolates displayed resistance to ciprofloxacin and azithromycin. Class 1 integrons were detected in 20 (76.9%) of the 26 Salmonella isolates. A high prevalence of class 1 integrons, as the first recorded percentage in the literature, associated with MDR Salmonella isolates was observed. CONCLUSIONS: Antimicrobial resistance rates in Salmonella serotypes from broiler chicken farms were alarming, especially for ciprofloxacin and azithromycin. Thus, another therapeutic strategy other than antimicrobials is recommended to prevent outbreaks of MDR Salmonella. | 2018 | 29684574 |
| 1010 | 7 | 0.9999 | Prevalence of Antibiotic Resistance and Virulence Genes in Escherichia coli Carried by Migratory Birds on the Inner Mongolia Plateau of Northern China from 2018 to 2023. (1) Background: Antibiotic resistance in bacteria is an urgent global threat to public health. Migratory birds can acquire antibiotic-resistant and pathogenic bacteria from the environment or through contact with each other and spread them over long distances. The objectives of this study were to explore the relationship between migratory birds and the transmission of drug-resistant pathogenic Escherichia coli. (2) Methods: Faeces and swab samples from migratory birds were collected for isolating E. coli on the Inner Mongolia Plateau of northern China from 2018 to 2023. The resistant phenotypes and spectra of isolates were determined using a BD Phoenix 100 System. Conjugation assays were performed on extended-spectrum β-lactamase (ESBL)-producing strains, and the genomes of multidrug-resistant (MDR) and ESBL-producing isolates were sequenced and analysed. (3) Results: Overall, 179 isolates were antibiotic-resistant, with 49.7% MDR and 14.0% ESBL. Plasmids were successfully transferred from 32% of ESBL-producing strains. Genome sequencing analysis of 91 MDR E. coli strains identified 57 acquired resistance genes of 13 classes, and extraintestinal pathogenic E. coli and avian pathogenic E. coli accounted for 26.4% and 9.9%, respectively. There were 52 serotypes and 54 sequence types (STs), including ST48 (4.4%), ST69 (4.4%), ST131 (2.2%) and ST10 (2.2%). The international high-risk clonal strains ST131 and ST10 primarily carried bla(CTX-M-27) and bla(TEM-176). (4) Conclusions: There is a high prevalence of multidrug-resistant virulent E. coli in migratory birds on the Inner Mongolian Plateau. This indicates a risk of intercontinental transmission from migratory birds to livestock and humans. | 2024 | 38930458 |
| 1013 | 8 | 0.9999 | Molecular detection and antimicrobial resistance profiles of Extended-Spectrum Beta-Lactamase (ESBL) producing Escherichia coli in broiler chicken farms in Malaysia. Antimicrobial resistance is one of the major public health threats globally. This challenge has been aggravated with the overuse and misuse of antibiotics in food animals and humans. The present study aimed to investigate the prevalence of Extended-Spectrum β-lactamase (ESBL) genes in Escherichia coli (E. coli) isolated from broiler chickens in Kelantan, Malaysia. A total of 320 cloacal swabs were collected from farms in different districts of Kelantan and were analyzed using routine bacteriology, antimicrobial susceptibility test, and molecular techniques for further identification and characterization of ESBL encoding genes. Based on PCR detection for the E. coli species-specific Pho gene, 30.3% (97/320) of isolates were confirmed as E. coli, and 84.5% (82/97) of the isolates were positive for at least one ESBL gene. Majority of the isolates, 62.9% (61/97) were harboring blaCTX-M followed by 45.4% (44/97) of blaTEM genes, while 16.5% (16/97) of the isolates were positive for both mcr-1 and ESBL genes. Overall, 93.8% (90/97) of the E. coli were resistant to three or more antimicrobials; indicating that the isolates were multi-drug resistance. 90.7% of multiple antibiotic resistance (MAR) index value greater than 0.2, would also suggest the isolates were from high-risk sources of contamination. The MLST result shows that the isolates are widely diverse. Our findings provide insight into the alarmingly high distribution of antimicrobial resistant bacteria, mainly ESBL producing E. coli in apparently healthy chickens indicating the role of food animals in the emergence and spread of antimicrobial resistance, and the potential public health threats it may pose. | 2023 | 37205716 |
