# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1137 | 0 | 1.0000 | Shigella Antimicrobial Drug Resistance Mechanisms, 2004-2014. To determine antimicrobial drug resistance mechanisms of Shigella spp., we analyzed 344 isolates collected in Switzerland during 2004-2014. Overall, 78.5% of isolates were multidrug resistant; 10.5% were ciprofloxacin resistant; and 2% harbored mph(A), a plasmid-mediated gene that confers reduced susceptibility to azithromycin, a last-resort antimicrobial agent for shigellosis. | 2016 | 27191035 |
| 1136 | 1 | 0.9998 | Multidrug-Resistant Shigella Infections in Patients with Diarrhea, Cambodia, 2014-2015. We observed multidrug resistance in 10 (91%) of 11 Shigella isolates from a diarrheal surveillance study in Cambodia. One isolate was resistant to fluoroquinolones and cephalosporins and showed decreased susceptibility to azithromycin. We found mutations in gyrA, parC, β-lactamase, and mphA genes. Multidrug resistance increases concern about shigellosis treatment options. | 2016 | 27532684 |
| 1142 | 2 | 0.9998 | Virulence Determinants and Plasmid-Mediated Colistin Resistance mcr Genes in Gram-Negative Bacteria Isolated From Bovine Milk. A major increase of bacterial resistance to colistin, a last-resort treatment for severe infections, was observed globally. Using colistin in livestock rearing is believed to be the ground of mobilized colistin resistance (mcr) gene circulation and is of crucial concern to public health. This study aimed to determine the frequency and virulence characteristics of colistin-resistant Gram-negative bacteria from the milk of mastitic cows and raw unpasteurized milk in Egypt. One hundred and seventeen strains belonging to Enterobacteriaceae (n = 90), Pseudomonas aeruginosa (n = 10), and Aeromonas hydrophila (n = 17) were screened for colistin resistance by antimicrobial susceptibility testing. The genetic characteristics of colistin-resistant strains were investigated for mcr-1-9 genes, phylogenetic groups, and virulence genes. Moreover, we evaluated four commonly used biocides in dairy farms for teat disinfection toward colistin-resistant strains. Multidrug-resistant (MDR) and extensive drug-resistant (XDR) phenotypes were detected in 82.91% (97/117) and 3.42% (4/117) of the isolates, respectively. Of the 117 tested isolates, 61 (52.14%) were colistin resistant (MIC >2 mg/L), distributed as 24/70 (34.29%) from clinical mastitis, 10/11 (90.91%) from subclinical mastitis, and 27/36 (75%) from raw milk. Of these 61 colistin-resistant isolates, 47 (19 from clinical mastitis, 8 from subclinical mastitis, and 20 from raw milk) harbored plasmid-borne mcr genes. The mcr-1 gene was identified in 31.91%, mcr-2 in 29.79%, mcr-3 in 34.04%, and each of mcr-4 and mcr-7 in 2.13% of the colistin-resistant isolates. Among these isolates, 42.55% (20/47) were E. coli, 21.28% (10/47) A. hydrophila, 19.12% (9/47) K. pneumoniae, and 17.02% (8/47) P. aeruginosa. This is the first report of mcr-3 and mcr-7 in P. aeruginosa. Conjugation experiments using the broth-mating technique showed successful transfer of colistin resistance to E. coli J53-recipient strain. Different combinations of virulence genes were observed among colistin-resistant isolates with almost all isolates harboring genes. Hydrogen peroxide has the best efficiency against all bacterial isolates even at a low concentration (10%). In conclusion, the dissemination of mobile colistin resistance mcr gene and its variants between MDR- and XDR-virulent Gram-negative isolates from dairy cattle confirms the spread of mcr genes at all levels; animals, humans, and environmental, and heralds the penetration of the last-resort antimicrobial against MDR bacteria. Consequently, a decision to ban colistin in food animals is urgently required to fight XDR and MDR bacteria. | 2021 | 34888259 |
