Extended spectrum beta-lactamase and aminoglycoside modifying enzyme genes in multi drug resistant Gram-negative bacteria: A snapshot from a tertiary care centre. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
112701.0000Extended spectrum beta-lactamase and aminoglycoside modifying enzyme genes in multi drug resistant Gram-negative bacteria: A snapshot from a tertiary care centre. BACKGROUND: This study aims to enhance the existing knowledge of the prevalence of genes responsible for beta-lactam resistance and aminoglycoside resistance in gram negative organisms by molecular detection of extended spectrum beta-lactamase and aminoglycoside modifying enzymes in multidrug-resistant gram-negative bacteria. METHODS: Out of 864 gram-negative isolates, 710 were phenotypically identified as multidrug-resistant by antibiotic susceptibility testing. From the above isolates, 102 representative isolates as per sample size calculated were selected for further molecular studies. The presence of blaTEM, blaCTX-M blaSHV, and five AmpC genes was detected by real-time polymerase chain reaction (PCR). Conventional PCR was performed to detect seven aminoglycoside modifying enzyme genes namely aac(6')-Ib, aac(6')-Ic, aac(3)-Ia, aac(3)-Ib, aac(3)-IIa, ant(2'')-Ia, and ant(4'')-IIa. RESULTS: Most common multidrug-resistant isolate was Klebsiella pneumoniae (35%) followed by Escherichia coli (30%). Among the 102 selected isolates all harboured blaTEM gene, 71 (69.6%) harboured blaCTX-M gene and 48 (47%) blaSHV gene. Among the selected isolates 60% showed the presence of AmpC genes. Most common aminoglycosie modifying enzyme gene was AAC 6' Ib (51%) followed by ANT 2" Ia (36%). CONCLUSION: This study suggests a wider use of molecular methods using specific PCR amplification of resistance genes. It would be beneficial to perform the molecular identification of antimicrobial resistance genes to effectively monitor and manage antibiotic resistance, administer appropriate antimicrobial medication, practice antimicrobial stewardship and improve hospital infection control procedures.202439734850
112410.9999Molecular Identification of Extended-Spectrum β-lactamase and Integron Genes in Klebsiella Pneumonia. INTRODUCTION: Infections caused by Gram negative bacteria, producing extended-spectrum β-lactamase, including Klebsiella pneumoniae are increasing all over the world with high morbidity and mortality. The aim of the present study was determined antimicrobial profile susceptibility and the prevalence of antibiotic resistance genes by multiplex PCR. METHODS: In the present study, we obtained one-hundred isolates of K. pneumoniae from different clinical samples. The antibiotic susceptibility testing was done in thirteen antibiotic and, therefore, M-PCRs were conducted using the DNA amplification for detection of ESBLs (blaTEM, blaCTX-M, blaSHV) and int (I, II, III) genes. RESULTS: The results of resistance to amoxicillin/clavulanate, ciprofloxacin, amikacin, trimethoprim-sulfamethoxazole, cefotaxime, ampicillin, aztreonam, imipenem, gentamicin, ceftazidime, Cefepime, ceftriaxone and levofloxacin were obtained 37%, 37%, 93%, 84%, 52%, 87%, 59%, 8%, 24%, 67%, 52%, 43% and 26%, respectively. The frequency of the extended-spectrum β-lactamase K. pneumoniae was obtained 37%. The prevalence of resistance genes of ESBLs in the M-PCR method showed that the blaTEM, blaCTX and blaSHV were 38%, 24% and 19%, respectively, however, only 8 (8%) out of 100 isolates were found to have positive outcomes for the existence of class 1 integrons and there were no detected class 2 or class 3 integrons. CONCLUSIONS: Our results recommend the likely co-carriage of some ESBLs genes and antibiotic resistance integrons on the same plasmids harboring the MDR genes.201627935927
112820.9999Molecular detection of ESBLs production and antibiotic resistance patterns in Gram negative bacilli isolated from urinary tract infections. BACKGROUND: β-lactam resistance is more prevalent in Gram negative bacterial isolates worldwide, particularly in developing countries. In order to provide data relating to antibiotic therapy and resistance control, routine monitoring of corresponding antibiotic resistance genes is necessary. AIMS: The aim of this study was the characterization of β-lactam resistance genes and its plasmid profile in bacteria isolated from urinary tract infection samples. MATERIALS AND METHODS: In this study, 298 Gram negative bacteria isolated from 6739 urine specimens were identified by biochemical standard tests. Antimicrobial susceptibility testing was performed by the disk diffusion method. Extended-spectrum β-lactamase (ESBL)-producing strains were also detected by the double-disk synergy test. The presence of blaTEM and blaSHV