| 1614 | 9 | 0.9999 | Dissemination of Multidrug-Resistant Commensal Escherichia coli in Feedlot Lambs in Southeastern Brazil. Antimicrobial resistance (AR) is a public health issue since it limits the choices to treat infections by Escherichia coli in humans and animals. In Brazil, the ovine meat market has grown in recent years, but studies about AR in sheep are still scarce. Thus, this study aims to investigate the presence of AR in E. coli isolated from lambs during feedlot. To this end, feces from 112 lambs with 2 months of age, after weaning, were collected on the first day of the animals in the feedlot (day 0), and on the last day before slaughtering (day 42). Isolates were selected in MacConkey agar supplemented with 4 mg/L of ceftiofur and identified by biochemical methods. Isolates were submitted to an antimicrobial susceptibility test by disc-diffusion and PCR to investigate genes for phylogenetic group, virulence determinants and resistance to the several antimicrobial classes tested. The genetic localization of the bla genes detected was elucidated by S1-PFGE followed by Southern blot-hybridizations. The isolates were typed by XbaI-PFGE and MLST methods. Seventy-eight E. coli were isolated from 8/112 (7.1%) animals on day 0, and from 55/112 (49.1%) animals on day 42. Since only fimH was present in almost all E. coli (97.4%) as a virulence gene, and also 88.5% belonged to phylogroups B1 or A, we consider that isolates represent intestinal commensal bacteria. The dendrogram separated the 78 non-virulent isolates in seven clusters, two of which comprised 50 E. coli belonging to ST/CC 1727/446 or ST 3994 recovered on day 42 commonly harboring the genotype bla (CMY -2)-aac(3)-IIa -tetA-sul1-sul2-floR-cmlA. Special attention should be given to the presence of bla (CTX-M-15), a worldwide gene spread, and bla (CTX-M-14), a hitherto undetected gene in Enterobacteriaceae from food-producing animals in Brazil. Importantly, E. coli lineages and plasmids carrying bla genes detected here have already been reported as sources of infection in humans either from animals, food, or the environment, which raises public health concerns. Hence, two types of commensal E. coli carrying important AR genes clearly prevailed during feedlot, but lambs are also reservoirs of bacteria carrying important AR genes such as bla (CTX-M-14) and bla (CTX-M-15), mostly related to antimicrobial treatment failure. | 2019 | 31293542 |
| 1152 | 10 | 0.9999 | Gut Commensal Escherichia coli, a High-Risk Reservoir of Transferable Plasmid-Mediated Antimicrobial Resistance Traits. BACKGROUND: Escherichia coli (E. coli), the main human gut microorganism, is one of the evolved superbugs because of acquiring antimicrobial resistance (AMR) determinants via horizontal gene transfer (HGT). PURPOSE: This study aimed to screen isolates of gut commensal E. coli from healthy adult individuals for antimicrobial susceptibility and plasmid-mediated AMR encoding genes. METHODS: Gut commensal E. coli bacteria were isolated from fecal samples that were taken from healthy adult individuals and investigated phenotypically for their antimicrobial susceptibility against diverse classes of antimicrobials using the Kirby Bauer disc method. PCR-based molecular assays were carried out to detect diverse plasmid-carried AMR encoding genes and virulence genes of different E. coli pathotypes (eaeA, stx, ipaH, est, elt, aggR and pCVD432). The examined AMR genes were β-lactam resistance encoding genes (bla (CTX-M1), bla (TEM), bla (CMY-2)), tetracycline resistance encoding genes (tetA, tetB), sulfonamides resistance encoding genes (sul1, sulII), aminoglycoside resistance encoding genes (aac(3)-II, aac(6')-Ib-cr) and quinolones resistance encoding genes (qnrA, qnrB, qnrS). RESULTS: PCR results revealed the absence of pathotypes genes in 56 isolates that were considered gut commensal isolates. E. coli isolates showed high resistance rates against tested antimicrobial agents belonging to both β-lactams and sulfonamides (42/56, 75%) followed by quinolones (35/56, 62.5%), tetracyclines (31/56, 55.4%), while the lowest resistance rate was to aminoglycosides (24/56, 42.9%). Antimicrobial susceptibility profiles revealed that 64.3% of isolates were