| 968 | 3 | 0.9997 | Molecular analysis of antimicrobial resistance in gram-negative bacteria isolated from fish farms in Egypt. As little is known about antimicrobial resistance genes in fish farms, this study was conducted to monitor the incidence and prevalence of a wide range of antimicrobial resistance genes in Gram-negative bacteria isolated from water samples taken from fish farms in the northern part of Egypt. Ninety-one out of two hundred seventy-four (33.2%) non-repetitive isolates of Gram-negative bacteria showed multidrug resistance phenotypes and harbored at least one antimicrobial resistance gene. PCR and DNA sequencing results showed that 72 (26.3%) isolates contain tetracycline resistance genes and 19 (6.9%) isolates were positive for class 1 integrons with 12 different gene cassettes. The beta-lactamase-encoding genes were identified in 14 (5.1%) isolates. The plasmid-mediated quinolone resistance genes, qnr and aac(6')-Ib-cr, were identified in 16 (5.8%) and 3 (1.1%) isolates, respectively. Finally, the florphenicol resistance gene, floR, was identified in four (1.5%) isolates. To the best of our knowledge, this is the first report for molecular characterization of antimicrobial resistance in Gram-negative bacteria isolated from fish farms in Africa. | 2010 | 20145377 |
| 2159 | 4 | 0.9997 | Involvement of the AcrAB Efflux Pump in Ciprofloxacin Resistance in Clinical Klebsiella Pneumoniae Isolates. BACKGROUND: Increasing prevalence of multiple antibiotic resistance in Klebsiella pneumoniae strains confines the therapeutic options used to treat bacterial infections. OBJECTIVE: We aimed in this study to investigate the role of AcrAB and qepA efflux pumps and AAC(6')-Ib-cr enzyme in ciprofloxacin resistance and to detect the RAPD-PCR fingerprint of K. pneumoniae isolates. METHODS: A total of , 117 K. pneumoniae isolates were collected from hospitalized patients in three hospitals in Tehran, Iran, from August 2013 to March 2014. Antimicrobial susceptibility tests were performed by the disk diffusion method. Molecular identification and expression level of encoding quinolone resistance genes, acrA, acrB, qepA, and aac(6')-Ib-cr, were performed by PCR and real-- time PCR assays, respectively. All the K. pneumoniae isolates containing the mentioned genes were used simultaneously for RAPD-PCR typing. RESULTS: Colistin and carbapenems were the most efficient antibiotics against the clinical isolates of K. pneumoniae. PCR assay demonstrated that among the 117 isolates, 110 (94%) and 102 (87%) were positive for acrA and acrB gene and 5 (4%) and 100 (85%) isolates showed to have qepA and aac(6')-Ib-cr genes, respectively. Determination for AcrAB pump expression in 21% of strains demonstrated an increased expression, and the mean increase expression for acrB genes was 0.5-81. The results of RAPD-PCR reflected that in 95% CI, all isolates belonged to a clone. CONCLUSION: A high prevalence of genes encoding quinolone resistance in K. pneumoniae was detected in clinical samples. Therefore, the control of infection and prevention of drug-resistant bacteria spread need careful management of medication and identification of resistant isolates. | 2021 | 32888276 |
| 2971 | 5 | 0.9997 | Characterization of integrons and resistance genes in multidrug-resistant Salmonella enterica isolated from meat and dairy products in Egypt. Foodborne pathogens are a leading cause of illness and death, especially in developing countries. The problem is exacerbated if bacteria attain multidrug resistance. Little is currently known about the extent of antibiotic resistance in foodborne pathogens and the molecular mechanisms underlying this resistance in Africa. Therefore, the current study was carried out to characterize, at the molecular level, the mechanism of multidrug resistance in Salmonella enterica isolated from 1600 food samples (800 meat products and 800 dairy products) collected from different street venders, butchers, retail markets and slaughterhouses in Egypt. Forty-seven out of 69 isolates (68.1%) showed multidrug resistance phenotypes to at least three classes of antimicrobials. The incidence of multidrug-resistant isolates was higher in meat products (37, 69.8%) than in dairy products (10, 62.5%). The multidrug-resistant serovars included, S. enterica serovar Typhimurium (24 isolates, 34.8%), S. enterica serovar Enteritidis, (15 isolates, 21.8%), S. enterica serovar Infantis (7 isolates, 10.1%) and S. enterica non-typable serovar (1 isolate, 1.4%). The