genes in the strains studied was ascertained by polymerase chain reaction. RESULTS: Of all Gram negative bacteria, Escherichia coli (69.1%) was the most common strain, followed by Klebsiella sp. (12.1%), Enterobacter sp. (8.4%), Proteus sp. (4.4%), Citrobacter (4%) and Pseudomonas sp. (2%). The most antibiotic resistance was shown to tetracycline (95.16%), nalidixic acid (89.78%) and gentamycin (73.20%) antibiotics. Among all the strains tested, 35 isolates (11.75%) expressed ESBL activity. The prevalence of TEM and SHV positivity among these isolates was 34.29%, followed by TEM (31.43%), TEM and SHV negativity (20.0%) and SHV (14.29%), respectively. CONCLUSIONS: Regular monitoring of antimicrobial drug resistance seems necessary to improve our guidelines in the use of the empirical antibiotic therapy.201424943757
211130.9999Antimicrobial Resistance and Resistance Determinant Insights into Multi-Drug Resistant Gram-Negative Bacteria Isolates from Paediatric Patients in China. INTRODUCTION: The emergence of multi-drug-resistant Gram-negative bacteria (GNB) is a concern in China and globally. This study investigated antimicrobial resistance traits and resistance determinant detection in GNB isolates from paediatric patients in China. METHODS: In the present study, a total of 170 isolates of GNB including the most prevalent Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii were collected from Shenzhen Children's Hospital, China. ESBLs production was confirmed by using the combination disc diffusion method, and carbapenemase production was confirmed by using a carbapenem inactivation method followed by antimicrobial susceptibility. In addition, β-lactamase-encoding genes and co-existence of plasmid-borne colistin resistance mcr-1 gene were determined by PCR and sequencing. RESULTS: Overall, 170 etiological agents (GNB) were recovered from 158 paediatric patients. The most prevalent species was E. coli 40% (n=68), followed by K. pneumoniae 17.64% (n=30), and Enterobacter cloacae 14.11% (n=24). Of 170 GNB, 71.76% (n=122) were multi-drug-resistant, 12.35% (n=21) extreme-drug resistant, and 7.64% (n=13) single-drug-resistant, while 8.23% (n=14) were sensitive to all of the studied antibiotics. The prevalence of ESBLs and carbapenemase producers were 60% and 17%, respectively. bla (CTX-M) was the most prevalent resistance gene (59.42%), followed by bla (TEM) (41.17%), bla (SHV) (34.270%), bla (KPC) (34.11%), bla (OXA-48) (18.82%) and bla (NDM-1) (17.64%). CONCLUSION: The present study provides insights into the linkage between the resistance patterns of GNB to commonly used antibiotics and their uses in China. The findings are useful for understanding the genetics of resistance traits and difficulty in tackling of GNB in paediatric patients.201931819545
105440.9999Molecular detection of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates of chicken origin from East Java, Indonesia. BACKGROUND AND AIM: Klebsiella pneumoniae is one of the respiratory disease agents in human and chicken. This bacterium is treated by antibiotic, but this treatment may trigger antibiotic resistance. Resistance gene in K. pneumoniae may be transferred to other bacteria. One of the known resistance genes is extended-spectrum β-lactamase (ESBL). This research aimed to study K. pneumoniae isolated from chicken farms in East Java, Indonesia, by observing the antibiotic resistance pattern and detect the presence of ESBL coding gene within the isolates. MATERIALS AND METHODS: A total of 11 K. pneumoniae isolates were collected from 141 chicken cloacal swabs from two regencies in East Java. All isolates were identified using the polymerase chain reaction method. Antimicrobial susceptibility was determined by agar dilution method on identified isolates, which then processed for molecular characterization to detect ESBL coding gene within the K. pneumoniae isolates found. RESULTS: The result of antibiotic sensitivity test in 11 isolates showed highest antibiotic resistance level toward ampicillin, amoxicillin, and oxytetracycline (100%, 100%, and 90.9%) and still sensitive to gentamicin. Resistance against colistin, doxycycline, ciprofloxacin, and enrofloxacin is varied by 90.9%, 54.5%, 27.3%, and 18.2%, respectively. All isolates of K. pneumoniae were classified as multidrug resistance (MDR) bacteria. Resistance gene analysis revealed the isolates harbored as bla (SHV) (9.1%), bla (TEM) (100%), and bla (CTX-M) (90.9%). CONCLUSION: All the bacterial isolates were classified as MDR bacteria and harbored two of the transmissible ESBL genes. The presence of antibiotic resistance genes in bacteria has the potential to spread its resistance properties.201931190714
