Cross-Sectional Survey of Antibiotic Resistance in Extended Spectrum β-Lactamase-Producing Enterobacteriaceae Isolated from Pigs in Greece. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
110501.0000Cross-Sectional Survey of Antibiotic Resistance in Extended Spectrum β-Lactamase-Producing Enterobacteriaceae Isolated from Pigs in Greece. This study aimed to estimate the prevalence of extended-spectrum β-lactamase-producing (ESBL) bacteria in swine. Thus, 214 fecal samples were collected from suckling and weaned piglets from 34 farms in Greece (out of an overall population of about 14,300 sows). A subset of 78 (36.5%) ESBL producers were identified as E. coli (69/78, 88.5%), K. pneumoniae spp. pneumoniae (3.8%), P. mirabilis (5.1%), E. cloacae complex (1.3%) and S. enterica spp. diarizonae (1.3%). Resistance to at least one class of non-β-lactam antibiotics was detected in 78 isolates. Among the E. coli strains, resistance was identified with regard to aminoglycosides (n = 31), fluoroquinolones (n = 49), tetracycline (n = 26) and trimethoprim/sulfamethoxazole (n = 46). Of the three K. pneumoniae spp. pneumoniae, two displayed resistances to aminoglycosides and all were resistant to fluoroquinolones, tetracyclines and trimethoprim/sulfamethoxazole. As for the four P. mirabilis isolates, three had a resistant phenotype for aminoglycosides and all were resistant to imipenem, fluoroquinolones, tetracyclines and trimethoprim/sulfamethoxazole. Molecular characterization of the isolates revealed the presence of CTX-M, SHV and TEM genes, as well as of genes conferring resistance to fluoroquinolones, aminoglycosides, sulfonamides, trimethoprim, macrolides and colistin. High levels of antimicrobial resistance (AMR) were demonstrated in Greek swine herds posing a concern for the efficacy of treatments at the farm level as well as for public health.202235739896
115710.9999Isolation and Molecular Characterization of Antimicrobial Resistant Escherichia coli from Healthy Broilers in Retail Chicken Outlets of Hotspot Cities in Southern India. E. coli is one of the first commensal bacteria to colonize the chicken gut. It may act as a source for the spread of antibiotic resistance to human via the food chain and contamination of the environment. Isolation and characterization of such E. coli from commercial broilers in retail outlets of Southern India were carried out. Eighty-three E. coli isolates (76.9%) were obtained from cloacal/meat swabs (108 samples). Phenotypically, 78.3% of isolates were ESBL producers, 69.9% were fluoroquinolone-resistant, and 6% were carbapenemase producers. Genotypically, the blaSHV, blaTEM, and blaCTX-M were present in 48.2%, 43.4%, and 10.8% of the isolates, respectively. These isolates also carried fluoroquinolone-resistant genes viz qnrB (31.3%) and qnrS (34.9%) but not carbapenemase genes. Overall, ESBL were identified in 72.3% of isolates and fluoroquinolone-resistance genes in 51.8%. Strikingly, 53% of the isolates were multidrug-resistant, with both ESBL and fluoroquinolone-resistant genes. The study revealed the presence of MDR E. coli strains in broiler meat at retail outlets indicating the potential public health risks.202540778947
104920.9999Multiple Antibiotic-Resistant, Extended Spectrum-β-Lactamase (ESBL)-Producing Enterobacteria in Fresh Seafood. Members of the family Enterobacteriaceae include several human pathogens that can be acquired through contaminated food and water. In this study, the incidence of extended spectrum β-lactamase (ESBL)-producing enterobacteria was investigated in fresh seafood sold in retail markets. The ESBL-positive phenotype was detected in 169 (78.60%) isolates, with Escherichia coli being the predominant species (53), followed by Klebsiella oxytoca (27), and K. pneumoniae (23). More than 90% of the isolates were resistant to third generation cephalosporins, cefotaxime, ceftazidime, and cefpodoxime. Sixty-five percent of the isolates were resistant to the monobactam drug aztreonam, 40.82% to ertapenem, and 31.36% to meropenem. Resistance to at least five antibiotics was observed in 38.46% of the isolates. Polymerase Chain Reaction (PCR) analysis of ESBL-encoding genes detected bla(CTX), bla(SHV), and bla(TEM) genes in 76.92%, 63.3%, and 44.37% of the isolates, respectively. Multiple ESBL genes were detected in majority of the isolates. The recently discovered New Delhi metallo-β-lactamase gene (bla(NDM-1)) was detected in two ESBL⁺ isolates. Our study shows that secondary contamination of fresh seafood with enteric bacteria resistant to multiple antibiotics may implicate seafood as a potential carrier of antibiotic resistant bacteria and emphasizes an urgent need to prevent environmental contamination and dissemination of such bacteria.201728867789