highest resistance was to ampicillin (95.7%), then to kanamycin (93.6%), spectinomycin (93.6%), streptomycin (91.5%) and sulfamethoxazole/trimethoprim (91.5%). PCR and DNA sequencing were used to screen and characterize integrons and antibiotic resistance genes and 39.1% and 8.7% of isolates were positive for class 1 and class 2 integrons, respectively. β-lactamase-encoding genes were identified in 75.4% of isolates and plasmid-mediated quinolone resistance genes were identified in 27.5% of isolates. Finally, the florphenicol resistance gene, floR, was identified in 18.8% of isolates. PCR screening identified S. enterica serovar Typhimurium DT104 in both meat and dairy products. This is the first study to report many of these resistance genes in dairy products. This study highlights the high incidence of multidrug-resistant S. enterica in meat and dairy products in Egypt, with the possibility of their transfer to humans leading to therapeutic failure. Therefore, the overuse of antibiotics in animals should be drastically reduced in developing countries. | 2014 | 25113044 |
| 2973 | 6 | 0.9997 | An evaluation of multidrug-resistant Escherichia coli isolates in urinary tract infections from Aguascalientes, Mexico: cross-sectional study. BACKGROUND: Uropathogenic Escherichia coli (UPEC) are one of the main bacteria causing urinary tract infections (UTIs). The rates of UPEC with high resistance towards antibiotics and multidrug-resistant bacteria have increased dramatically in recent years and could difficult the treatment. METHODS: The aim of the study was to determine multidrug-resistant bacteria, antibiotic resistance profile, virulence traits, and genetic background of 110 E. coli isolated from community (79 isolates) and hospital-acquired (31 isolates) urinary tract infections. The plasmid-mediated quinolone resistance genes presence was also investigated. A subset of 18 isolates with a quinolone-resistance phenotype was examined for common virulence genes encoded in diarrheagenic and extra-intestinal pathogenic E. coli by a specific E. coli microarray. RESULTS: Female children were the group most affected by UTIs, which were mainly community-acquired. Resistance to trimethoprim-sulfamethoxazole, ampicillin, and ampicillin-sulbactam was most prevalent. A frequent occurrence of resistance toward ciprofloxacin (47.3%), levofloxacin (43.6%) and cephalosporins (27.6%) was observed. In addition, 63% of the strains were multidrug-resistant (MDR). Almost all the fluoroquinolone (FQ)-resistant strains showed MDR-phenotype. Isolates from male patients were associated to FQ-resistant and MDR-phenotype. Moreover, hospital-acquired infections were correlated to third generation cephalosporin and nitrofurantoin resistance and the presence of kpsMTII gene. Overall, fimH (71.8%) and fyuA (68.2%), had the highest prevalence as virulence genes among isolates. However, the profile of virulence genes displayed a great diversity, which included the presence of genes related to diarrheagenic E. coli. Out of 110 isolates, 25 isolates (22.7%) were positive to qnrA, 23 (20.9%) to qnrB, 7 (6.4%) to qnrS1, 7 (6.4%) to aac(6')lb-cr, 5 (4.5%) to qnrD, and 1 (0.9%) to qnrC genes. A total of 12.7% of the isolates harbored bla(CTX-M) genes, with bla(CTX-M-15) being the most prevalent. CONCLUSIONS: Urinary tract infection due to E. coli may be difficult to treat empirically due to high resistance to commonly used antibiotics. Continuous surveillance of multidrug resistant organisms and patterns of drug resistance are needed in order to prevent treatment failure and reduce selective pressure. These findings may help choosing more suitable treatments of UTI patients in this region of Mexico. | 2018 | 30041652 |