106950.9999High Prevalence of Antimicrobial Resistance in Gram-Negative Bacteria Isolated from Clinical Settings in Egypt: Recalling for Judicious Use of Conventional Antimicrobials in Developing Nations. This study was designed to investigate, at the molecular level, the antimicrobial resistance mechanisms of different antimicrobial resistance genes, including, extended-spectrum β-lactamases, AmpC β-lactamases, class 1 and 2 integrons, and plasmid-mediated quinolone resistance genes of Gram-negative bacteria isolated from clinical settings in Egypt. A total of 126 nonduplicate Gram-negative isolates were recovered from different clinical samples taken from hospitalized patients in Egypt in 2014. Antimicrobial susceptibility testing showed that, 93.6% (118/126) of the isolates had a multidrug-resistant phenotype. Interestingly, we reported a high level of antimicrobial resistance nearly for all tested antibiotics; to our knowledge, this is the first report from Egypt indicating very high level of antibiotic resistance in Egypt. Polymerase chain reaction screening and DNA sequencing revealed that, 75.4% (95/126) of the isolates harbored at least one extended-spectrum β-lactamase-encoding gene, with bla(CTX-M) being the most prevalent (65.9%), followed by bla(SHV) (46.8%). The AmpC β-lactamase, bla(CMY), was detected in 7.1% (9/126) of bacterial isolates, with bla(CMY-42) being the most prevalent. Class 1 integrons were detected in 50.8% (64/126) of the isolates, and class 2 integrons were detected in 2.4% (3/126) of the isolates. The plasmid-mediated quinolone resistance gene, qnr, was detected in 58.7% (74/126) of the tested isolates, with qnrS being the most prevalent. Several antimicrobial resistance determinants were identified in Egypt for the first time, such as SHV-27, SHV-28, SHV-33, SHV-63, SHV-71, SHV-82, SHV-142, CMY-42, CMY-6, and the new CMY-72 like. This study highlights the importance of the conscious use of conventional antimicrobials to overcome the multidrug resistance problem.201930681401
92360.9999Prevalence of Oxacillinase Genes in Clinical Multidrug-Resistant Gram-Negative Bacteria. BACKGROUND: The emergence of OXA-type beta-lactamases has become a significant threat to public healthcare systems and may lead to prolonged hospital stays and increased mortality rates among affected patients. This study aimed to determine the prevalence of oxacillinase resistance (OXA) genes in multidrug-resistant (MDR) Gram-negative bacteria. METHODS: One hundred and six clinical isolates were collected from a stock of Gram-negative isolates and were identified and tested for antibiotic susceptibility and presence of OXA genes using polymerase chain reaction (PCR). RESULTS: The most common detected isolate was Klebsiella pneumoniae (36.8%), followed by Escherichia coli (33%), Pseudomonas aeruginosa (16%), and Acinetobacter baumannii (14.2%). Out of these isolates, 97.4%, 87.2%, 84.6%, and 79.5% were resistant to ampicillin/sulbactam, cefotaxime, ceftazidime, and aztreonam, respectively. PCR results confirmed the presence of one or more OXA genes in 34% of the samples studied. The blaOXA-1 and blaOXA-10 genes were the most highly detected genes, followed by blaOXA-4 and blaOXA-51. The total number of Pseudomonas aeruginosa isolates was confirmed to carry at least one OXA gene (70.6%), whereas Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were confirmed to carry at least one OXA gene (53.3, 28.2, and 22.9%, respectively). There was a significant association (p < 0.05) between the resistance genes and the type of isolate. CONCLUSIONS: Pseudomonas aeruginosa and Acinetobacter baumannii are the most common MDR Gram-negative strains carrying OXA-type beta-lactamase genes. Monitoring of MDR pathogens in Gram-negative bacteria must be continuously undertaken to implement effective measures for infection control and prevention.202540066541
99770.9999Prevalence and antibacterial resistance patterns of extended-spectrum beta-lactamase producing Gram-negative bacteria isolated from ocular infections. PURPOSE: Extended-spectrum beta-lactamases (ESBLs) mediated resistance is more prevalent worldwide, especially among Gram-negative bacterial isolates, conferring resistance to the expanded spectrum cephalosporins. As limited data were available on the prevalence of ESBLs in this area, the current study was undertaken to determine the prevalence, antibacterial resistance patterns, and molecular detection and characterization of ESBL encoding resistance genes among ocular Gram-negative bacterial isolates from ocular infections. MATERIALS AND METHODS: A prospective study was done on 252 ocular Gram-negative bacterial isolates recovered from ocular infections during a study period from February 2011 to January 2014. All isolates were subjected to