multidrug-resistant (MDR). High prevalence frequencies of plasmid-carried AMR genes were detected including bla (TEM) (64%) sulI (60.7%), qnrA (51.8%), aac(3)-II (37.5%), and tetA (46.4%). All isolates harbored more than one gene with the most frequent genetic profile among isolates was bla (TEM)-bla (CTX-M1-like)-qnrA-qnrB-tetA-sulI. CONCLUSION: Results are significant in the evaluation of plasmid-carried AMR genes in the human gut commensal E. coli, suggesting a potential human health risk and the necessity of strict regulation of the use of antibiotics in Egypt. Commensal E. coli bacteria may constitute a potential reservoir of AMR genes that can be transferred to other bacterial species. | 2022 | 35321080 |
| 1144 | 11 | 0.9999 | Identification of mcr-2 and mcr-3 Genes in Colistin-Resistant E. coli O157:H7 Isolated From Raw Meat Samples in Beirut, Lebanon. Colistin is a last-resort antibiotic used to treat multidrug-resistant Gram-negative bacterial infections. The global emergence of colistin resistance has been attributed to plasmid-mediated mobile colistin resistance (mcr) genes. In Lebanon, bacteria carrying the mcr-1 gene have increasingly been identified in food animal sources. This study is aimed at detecting colistin-resistant Shiga toxigenic Escherichia coli O157:H7 in raw meat samples from local markets in the suburbs of Beirut and evaluating their antimicrobial resistance profiles. A total of 50 meat samples, including 25 minced beef and 25 burger samples, were collected and analyzed. Antimicrobial resistance patterns were determined using the Kirby-Bauer method, while colistin resistance and the presence of mcr-2 and mcr-3 genes were assessed using broth microdilution and PCR amplification techniques. Among these samples, 23 (46%) tested positive for E. coli O157:H7. Resistance to ampicillin and amoxicillin/clavulanic acid was observed in 96% of the samples, while 61% were resistant to trimethoprim/sulfamethoxazole, and 43% to chloramphenicol. Notably, 87% of the samples displayed colistin resistance, with a minimum inhibitory concentration (MIC) of ≥ 4 μg/mL. The mcr-2 gene was present in four isolates (17.4%), and the mcr-3 gene was identified in 10 isolates (43.4%). This study is the first to document the presence of plasmid-mediated colistin resistance genes, mcr-2 and mcr-3, in E. coli O157:H7 strains in Lebanon. These findings highlight a serious public health concern for the Lebanese community. Therefore, the responsible use of antibiotics across all healthcare sectors, combined with strict hygiene measures in food handling, is essential to control the spread of colistin-resistant genes. | 2025 | 40226838 |
| 1613 | 12 | 0.9999 | Research note: Occurrence of mcr-encoded colistin resistance in Escherichia coli from pigs and pig farm workers in Vietnam. WHO considers colistin as a highest priority critically important drug for human health, and occurrence of colistin-resistant bacteria in livestock is of health concern. The current study determined occurrence of colistin-resistant Escherichia coli in pigs and workers at pig farms in Vietnam, and investigated the genetic background for resistance. Colistin-resistant E. coli were detected from pigs in 53/116 (45.7%) farms, and from workers taking care of the pigs in 21/94 (22.3%) farms. Colistin-resistant isolates showed MIC to colistin between 4-16 mg/L, they were multidrug resistant (99%) and resistance was caused by the presence of mcr-1 genes in 97/102 (95.1%) E. coli from pigs and in 31/34 (91.1%) isolates from humans. mcr-1 is considered a plasmid-encoded gene, but this was not confirmed in the current investigation. In total, one pig isolate carried both mcr-1 and mcr-3 genes, whereas mcr-2, mcr-4 and mcr-5 genes were not detected. Shared resistance profiles between pig and human isolates on the same farm was only observed in four farms. The study showed that commensal E. coli from pigs in Vietnam constitute a reservoir for colistin-resitant E. coli, however, further studies are needed to confirm that mcr genes are associated with plasmids and their importance for human health. | 2020 | 37333956 |