| 2150 | 7 | 0.9997 | Analysis of drug resistance genes of integrons in clinical isolates of Escherichia coli from elderly bloodstream infections. This experiment was carried out to provide a basis for the treatment of clinical bloodstream infections by analyzing the drug resistance characteristics and integrated gene distribution of Escherichia coli in bloodstream infections in elderly patients. For this aim, E. coli were collected for bacterial identification and drug sensitivity testing from bloodstream infections in elderly patients in the hospital from January 2016 to December 2019. ESBLs positive strains were assayed for genotypes and their integron carriage rates by PCR amplification. The characteristics and differences of various genotype rates were compared and analyzed. Results showed that a total of 230 E. coli strains were isolated. The detection rate of ESBLs-producing bacteria was 37.39 %. ESBLs-producing E. coli showed a high rate of resistance to cefepime, levofloxacin, cotrimoxazole, and ticarcillin/clavulanic acid (>40%). The resistance rate of 230 strains of E. coli to meropenem, minocycline, amikacin, gentamicin and cefoxitin was less than 20%. Among the ESBLs-producing E. coli in bloodstream infections in elderly patients, CTX-M-9 accounted for 27.91%, CTX-M-2 for 17.44%, and SHV for 13.95%. The detection rate of type I integrated genes was 41.30%, and type II and III integrated genes were not detected. ESBLs-producing genotyping-positive bacteria were detected with more than 50% of type I integrated genes. It was concluded that type I integrated genes in ESBLs-producing E. coli isolated from elderly patients carried resistance genes such as CTX-M-9 and CTX-M-2 aggravating multi-drug resistance in bacteria. | 2022 | 36227675 |
| 2305 | 8 | 0.9997 | In-vitro activity of tigecycline against multidrug-resistant Gram negative bacteria: The experience of a university hospital. The emergence of multidrug-resistant Gram negative bacteria has given rise to significant therapeutic challenges. These pathogens may have developed resistance to tigecycline, which is an alternative antibiotic used empirically in the treatment of serious infections. The objectives of this study were to identify the in-vitro activity of tigecycline against multidrug-resistant Gram negative strains isolated from clinical specimens and their related genes, at a university hospital. For this, 150 clinical isolates of multidrug-resistant Gram negative cultures from various clinical specimens were collected. Bacterial isolates were cultured, identified and their antibiotic susceptibilities were determined. Polymerase chain reaction was performed to amplify AcrB, AmpC, RamR, MexR, AdeB, TetA genes. Results revealed that all isolates were multidrug-resistant. The resistance of isolates was 91.4% to aztreonam, 94.6% to piperacillin, 34% to imipenem, 38.7% to meropenem, 71.3% to levofloxacin, 97.3% to ceftriaxone, 94.7% to cefepime, 9.3% to colistin, 78% to tetracycline, 21.4% to tigecycline and 68% to trimethoprim. AcrB, AmpC, RamR, MexR, AdeB, TetA genes were present in multidrug-resistant Gram negative bacteria. AcrB, RamR, TetA genes were related to tigecycline resistance. It is concluded that infections caused by multidrug-resistant Gram negative bacteria occur at a high rate. Most isolates were multi drug resistant, with 21.4% being resistant to tigecycline. | 2021 | 33743369 |
| 1202 | 9 | 0.9997 | Antimicrobial resistance and genetic diversity in ceftazidime non-susceptible bacterial pathogens from ready-to-eat street foods in three Taiwanese cities. Bacterial contamination of ready-to-eat (RTE) street foods is a major concern worldwide. Dissemination of antibiotic resistant pathogens from food is an emerging public-health threat. To investigate the prevalence of antibiotic resistance genes and ceftazidime resistance-associated efflux pumps in foodborne pathogens, 270 RTE street foods samples were collected in three densely populated Taiwanese cities. Among 70 ceftazidime non-susceptible isolates, 21 Stenotrophomonas maltophilia, 12 Pseudomonas spp., 22 Acinetobacter spp., and 15 Enterobacteriaceae isolates were identified. Phylogenetic analyses revealed high levels of genetic diversity between all of the different strains. Multi-drug resistance was observed in 86.4% (19/22) of Acinetobacter spp., 100% (12/12) of Pseudomonas spp., 71.4% (15/21) of S. maltophilia, and 93.3% (14/15) of Enterobacteriaceae. Of 70 ceftazidime non-susceptible isolates, 13 contained ESBLs or plasmid-mediated ampC genes and 23 contained ceftazidime resistance-associated efflux pumps, with Acinetobacter spp. identified as predominant isolate (69.6%; 16/23). AdeIJK pump RNA expression in Acinetobacter isolates was 1.9- to 2-fold higher in active efflux strains. Nine clinically resistant genes were detected: catIII and cmlA (chloramphenicol); aacC1, aacC2, aacC3, and aacC4 (gentamicin); tet(A), tet(C), and tet(D) (tetracycline). The scope and abundance of multidrug-resistant bacteria described in this report underscores the need for ongoing and/or expanded RTE monitoring and control measures. | 2017 | 29138446 |