detection of ESBLs by cephalosporin/clavulanate combination disc test and their antibacterial resistance pattern was studied. Molecular detection and characterization of ESBL encoding blaTEM -, blaSHV , blaOXA -, and blaCTX-M (phylogenetic groups 1, 2, 9, and 8/25) resistance genes by multiplex polymerase chain reaction and DNA sequence analysis. RESULTS: Of all Gram-negative bacteria, Pseudomonas aeruginosa (44%) was the most common strain, followed by Enterobacter agglomerans and Klebsiella pneumoniae each (10%). Among the 252, 42 (17%) were ESBL producers. The major source of ESBL producers were corneal scraping specimens, highest ESBL production was observed in P. aeruginosa 16 (38%) and Escherichia coli 7 (16.6%). Among ESBL-producing genes, the prevalence of blaTEM -gene was the highest (83%) followed by blaOXA -gene (35%), blaSHV -gene (18.5%), and blaCTX-M-1 -gene (18.5%) alone or together. CONCLUSION: The higher rate of prevalence of ESBLs-encoding genes among ocular Gram-negative bacteria is of great concern, as it causes limitation to therapeutic options. This regional knowledge will help in guiding appropriate antibiotic use which is highly warranted.201627221683
215080.9999Analysis of drug resistance genes of integrons in clinical isolates of Escherichia coli from elderly bloodstream infections. This experiment was carried out to provide a basis for the treatment of clinical bloodstream infections by analyzing the drug resistance characteristics and integrated gene distribution of Escherichia coli in bloodstream infections in elderly patients. For this aim, E. coli were collected for bacterial identification and drug sensitivity testing from bloodstream infections in elderly patients in the hospital from January 2016 to December 2019. ESBLs positive strains were assayed for genotypes and their integron carriage rates by PCR amplification. The characteristics and differences of various genotype rates were compared and analyzed. Results showed that a total of 230 E. coli strains were isolated. The detection rate of ESBLs-producing bacteria was 37.39 %. ESBLs-producing E. coli showed a high rate of resistance to cefepime, levofloxacin, cotrimoxazole, and ticarcillin/clavulanic acid (>40%). The resistance rate of 230 strains of E. coli to meropenem, minocycline, amikacin, gentamicin and cefoxitin was less than 20%. Among the ESBLs-producing E. coli in bloodstream infections in elderly patients, CTX-M-9 accounted for 27.91%, CTX-M-2 for 17.44%, and SHV for 13.95%. The detection rate of type I integrated genes was 41.30%, and type II and III integrated genes were not detected. ESBLs-producing genotyping-positive bacteria were detected with more than 50% of type I integrated genes. It was concluded that type I integrated genes in ESBLs-producing E. coli isolated from elderly patients carried resistance genes such as CTX-M-9 and CTX-M-2 aggravating multi-drug resistance in bacteria.202236227675
98690.9999The Frequency of qnr Genes in Extended-Spectrum β-lactamases and non-ESBLs Klebsiella pneumoniae Species Isolated from Patients in Mashhad, Iran. BACKGROUND AND OBJECTIVES: Since the fluoroquinolones are the broad-spectrum antibiotics, they affect both Gram-negative and Gram-positive bacteria. These antibiotics are widely prescribed by physicians. As a result, some bacteria, especially Enterobacteriaceae, have shown a resistance to this family of antibiotics. The current study aimed at detecting the frequency of qnrA, qnrB, and qnrS genes, novel plasmid-mediated quinolone-resistance genes, among extended-spectrum β-lactamases (ESBL)-positive and ESBL-negative Klebsiella pneumoniae isolates. MATERIALS AND METHODS: One hundred and thirty isolates of K. pneumoniae were collected from Imam Reza Hospital and its associated clinics from May 2011 to July 2012. The isolates were tested for ESBLs by the conventional methods. Polymerase chain reaction (PCR) was performed to amplify qnr A, B, and S. RESULTS: Thirty-eight (29.3%) isolates were ciprofloxacin-resistant. Among 130 K. pneumoniae infectious isolates, 56 (43%) were capable of producing ESBL; 10.8% (n=14), 15.4% (n=20), and 20.8% (n=27) of ESBL-producing K. pneumonia were positive for qnrA, qnrS, and qnrB, respectively, and 13.8% (n=18) of the isolates harbored 2 or 3 qnr genes. CONCLUSION: The results of the current study showed that quinolone-resistance genes were more frequent in ESBL-producing K. pneumoniae (37.5%) isolates, compared with the ESBL-negative isolates (20.89%). The prevalence of qnr genes was high in K. pneumoniae isolates, with higher frequency in ESBL-positive strains. Most of the isolates were positive for all 3 groups of qnr genes and the qnrB was the most common one.201729563934