| 1140 | 13 | 0.9999 | High abundance of the colistin resistance gene mcr-1 in chicken gut-bacteria in Bangladesh. Colistin is considered a last-resort reserved drug for the treatment of critical human infections by Gram-negative bacteria. Phenotypic colistin-resistance is strongly associated with plasmid-mediated mobile colistin resistance (mcr) genes. The mcr-bearing Enterobacteriaceae have been detected in many countries from environments, animals, and humans. This study investigated phenotypic colistin-resistance and the distribution of mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5 genes in chicken-gut bacteria in Bangladesh. Bacteria were isolated from poultry- and native-chicken droppings, and their susceptibilities to colistin were determined by agar dilution and E-test minimal inhibitory concentration (MIC) measurements. Multiplex polymerase chain reactions detected mcr-1 to mcr-5 genes. Overall, 61.7% (92/149) of the isolates showed colistin resistance by agar dilution assessment (MIC > 2.0 μg/mL). The phenotypic resistance was observed considerably higher in poultry-chicken isolates (64.6%, 64/99) than in native-chicken isolates (56%, 28/50; p = 0.373). All the resistant isolates showed MIC levels between > 2 and > 128 μg/mL. The mcr-genes (mcr-1and mcr-2 combined) were detected more in poultry gut bacteria (36.4%) than native-chicken isolates (20%, p = 0.06). Despite bacteria sources, mcr-genes appeared to be significantly associated with phenotypic colistin-resistance phenomena (p < 0.001). Prior colistin usage led to a substantial increase in the proportion of bacteria with mcr-genes and phenotypic resistance (p < 0.001). | 2020 | 33057111 |
| 1141 | 14 | 0.9999 | Abundance of Colistin-Resistance Genes in Retail Meats in Vietnam. The degree of contamination of retail meat with colistin-resistant bacteria and its potential contribution to dissemination within communities remains to be determined. Thus, we aimed to elucidate the contamination status of colistin-resistance genes, indicative of colistin-resistant bacteria, in retail meats in Vietnam. In total, 46 chicken and 49 pork meats from stores in Vietnam and Japan were examined. Multiplex real-time polymerase chain reaction with TaqMan probes was performed for detecting mcr-1, mcr-3, and Escherichia coli 16S rRNA. Colistin-resistant bacteria in meats were isolated using selective media. The minimum inhibitory concentrations of colistin were determined using the broth microdilution method. The results showed that 70.7% of chicken meats in Vietnam were contaminated with both mcr-1 and mcr-3. Meanwhile, mcr-1 and mcr-3 were detected in 15.9% and 40.9% of pork meat, respectively. Only mcr-3 was detected in 40% of chicken in Japan. In addition, mcr-1-harboring E. coli and mcr-3-harboring Aeromonas were isolated from chicken meats in Vietnam. Some of these isolates showed colistin resistance. These results showed that most retail meats were highly contaminated with colistin-resistance genes. Notably, our results suggest that mcr-3 is more prevalent in the contaminated samples compared with mcr-1. | 2024 | 38700849 |
| 1205 | 15 | 0.9999 | Prevalence and Genomic Investigation of Multidrug-Resistant Salmonella Isolates from Companion Animals in Hangzhou, China. Salmonella is a group of bacteria that constitutes the leading cause of diarrheal diseases, posing a great disease burden worldwide. There are numerous pathways for zoonotic Salmonella transmission to humans; however, the role of companion animals in spreading these bacteria is largely underestimated in China. We aimed to investigate the prevalence of Salmonella in pet dogs and cats in Hangzhou, China, and characterize the antimicrobial resistance profile and genetic features of these pet-derived pathogens. In total, 137 fecal samples of pets were collected from an animal hospital in Hangzhou in 2018. The prevalence of Salmonella was 5.8% (8/137) in pets, with 9.3% (5/54) of cats and 3.6% (3/83) of dogs being Salmonella positive. By whole-genome sequencing (WGS), in silico serotyping, and multilocus sequence typing (MLST), 26 pet-derived Salmonella isolates were identified as Salmonella Dublin (ST10, n = 22) and Salmonella Typhimurium (ST19, n = 4). All of the isolates were identified as being multidrug-resistant (MDR), by conducting antimicrobial susceptibility testing under both aerobic and anaerobic conditions. The antibiotics of the most prevalent resistance were streptomycin (100%), cotrimoxazole (100%), tetracycline (96.20%), and ceftriaxone (92.30%). Versatile antimicrobial-resistant genes were identified, including floR (phenicol-resistant gene), blaCTX-M-15, and blaCTX-M-55 (extended-spectrum beta-lactamase genes). A total of 11 incompatible (Inc) plasmids were identified, with IncA/C2, IncFII(S), and IncX1 being the most predominant among Salmonella Dublin, and IncFIB(S), IncFII(S), IncI1, and IncQ1 being the most prevailing among Salmonella Typhimurium. Our study applied WGS to characterize pet-derived Salmonella in China, showing the presence of MDR Salmonella in pet dogs and cats with a high diversity of ARGs and plasmids. These data indicate a necessity for the regular surveillance of pet-derived pathogens to mitigate zoonotic diseases. | 2022 | 35625269 |
| 1147 | 16 | 0.9999 | Detection and Characterisation of Colistin-Resistant Escherichia coli in Broiler Meats. The irrational use of antimicrobials has led to the emergence of resistance, impacting not only pathogenic bacteria but also commensal bacteria. Resistance against colistin, a last-resort antibiotic, mediated by globally disseminated plasmid-borne mobile colistin resistance (mcr) genes, has raised significant global concerns. This cross-sectional study aimed to investigate the antimicrobial resistance patterns of colistin-resistant Escherichia coli (E. coli) and mobilised colistin resistance (mcr 1-5) genes from broiler meat. A total of 570 broiler samples (285 liver and 285 muscle) were collected from 7 supermarkets and 11 live bird markets (LBMs) in Chattogram metropolitan areas of Bangladesh. The isolation and identification of E. coli were carried out using standard bacteriological and molecular techniques. Antimicrobial susceptibility testing (AST) was performed using the Kirby-Bauer disc diffusion method, and colistin's minimum inhibitory concentration (MIC) was determined by the broth microdilution (BMD) method. Colistin-resistant isolates were further tested for the presence of mcr (1-5) genes using polymerase chain reaction (PCR). Out of the 570 samples, 311 (54.56%; 95% confidence interval: 50.46-58.60) were positive for E. coli. AST results showed the highest resistance to sulphamethoxazole-trimethoprim (89.39%), while the highest susceptibility was observed for cefalexin (62.70%). A total of 296 isolates (95.18%) were found to be multidrug-resistant (MDR), with the multiple antibiotic resistance (MAR) index ranging from 0.38 to 1. Additionally, 41 isolates (13.18%) exhibited resistance to five antimicrobial classes, with resistance patterns of CIP + SXT + AMP + DO + TE + CT. A total of 233 isolates (74.92%) were resistant to colistin (MIC > 2 mg/L). A strong correlation between colistin resistance and the presence of the mcr-1 gene was observed (r = 1). All phenotypic colistin-resistant E. coli isolates carried the mcr-1 gene, while no isolates were positive for mcr (2-5). The detection of mcr genes in E. coli strains from poultry sources poses a significant risk, as these resistance genes can be transferred to humans through the food chain. The prevalence of multidrug-resistant Escherichia coli and the mcr-1 gene in poultry products in Bangladesh presents a significant public health and food safety concern. | 2024 | 39770738 |
| 1012 | 17 | 0.9999 | Antimicrobial resistance profile and prevalence of extended-spectrum beta-lactamases (ESBL), AmpC beta-lactamases and colistin resistance (mcr) genes in Escherichia coli from swine between 1999 and 2018. The frequent usage of antibiotics in livestock has led to the spread of resistant bacteria within animals and their products, with a global warning in public health and veterinarians to monitor such resistances. This study aimed to determine antibiotic resistance patterns and genes in pig farms from Spain during the last twenty years. Susceptibility to six antibiotics commonly used in pig production was tested by qualitative (disk diffusion) and quantitative (minimum inhibitory concentration, MIC) methods in 200 strains of Escherichia coli which had been isolated between 1999 and 2018 from clinical cases of diarrhoea in neonatal and post-weaned piglets. Results showed resistance around 100% for amoxicillin and tetracycline since 1999, and a progressive increase in ceftiofur resistance throughout the studied period. For