| 2972 | 10 | 0.9997 | Genetic characterisation of class 1 integrons among multidrug-resistant Salmonella serotypes in broiler chicken farms. OBJECTIVES: Antimicrobial resistance in Salmonella serotypes has been reported. Integrons play an important role in the dissemination of antimicrobial resistance genes in bacteria. Scarce literature is available on the identification of integrons in Salmonella isolated from broiler chickens. In this study, antimicrobial susceptibility testing and characterisation of class 1 integrons among multidrug-resistant (MDR) Salmonella enterica serotypes in broiler chicken farms in Egypt were performed. METHODS: Antimicrobial susceptibility was determined by the disk diffusion method. PCR was performed to detect antimicrobial resistance genes and class 1 integrons in the tested Salmonella serotypes. Gene sequencing of the variable region of a class 1 integron was performed. RESULTS: Salmonella spp. were detected in 26 (13.5%) of 192 broiler samples, with Salmonella Enteritidis being the most frequently detected serotype, followed by Salmonella Kentucky and Salmonella Typhimurium and other serotypes. A very high resistance rate was observed to trimethoprim/sulfamethoxazole (100%), whilst a low resistance rate was observed to cefuroxime (57.7%). MDR S. enterica isolates displayed resistance to ciprofloxacin and azithromycin. Class 1 integrons were detected in 20 (76.9%) of the 26 Salmonella isolates. A high prevalence of class 1 integrons, as the first recorded percentage in the literature, associated with MDR Salmonella isolates was observed. CONCLUSIONS: Antimicrobial resistance rates in Salmonella serotypes from broiler chicken farms were alarming, especially for ciprofloxacin and azithromycin. Thus, another therapeutic strategy other than antimicrobials is recommended to prevent outbreaks of MDR Salmonella. | 2018 | 29684574 |
| 1130 | 11 | 0.9997 | The characteristic of antibiotic drug resistance of Salmonella Typhi isolated from tertiary care hospital in Faisalabad. Salmonella Typhi, a human-restricted pathogen, is demonstrating multi-drug resistance (MDR) due to widespread and inappropriate antibiotic use. This study aims to molecular identify the pattern of antibiotic resistance. Blood samples from 2456 suspected patients were assessed. Molecular identification of Salmonella Typhi was performed by amplifying the fliC gene. The Disc diffusion method was used to measure the susceptibility of antibiotics. 2456 patient samples, bacterial growth and Salmonella Typhi were 152 (6.2 %) positive. PCR analysis confirmed that all 152 isolated strains were Salmonella Typhi (100%) through the amplification of the fliC gene. Salmonella Typhi isolates showed resistance to trimethoprim (58%), ampicillin (63%), ciprofloxacin (79%) and chloramphenicol (58%). Fifty-eight percent of the isolates showed multi-drug resistance, whereas 26 percent had extensive drug resistance. Antibiotic resistance gene of quinolones was isolated as 44 (36.4%), whereas 88 (57.9 %) were positive for bla(CTX-M) gene were detected among cephalosporin-resistance bacteria 56 (36.8 %) resistance bla(IMP) and bla(OXA-48) were detected among carbapenem-resistance bacteria. For the azithromycin resistance, more genes were detected as a percentage 03 (50 %) from isolates. It concludes that several multidrug resistance and extensive drug-resistance Salmonella Typhi were found. The majority of isolates were sensitive to meropenem, Imipenem and Azithromycin. | 2025 | 40996203 |