2159100.9999Involvement of the AcrAB Efflux Pump in Ciprofloxacin Resistance in Clinical Klebsiella Pneumoniae Isolates. BACKGROUND: Increasing prevalence of multiple antibiotic resistance in Klebsiella pneumoniae strains confines the therapeutic options used to treat bacterial infections. OBJECTIVE: We aimed in this study to investigate the role of AcrAB and qepA efflux pumps and AAC(6')-Ib-cr enzyme in ciprofloxacin resistance and to detect the RAPD-PCR fingerprint of K. pneumoniae isolates. METHODS: A total of , 117 K. pneumoniae isolates were collected from hospitalized patients in three hospitals in Tehran, Iran, from August 2013 to March 2014. Antimicrobial susceptibility tests were performed by the disk diffusion method. Molecular identification and expression level of encoding quinolone resistance genes, acrA, acrB, qepA, and aac(6')-Ib-cr, were performed by PCR and real-- time PCR assays, respectively. All the K. pneumoniae isolates containing the mentioned genes were used simultaneously for RAPD-PCR typing. RESULTS: Colistin and carbapenems were the most efficient antibiotics against the clinical isolates of K. pneumoniae. PCR assay demonstrated that among the 117 isolates, 110 (94%) and 102 (87%) were positive for acrA and acrB gene and 5 (4%) and 100 (85%) isolates showed to have qepA and aac(6')-Ib-cr genes, respectively. Determination for AcrAB pump expression in 21% of strains demonstrated an increased expression, and the mean increase expression for acrB genes was 0.5-81. The results of RAPD-PCR reflected that in 95% CI, all isolates belonged to a clone. CONCLUSION: A high prevalence of genes encoding quinolone resistance in K. pneumoniae was detected in clinical samples. Therefore, the control of infection and prevention of drug-resistant bacteria spread need careful management of medication and identification of resistant isolates.202132888276
1129110.9999Genotypic and phenotypic profiles of antibiotic-resistant bacteria isolated from hospitalised patients in Bangladesh. OBJECTIVES: Characterisation of resistance phenotype and genotype is crucial to understanding the burden and transmission of antimicrobial resistance (AMR). This study aims to determine the spectrum of AMR and associated genes encoding aminoglycoside, macrolide and β-lactam classes of antimicrobials in bacteria isolated from hospitalised patients in Bangladesh. METHODS: 430 bacterial isolates from patients with respiratory, intestinal, wound infections and typhoid fever, presenting to clinical care from 2015 to 2019, were examined. They included Escherichia coli (n = 85); Staphylococcus aureus (n = 84); Salmonella typhi (n = 82); Klebsiella pneumoniae (n = 42); Streptococcus pneumoniae (n = 36); coagulase-negative staphylococci (n = 28); Enterococcus faecalis (n = 27); Pseudomonas aeruginosa (n = 26); and Acinetobacter baumannii (n = 20). Reconfirmation of these clinical isolates and antimicrobial susceptibility tests was performed. PCR amplification using resistance gene-specific primers was done, and the amplified products were confirmed by Sanger sequencing. RESULTS: 53% of isolates were multidrug-resistant (MDR), including 97% of Escherichia coli. There was a year-wise gradual increase in MDR isolates from 2015 to 2018, and there was an almost twofold increase in the number of MDR strains isolated in 2019 (P = 0.00058). Among the 5 extended-spectrum β-lactamases investigated, CTX-M-1 was the most prevalent (63%) followed by NDM-1 (22%); Escherichia coli was the major reservoir of these genes. The ermB (55%) and aac(6')-Ib (35%) genes were the most frequently detected macrolide and aminoglycoside resistance genes, respectively. CONCLUSION: MDR pathogens are highly prevalent in hospital settings of Bangladesh.202133838068
2176120.9999Evaluation of phenotypic and genotypic patterns of aminoglycoside resistance in the Gram-negative bacteria isolates collected from pediatric and general hospitals. The purpose of the current study was to evaluate the phenotypic and genotypic patterns of aminoglycoside resistance among the Gram-negative bacteria (GNB) isolates collected from pediatric and general hospitals in Iran. A total of 836 clinical isolates of GNB were collected from pediatric and general hospitals from January 2018 to the end of December 2019. The identification of bacterial isolates was performed by conventional biochemical tests. Susceptibility to aminoglycosides was evaluated by the disk diffusion method (DDM). The frequency of genes encoding aminoglycoside-modifying enzymes (AMEs) was screened by the PCR method via specific primers. Among all pediatric and general hospitals, the predominant GNB isolates were Acinetobacter spp. (n = 327) and Escherichia coli (n = 144). However, E. coli (n = 20/144; 13.9%) had the highest