colistin, it was detected a resistance peak (17.5% of the strains) in the 2011-2014 period. Concerning gentamicin, 11 of 30 strains with intermediate susceptibility by the disk diffusion method were resistant by MIC. Besides, the most frequent antimicrobial resistance genes were the extended-spectrum beta-lactamase (ESBL) bla (CTX-M) (13.5% of strains, being CTX-M-14, CTX-M-1 and CTX-M-32 the most prevalent genomes, followed by CTX-M-27, CTX-M-9 and CTX-M-3), AmpC-type beta-lactamase (AmpC) bla (CMY-2) (3%) and colistin resistance genes mcr-4 (13%), mcr-1 (7%) and in less proportion mcr-5 (3%). Interestingly, these mcr genes were already detected in strains isolated in 2000, more than a decade before their first description. However, poor concordance between the genotypic mcr profile and the phenotypical testing by MIC was found in this study. These results indicate that although being a current concern, resistance genes and therefore antimicrobial resistant phenotypes were already present in pig farms at the beginning of the century. | 2020 | 32266079 |
| 2974 | 18 | 0.9999 | Diversity of Virulence Genes in Multidrug Resistant Escherichia coli from a Hospital in Western China. BACKGROUND: Escherichia coli strains are the most commonly isolated bacteria in hospitals. The normally harmless commensal E. coli can become a highly adapted pathogen, capable of causing various diseases both in healthy and immunocompromised individuals, by acquiring a combination of mobile genetic elements. Our aim was to characterize E. coli strains from a hospital in western China to determine their virulence and antimicrobial resistance potential. METHODS: A total of 97 E. coli clinical isolates were collected from the First Affiliated Hospital of Chengdu Medical College from 2015 to 2016. Microbiological methods, PCR, and antimicrobial susceptibility tests were used in this study. RESULTS: The frequency of occurrence of the virulence genes fimC, irp2, fimH, fyuA, lpfA, hlyA, sat, and cnf1 in the E. coli isolates was 93.81, 92.78, 91.75, 84.54, 41.24, 32.99, 28.86, and 7.22%, respectively. Ninety-five (97.9%) isolates carried two or more different virulence genes. Of these, 44 (45.4%) isolates simultaneously harbored five virulence genes, 24 (24.7%) isolates harbored four virulence genes, and 17 (17.5%) isolates harbored six virulence genes. In addition, all E. coli isolates were multidrug resistant and had a high degree of antimicrobial resistance. CONCLUSION: These results indicate a high frequency of occurrence and heterogeneity of virulence gene profiles among clinical multidrug resistant E. coli isolates. Therefore, appropriate surveillance and control measures are essential to prevent the further spread of these isolates in hospitals. | 2019 | 31824179 |
| 2969 | 19 | 0.9999 | Colistin-Resistant Escherichia coli Isolated from Houseflies and Feces of Cattle and Pigs at a Slaughterhouse in Lima, Peru. Background: Pigs and cattle have been implicated as reservoirs of antimicrobial resistance genes (ARGs) that can spread to humans, and houseflies are considered potential carriers of bacteria with ARGs that could contribute to their spread to the environment, including food, animals, and humans. Methods: In this study, 107, 145, and 127 Escherichia coli strains were isolated from houseflies, pigs, and cattle, respectively, from a slaughterhouse in Lima, Peru. Antimicrobial susceptibility testing was performed using the Kirby-Bauer method, where thirteen antibiotics were used. Strains were also plated on CHROMagar COL-APSE agar, and colistin's minimum inhibitory concentration (MIC) was determined. Colistin-resistant E. coli strains were subjected to whole genome sequencing. Results: 7.8% (8/107), 1.38% (2/145), and 0.79% (1/127) of E. coli strains isolated from houseflies, pigs, and cattle, respectively, were resistant to colistin (MIC ≥ 4 µg/mL). ARGs associated with resistance to more than 6 different antibiotic classes were identified, including tetracyclines, beta-lactams, fluoroquinolones, nitroimidazoles, trimethoprim and amphenicols. Conclusions: This study suggests that flies could contribute to the dissemination of ARG carrying bacteria and shows the potential risk of animals and meat production systems as reservoirs of ARG carrying bacteria. | 2025 | 40868012 |