| 2045 | 12 | 0.9997 | Molecular characterization of multidrug-resistant Shigella species isolated from epidemic and endemic cases of shigellosis in India. Shigella species represent one of the growing numbers of antimicrobial-resistant bacteria in developing countries. Fluoroquinolone-resistant strains of Shigella dysenteriae type 1 and Shigella flexneri type 2a emerged in India during 2002 and 2003, respectively. Sixty strains of Shigella from different parts of India were analysed for antimicrobial susceptibility, the presence of the qnr plasmid, mutations in the quinolone resistance determining regions (QRDRs), fluoroquinolone accumulation, and the presence of other genes encoding resistance to various antimicrobials. Fluoroquinolone-resistant strains had mutations in gyrA and parC genes and had an active efflux system. They were also resistant to several other antimicrobials but were susceptible to azithromycin and ceftriaxone. The majority of the strains harboured genes encoding resistance to ampicillin (97 %), tetracycline (95 %), streptomycin (95 %) and chloramphenicol (94 %). PFGE analysis revealed clonality among strains of S. dysenteriae types 1 and 5, S. flexneri type 2a and Shigella boydii type 12. | 2008 | 18566144 |
| 2147 | 13 | 0.9997 | Identification of Genes Coding Aminoglycoside Modifying Enzymes in E. coli of UTI Patients in India. This study is to probe the pattern of antibiotic resistance against aminoglycosides and its mechanism in E. coli obtained from patients from Chennai, India. Isolation and identification of pathogens were done on MacConkey agar. Antimicrobial sensitivity testing was done by disc diffusion test. The identification of genes encoding aminoglycoside modifying enzymes was done by Polymerase Chain Reaction (PCR). Out of 98 isolates, 71 (72.45%) isolates were identified as E. coli and the remaining 27 (27.55%) as other bacteria. Disc diffusion method results showed a resistance level of 72.15% for streptomycin, 73.4% for gentamicin, 63.26% for neomycin, 57.14% for tobramycin, 47.9% for netilmicin, and 8.16% for amikacin in E. coli. PCR screening showed the presence of four genes, namely, rrs, aacC2, aacA-aphD, and aphA3, in their plasmid DNA. The results point towards the novel mechanism of drug resistance in E. coli from UTI patients in India as they confirm the presence of genes encoding enzymes that cause resistance to aminoglycoside drugs. This could be an alarm for drug prescription to UTI patients. | 2016 | 27403451 |
| 1145 | 14 | 0.9997 | Abundance of Mobilized Colistin Resistance Gene (mcr-1) in Commensal Escherichia coli from Diverse Sources. Aims: Antimicrobial resistance (AMR) spreads not only by pathogenic but also by commensal bacteria, and the latter can become a reservoir for resistance genes. This study was aimed to investigate the AMR patterns along with the presence of mobilized colistin resistance (mcr) genes in commensal Escherichia coli circulating in chickens, farm environments, street foods, and human patients. Materials and Methods: By a cross-sectional survey, isolates obtained from 530 samples were tested for their AMR profiles against 9 antimicrobials. Minimum inhibitory concentration (MIC) of the phenotypically colistin-resistant isolates was determined and screened for a set of mcr genes followed by sequencing of mcr-1 gene in the multidrug-resistant (MDR) isolates. Results: A total of 313 E. coli strains were isolated and confirmed by polymerase chain reaction. Antimicrobial susceptibility testing revealed that about 98% (confidence interval [95% CI] 95-99) of the isolates were MDR, and 58% (95% CI 52-63) isolates exhibited resistance to colistin. MIC values of colistin against the isolates ranged from 4 to 64 mg/L. Except for human patients, 20.4% colistin-resistant isolates from other sources of isolation had mcr-1 gene. Conclusions: There is abundance of commensal MDR E. coli strains with the acquisition of mcr-1 gene circulating in chickens and farm environments in Bangladesh. | 2021 | 33909471 |