frequency in clinical samples collected from pediatrics. The DDM results showed that 64.3% of all GNB were resistant to all of the tested aminoglycoside agents. Acinetobacter spp. and Klebsiella pneumoniae with 93.6%, Pseudomonas aeruginosa with 93.4%, and Enterobacter spp. with 86.5% exhibited very high levels of resistance to gentamicin. Amikacin was the most effective antibiotic against E. coli isolates. In total, the results showed that the aac (6')-Ib gene with 59% had the highest frequency among genes encoding AMEs in GNB. The frequency of the surveyed aminoglycoside-modifying enzyme genes among all GNB was found as follows: aph (3')-VIe (48.7%), aadA15 (38.6%), aph (3')-Ia (31.3%), aph (3')-II (14.4%), and aph (6) (2.6%). The obtained data demonstrated that the phenotypic and genotypic aminoglycoside resistance among GNB was quite high and it is possible that the resistance genes may frequently spread among clinical isolates of GNB.202235119565
1055130.9999Antimicrobial Susceptibility and Molecular Identification of Antibiotic Resistance Enteric Bacteria Isolated From Pigeon Feces in the City of Jeddah, Saudi Arabia. Background Due to their potential to carry a wide range of bacteria, pigeon feces may contribute to the spreading of infectious diseases in urban settings. Objective This study analyzed the presence of enteric bacteria from pigeon feces in Jeddah and their antimicrobial susceptibility and described the molecular characteristics of the carbapenem resistance genes it produced. Method Two hundred twenty-five pigeon feces specimens were collected from eight parks in Jeddah. Conventional microbiology techniques were employed to identify the isolated bacteria, and the automated Vitek2® system (bioMérieux, Marcy-l'Étoile, Lyon, France) provided additional confirmation. Kirby-Bauer disk diffusion method was utilized to screen for antimicrobial resistance. Only 50 antibiotic-resistance isolates further underwent molecular diagnosis for testing groups of carbapenems-encoding genes (blaNDM, blaSIM, and blaAIM), using multiplex polymerase chain reaction (PCR).  Result Of the 50 antibiotic-resistant isolates, 28% (14/50) were Klebsiella pneumoniae, 24% (12/50) were Enterobacter cloacae, and 48% (24/50) were Escherichia coli. Ninety percent (90%) of the isolates showed resistance to cefuroxime, 56% to gentamicin, 52% to amoxicillin/clavulanic acid, and 100% to meropenem. NDM beta-lactamase was the most often discovered gene (26%) and was followed by AIM beta-lactamase (5%) Conclusion According to this study, there may be a chance for resistant K. pneumoniae, E. cloacae, and E. coli to spread amongst several hosts within the same area. Consequently, to prevent the continued occurrence and dissemination of resistant strains among other hosts in the same location, it is essential to monitor the AMR (antimicrobial resistance) of E. coli, E. cloacae, and K. pneumoniae from pigeons.202439310621
1447140.9999Molecular detection of β-lactamase and integron genes in clinical strains of Klebsiella pneumoniae by multiplex polymerase chain reaction. INTRODUCTION: Infections caused by β-lactamase-producing gram-negative bacteria, such as Klebsiella pneumoniae, are increasing globally with high morbidity and mortality. The aim of the current study was to determine antimicrobial susceptibility patterns and the prevalence of antibiotic resistance genes (β-lactamase and integron genes) using multiplex PCR. METHODS: One-hundred K. pneumoniae isolates were collected from different clinical samples. Antibiotic susceptibility testing was performed with thirteen different antibiotics. Multiplex-PCR was used to detect β-lactamase (bla TEM, bla CTX-M, bla SHV , bla VEB, bla PER, bla GES, bla VIM, bla IMP, bla OXA, and bla KPC) and integron genes (int I, int II, and int III). RESULTS: The highest and lowest rate of resistance was exhibited against amikacin (93%) and imipenem (8%), respectively. The frequency of β-lactamase-positive K. pneumoniae was 37%, and the prevalence of the bla TEM, bla CTX-M, bla SHV , bla VEB, bla PER, bla GES, bla VIM, bla IMP, bla OXA, and bla KPC genes was 38%, 24%, 19%, 12%, 6%, 11%, 33%, 0%, 28%, and 23%, respectively. Of the 100 isolates, eight (8%) were positive for class I integrons; however, class II and III integrons were not detected in any of the strains. CONCLUSIONS: These results indicate co-carriage of a number of β-lactamase genes and antibiotic resistance integrons on the same plasmids harboring multi-drug resistance genes. It seems that these properties help to decrease treatment complications due to resistant bacterial infections by rapid detection, infection-control programs and prevention of transmission of drug resistance.201728700049