| 1609 | 15 | 0.9997 | Analysis of Salmonella enterica with reduced susceptibility to the third-generation cephalosporin ceftriaxone isolated from U.S. cattle during 2000-2004. Over the past decade enteric bacteria in Europe, Africa, and Asia have become increasingly resistant to cephalosporin antimicrobial agents. This is largely due to the spread of genes encoding extended-spectrum beta-lactamase (ESBL) enzymes that can inactivate many cephalosporins. Recently, these resistance mechanisms have been identified in Salmonella isolated from humans in the United States. Due to the potential for transmission of resistant bacteria to humans via food animals, Salmonella animal isolates were monitored for ESBL production. During 2000-2004, Salmonella cattle slaughter isolates (n = 3,984) were tested, and 97 (2.4%) of these were found to have decreased susceptibility (minimum inhibitory concentration [MIC] >32 microg/ml) to the third-generation cephalosporin ceftriaxone. The majority of these were serotypes Newport (58) and Agona (14), some of which were genetically indistinguishable by pulsed field gel electrophoresis (PFGE) analysis. None of the isolates had an ESBL phenotype; all were susceptible to the fourth-generation cephalosporins cefepime and cefquinome. PCR and sequence analysis for resistance genes detected the bla(CMY-2) gene in 93 isolates and the bla(TEM-1) gene in 12 isolates; however, neither gene encodes an ESBL. These data indicate that bovine Salmonella isolates from the United States with decreased susceptibility or resistance to ceftriaxone do not exhibit an ESBL phenotype and most contain the bla(CMY-2) gene. | 2008 | 19025468 |
| 1144 | 16 | 0.9997 | Identification of mcr-2 and mcr-3 Genes in Colistin-Resistant E. coli O157:H7 Isolated From Raw Meat Samples in Beirut, Lebanon. Colistin is a last-resort antibiotic used to treat multidrug-resistant Gram-negative bacterial infections. The global emergence of colistin resistance has been attributed to plasmid-mediated mobile colistin resistance (mcr) genes. In Lebanon, bacteria carrying the mcr-1 gene have increasingly been identified in food animal sources. This study is aimed at detecting colistin-resistant Shiga toxigenic Escherichia coli O157:H7 in raw meat samples from local markets in the suburbs of Beirut and evaluating their antimicrobial resistance profiles. A total of 50 meat samples, including 25 minced beef and 25 burger samples, were collected and analyzed. Antimicrobial resistance patterns were determined using the Kirby-Bauer method, while colistin resistance and the presence of mcr-2 and mcr-3 genes were assessed using broth microdilution and PCR amplification techniques. Among these samples, 23 (46%) tested positive for E. coli O157:H7. Resistance to ampicillin and amoxicillin/clavulanic acid was observed in 96% of the samples, while 61% were resistant to trimethoprim/sulfamethoxazole, and 43% to chloramphenicol. Notably, 87% of the samples displayed colistin resistance, with a minimum inhibitory concentration (MIC) of ≥ 4 μg/mL. The mcr-2 gene was present in four isolates (17.4%), and the mcr-3 gene was identified in 10 isolates (43.4%). This study is the first to document the presence of plasmid-mediated colistin resistance genes, mcr-2 and mcr-3, in E. coli O157:H7 strains in Lebanon. These findings highlight a serious public health concern for the Lebanese community. Therefore, the responsible use of antibiotics across all healthcare sectors, combined with strict hygiene measures in food handling, is essential to control the spread of colistin-resistant genes. | 2025 | 40226838 |
| 897 | 17 | 0.9997 | Prevalence of class 1 integrons and plasmid-mediated qnr-genes among Enterobacter isolates obtained from hospitalized patients in Ahvaz, Iran. Quinolones are frequently used classes of antimicrobials in hospitals, crucial for the treatment of infections caused by Gram-negative bacteria. The inappropriate use of quinolones and other antimicrobial agents for the treatment of bacterial infections leads to a significant increase of resistant isolates. The acquisition of antimicrobial resistance may be related to achievement of resistance determinant genes mediated by plasmids, transposons and gene cassettes in integrons. The objective of this cross-sectional study, conducted from December 2015 to July 2016 at two teaching hospitals in Ahvaz, southern Iran, was to screen for the presence of class 1 integrons and