2173150.9998Antimicrobial susceptibility and integrons detection among extended-spectrum β-lactamase producing Enterobacteriaceae isolates in patients with urinary tract infection. BACKGROUND: Integrons are bacterial mobile genetic components responsible for mediating the antibiotic resistance process by carrying and spreading antimicrobial resistance genes among bacteria through horizontal gene transfer. OBJECTIVES: This cross-sectional hospital-based study aimed to find the prevalence of antibiotic resistance patterns and to detect integrons classes (I, II, and III) among bacterial isolates in patients with urinary tract infections (UTI) in Sulaimani, Iraq. PATIENTS AND METHODS: Mid-stream urine samples (no. = 400) were collected from patients with UTI at three different Hospitals from Sulaimani, Iraq, between September 2021 to January 2022. Urine samples were cultured on various agar media, and grown bacteria were isolated. Antibiotic susceptibility test (AST) and an extended-spectrum β-lactamase (ESBL) screen were done for isolated bacteria. Then, integrons classes were screened using conventional PCR with gene sequencing and uploaded to the National Center for Biotechnology Information (NCBI). RESULTS: The frequency rate of Enterobacteriaceae was 67.03% among positive urine cultures. E. coli (no. = 86) and Klebsiella pneumoniae (no. = 32) isolates were identified. The most sensitive antibiotics were the carbapenem group (85.3%) and nitrofurantoin (NFN) (64.2%), while the most resistant antibiotics were nalidixic acid (NA) and 3(rd) generation cephalosporin. The occurrence rate of ESBL was 56.6% with a predominance of class I integron (54.2%), then class II (15.8%) and no positive record for class III integron were observed. CONCLUSION: Most bacterial isolates from patients with UTI produced class I and II integrons genes with favourable ESBL properties.202337283901
1122160.9998Antibiotic resistance profiles of gram-negative bacteria in southern Tunisia: Focus on ESBL, carbapenem and colistin resistance. The main objective of this cross-sectional study was to investigate the prevalence of beta-lactam (cephalosporins or carbapenems) or colistin resistant bacteria. Those were isolated from urine samples in two private polyclinics located in the Sfax region, in southern Tunisia. From September 2021 to August 2022, 116 strains resistant to β-lactams or colistin were isolated, identified by MALDI-TOF, and their antibiotic susceptibility was assessed by disk diffusion method. Resistance genes were detected by real-time PCR, standard PCR, and sequencing. The results revealed that the 116 strains consisted predominantly of Enterobacteriaceae (92.2 %) and non-fermenting bacteria (7.8 %). Among these strains, 21 (18.1 %) were resistant to carbapenems, three (2.7 %) to colistin, including two strains of Klebsiella pneumoniae (1.7 %) exhibiting resistance to both carbapenems and colistin. In Enterobacteriaceae, bla(CTX-A), bla(SHV), and bla(TEM) were found in 79.5 %, 46.7 %, and 40.2 % of strains, respectively. For these strains, the minimum inhibitory concentrations (MICs) of imipenem and ertapenem ranged from >32 to 6 μg/mL and > 32 to 2 μg/mL, respectively, with bla(OXA-48) and bla(NDM) detected in 21.7 % and 19.6 % of isolates, respectively. Seven A. baumannii isolates resistant to imipenem and meropenem (MICs >32 μg/mL and 8 μg/mL, respectively) carried bla(OXA-23) (n = 5) and bla(OXA-24) (n = 2). In addition, mutations in the mgrB gene conferring colistin resistance were identified in two isolates. Two K. pneumoniae were colistin-resistant and carried the bla(OXA-48) gene. These results highlight the urgency of developing new strategies for the identification and surveillance of pathogenic strains in humans to effectively combat this growing public health threat in Tunisia.202540553790
1445170.9998Rapid Detection of Beta-Lactamases Genes among Enterobacterales in Urine Samples by Using Real-Time PCR. The objective of this study was to develop and evaluate newly improved, rapid, and reliable strategies based on real-time PCR to detect the most frequent beta-lactamase genes recorded in clinical Enterobacterales strains, particularly in Tunisia (bla(SHV12) , bla(TEM) , bla(CTX-M-15) , bla(CTX-M-9) , bla(CMY-2) , bla(OXA-48) , bla(NDM-1) , and bla(IMP) ) directly from the urine. Following the design of primers for a specific gene pool and their validation, a series of real-time PCR reactions were performed to detect these genes in 78 urine samples showing high antibiotic resistance after culture and susceptibility testing. Assays were applied to DNA extracted from cultured bacteria and collected urine. qPCR results were compared for phenotypic sensitivity. qPCR results were similar regardless of whether cultures or urine were collected, with 100% sensitivity and specificity. Out of 78 multiresistant uropathogenic, strains of Enterobacterales (44 E. coli and 34 K. pneumoniae strains) show the presence of the genes of the bla group. In all, 44% E. coli and 36 of K. pneumoniae clinical strains harbored the bla group genes with 36.4%, 52.3%, 70.5%, 68.2%, 18.2%, and 4.5% of E. coli having bla(SHV-12) , bla(TEM) , bla(CTX-M 15) , bla(CTX-M-9) , bla(CMY-2) , and bla(OXA-48) group genes, respectively, whereas 52.9%, 67.6%, 76.5%, 35.5%, 61.8, 14.7, and 1.28% of K. pneumoniae had bla(SHV-12) , bla(TEM) , bla(CTX-M 15) , bla(CTX-M-9) , bla(CMY-2) , bla(OXA-48) , and bla(NDM-1) group genes, respectively. The time required to have a result was 3 hours by real-time PCR and 2 to 3 days by the conventional method. Resistance genes of Gram-negative bacteria in urine, as well as cultured bacteria, were rapidly detected using qPCR techniques. These techniques will be used as rapid and cost-effective methods in the laboratory. Therefore, this test could be a good candidate to create real-time PCR kits for the detection of resistance genes directly from urine in clinical or epidemiological settings.202235978630
991180.9998Characterization of extended-spectrum beta-lactamases in Enterobacteriaceae causing nosocomial infections in a Zagreb University Hospital. The bacteria producing extended-spectrum beta-lactamases (ESBLs) are increasingly reported. production of ESBLs by Gram-negative bacteria is the major mechanism of resistance to oxymino-cephalosporins and aztreonam. the aim of the present study was to characterize ESBLs produced by Enterobacteriaceae, collected during 2003-2005 in a University Hospital in Zagreb, and to determine the risk factors associated with nosocomial infections due to them. 76 isolates of Enterobacteriaceae were included in the study. Antibiotic susceptibility testing was performed by disk-diffusion and broth microdilution method according to CLSI. beta-lactamases were characterized by PCR and sequencing of bla(ESBL )genes. plasmids were extracted by alkaline lysis method and digested with EcoRI enzyme. Most of the strains displayed CAZ phenotype meaning a higher level of resistance to ceftazidime compared to cefotaxime and ceftriaxone. 50 strains produced SHV-ESBL, 28 tem and 8 CTX-M beta-lactamase. Sequencing of bla(SHV )genes from representative strains revealed SHV-5 beta-lactamase in 6 strains whereas sequencing of bla(CTX-M )genes identified CTX-M-3 beta-lactamase in 3 and CTX-M-15 in 5 strains. Strains were assigned to groups from A to f according to plasmid fingerprinting. The spread of SHV-5-producing strains throughout the hospital units could be due to selective pressure of ceftazidime which is widely prescribed in our hospital thus favoring survival of strains possessing a mutation at the Ambler position 240 responsible for ceftazidime and aztreonam resistance.200919567348
920190.9998Co-existence of bla(IMP), bla(NDM-1), and bla(SHV), genes of Pseudomonas aeruginosa isolated from Quetta: Antimicrobial resistance and clinical significance. OBJECTIVE: Molecular detection and co-presence of carbapenem-resistant genes in the isolates of Pseudomonas aeruginosa are less commonly reported from Quetta. In the present study, we determined to highlight the antibiotic sensitivity profile and genetic mechanism of carbapenem resistance. METHODS: The cross-sectional study was conducted from May to September 2018 at the Hi-tech laboratory, Centre for Advance Studies in Vaccinology and Biotechnology, University of Baluchistan, Quetta. Biochemical and molecular methods were ascertained for the recognition of the isolates and minimum inhibitory concentration was performed using E-test and broth microdilution methods. The molecular basis of carbapenemase activity was determined by identifying carbapenemase genes in the isolates. RESULTS: Of the (n=23) P. aeruginosa isolated from pus aspirates obtained from surgical/burn units, we have detected bla(IMP) (n=7/8) 87.5%, bla(NDM-1) (n=5/8) 62.5%, and bla(SHV) (n=4/8) 50%. The co-existence of multiple antibiotic-resistant genes, bla(IMP), bla(NDM-1) and bla(SHV) was found in (n=2/8) 25% isolates. These isolates displayed resistance against a range of antimicrobials from β-lactams, tetracyclines, cephalosporins, quinolones, monobactams, aminoglycosides, sulphonamides, phosphoric acid, macrolides, and polypeptide groups, suggesting extensive-drug resistance. CONCLUSION: The emergence of MBL and ESBL producers is an alarming threat in the region. It is of great importance to determine the resistance mechanism of bacterial bugs. The lack of new antimicrobials particularly against gram-negative bacteria is quite alarming worldwide.202337680816