quinolone resistance genes in clinical isolates of Enterobacter spp. In all, 152 non-duplicated Enterobacter isolates were collected from clinical specimens and identified as Enterobacter spp. using standard microbiological methods. Antimicrobial susceptibility test was determined using the disc diffusion method according to the CLSI recommendation. Determination of class 1 integrons and PMQR genes was assessed by PCR. Analysis of antibiotic susceptibility tests showed that the highest antibiotic resistance was toward ciprofloxacin (55.3%), while the lowest level was observed against meropenem (34.9%). Moreover, 47.4% (72/152) and 29% (44/152) of isolates were positive for class 1 integron and quinolone resistance genes, respectively. The relative frequencies of antibiotic resistance were significantly higher among class 1 integron-positive isolates. In summary, our results highlight the importance of PMQR genes in the emergence of quinolone-resistant Enterobacter isolates. Moreover, it seems that class 1 integrons have a widespread distribution among Enterobacter isolates and have clinical relevance to multiple-drug-resistant isolates. | 2017 | 29286015 |
| 892 | 18 | 0.9997 | Sequencing analysis of tigecycline resistance among tigecycline non-susceptible in three species of G-ve bacteria isolated from clinical specimens in Baghdad. BACKGROUND: Recent emergence of high-level tigecycline resistance is mediated by tet(X) genes in Gram-negative bacteria, which undoubtedly constitutes a serious threat for public health worldwide. This study aims to identify tigecycline non-susceptible isolates and detect the presence of genes that are responsible for tigecycline resistance among local isolates in Iraq for the first time. METHODS: Thirteen clinical isolates of Klebsiella pneumonia, Acinetobacter baumannii and Pseudomonas aeruginosa tigecycline non-susceptible were investigated from blood, sputum and burns specimens. The susceptibility of different antibiotics was tested by the VITEK-2 system. To detect tigecycline resistance genes, PCR was employed. RESULTS: Strains studied in this work were extremely drug-resistant and they were resistant to most antibiotic classes that were studied. The plasmid-encoded tet(X), tet(X1), tet(X2), tet(X3), tet(X4), tet(X5), tet(M) and tet(O) genes were not detected in the 13 isolates. The results showed that there is a clear presence of tet(A) and tet(B) genes in tigecycline non-susceptible isolates. All 13 (100%) tigecycline non-susceptible K. pneumoniae, A. baumannii and P. aeruginosa isolates harbored the tet(B) gene. In contrast, 4 (30.77%) tigecycline non-susceptible P. aeruginosa isolates harbored the tet(A) gene and there was no tigecycline non-susceptible A. baumannii isolate harboring the tet(A) gene (0%), but one (7.69%) tigecycline non-susceptible K. pneumoniae isolate harbored the tet(A) gene. A phylogenetic tree, which is based on the nucleotide sequences of the tet(A) gene, showed that the sequence of the local isolate was 87% similar to the nucleotide sequences for all the isolates used for comparison from GenBank and the local isolate displayed genetic diversity. CONCLUSIONS: According to this study, tet(B) and tet(A) play an important role in the appearance of tigecycline non-susceptible Gram-negative isolates. | 2022 | 36207501 |
| 2164 | 19 | 0.9997 | Tetracycline susceptibility testing and resistance genes in isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus complex from a U.S. military hospital. Infections with multidrug-resistant Acinetobacter baumannii-Acinetobacter calcoaceticus complex bacteria complicate the care of U.S. military personnel and civilians worldwide. One hundred thirty-three isolates from 89 patients at our facility during 2006 and 2007 were tested by disk diffusion, Etest, and broth microdilution for susceptibility to tetracycline, doxycycline, minocycline, and tigecycline. Minocycline was the most active in vitro, with 90% of the isolates tested susceptible. Susceptibilities varied significantly with the testing method. The acquired tetracycline resistance genes tetA, tetB, and tetA(39) were present in the isolates. | 2009 | 19307365 |