119930.9999Multi-drug resistant pathogenic bacteria in the gut of young children in Bangladesh. BACKGROUND: The gut of human harbors diverse commensal microbiota performing an array of beneficial role for the hosts. In the present study, the major commensal gut bacteria isolated by culturing methods from 15 children of moderate income families, aged between 10 and 24 months, were studied for their response to different antibiotics, and the molecular basis of drug resistance. RESULTS: Of 122 bacterial colonies primarily selected from Luria-Bertani agar, bacterial genera confirmed by analytical profile index (API) 20E(®) system included Escherichia as the predominant (52%) organism, followed by Enterobacter (16%), Pseudomonas (12%), Klebsiella (6%), Pantoea (6%), Vibrio (3%), and Citrobacter (3%); while Aeromonas and Raoultella were identified as the infrequently occurring genera. An estimated 11 and 22% of the E. coli isolates carried virulence marker genes stx-2 and eae, respectively. Antimicrobial susceptibility assay revealed 78% of the gut bacteria to be multidrug resistant (MDR) with highest resistance to erythromycin (96%), followed by ampicillin (63%), tetracycline (59%), azithromycin (53%), sulfamethoxazole-trimethoprim (43%), cefixime (39%), and ceftriaxone (33%). PCR assay results revealed 56% of the gut bacteria to possess gene cassette Class 1 integron; while 8, 17.5 and 6% of the strains carried tetracycline resistance-related genes tetA, tetB, and tetD, respectively. The macrolide (erythromycin and azithromycin) resistance marker genes mphA, ereB, and ermB were found in 28, 3 and 5% of bacterial isolates, respectively; while 26, 12, 17, 32, 7, 4 and 3% of the MDR bacterial isolates carried the extended spectrum β-lactamase (ESBL)-related genes e.g., bla(TEM), bla(SHV), bla(CMY-9), bla(CTX-M1), bla(CTX-M2), bla(CMY-2) and bla(OXA) respectively. Majority of the MDR gut bacteria harbored large plasmids [e.g., 140 MDa (43%), 105 MDa (30%), 90 MDa (14%)] carrying invasion and related antibiotic resistance marker genes. CONCLUSIONS: Our results suggest gut of young Bangladeshi children to be an important reservoir for multi-drug resistant pathogenic bacteria carrying ESBL related genes.201728439298
110440.9999Predominance of Multidrug-Resistant Gram-Negative Bacteria Isolated from Supermarket Retail Seafood in Japan. Reports have documented antimicrobial usage in aquaculture, and the aquatic ecosystem can be considered a genetic storage site for antibiotic-resistant bacteria. This study assessed the prevalence of antimicrobial resistance (AMR) among Gram-negative bacteria recovered from retail seafood in Hiroshima, Japan. A total of 412 bacteria were isolated and screened for the presence of β-lactamases, acquired carbapenemases, and mobile colistin-resistance (mcr) genes. Forty-five (10.9%) isolates were dominated by Morganella (28%), Proteus (22%), Aeromonas (14%), Citrobacter (8%), and Escherichia (8%) and carried AMR genes. The identified AMR genes included those encoded in integrons (19), aac(6՛)-Ib (11), bla(TEM-1) (7), bla(CTX-M-like) (12), bla(CTX-M-65) (2), bla(SHV-12) (1), bla(SHV-27) (1), bla(OXA-10) (1), bla(OXA-2) (1), and mcr (2). The most common clinical resistances were against ampicillin, colistin, sulfamethoxazole/trimethoprim, tetracycline, and ciprofloxacin. Multidrug resistance (MDR) occurred in 27 (60%) AMR isolates, and multiple antibiotic resistance indices ranged from 0.2 to 0.8. A conjugation experiment showed that 10 of the 11 selected MDR strains harbored conjugable plasmids, although PCR-based replicon typing described seven strains as untypable. IncF replicon was identified in MDR extended-spectrum β-lactamase-producing Escherichia coli of the pathogenic B2 phylogroup. Our findings suggest that retail seafood harbors MDR bacteria of human interest that require strict resistance surveillance in the seafood production continuum.202338138079
102950.9999Phylogenetic relationships, virulence and antimicrobial resistance properties of Klebsiella sp. isolated from pet turtles in Korea. Klebsiella sp. are responsible for a multitude of infectious diseases in both humans and animals. In this study, phylogenetic relationships, virulence and antimicrobial resistance gene properties of 16 Klebsiella sp. isolated from 49 pet turtles were investigated. The isolates including Klebsiella oxytoca (n = 13) and Klebsiella pneumoniae (n = 3) were identified using 16S rRNA gene sequencing and each species formed distinct clusters in the neighbour-joining phylogenetic tree. The prevalence of virulence genes including ureC (100%) and kfu (68·75%) was observed among the isolates using Polymerase chain reaction (PCR) assay. The fimH, mrkD and rmpA genes were detected in all K. pneumoniae while these were absent in every K. oxytoca isolate. In antimicrobial susceptibility testing, high resistance rates were observed against ampicillin (100%) and cephalothin (62·50%). The resistance rates against imipenem, tetracycline, trimethoprim/sulfamethoxazole, nalidixic acid and ciprofloxacin were 12·50, 12·50, 12·50, 6·25 and 6·25% respectively. The presence of antimicrobial resistance genes such as plasmid-mediated quinolone resistance (PMQR) [qnrB (37·50%), qnrA (31·25%), qnrS (12·50%) and aac(6')-Ib-cr (12·50%)], extended-spectrum β-lactamase (ESBL) [bla(CTX-M) (18·75%)], β-lactamase [bla(SHV-1) (18·75%)] and tetracycline resistance [tetE (12·50%)] was observed. The results revealed that pet turtle-borne Klebsiella sp. may carry different types of virulence and antimicrobial resistance genes which represents a potential threat to public health. SIGNIFICANCE AND IMPACT OF THE STUDY: Klebsiella sp. are nonmotile Gram-negative bacteria that are found in different environments. The virulence and antimicrobial resistance properties of pet turtle-borne Klebsiella sp. have not been studied before. Phylogenetic relationships, virulence traits and antimicrobial resistance profiles of pet turtle-borne Klebsiella sp. were characterized for the first time in Korea. Multiple virulence and antimicrobial resistance genes were observed among the isolates. The occurrence of virulence and antimicrobial resistance determinants in Klebsiella sp. may represent a potential threat to public health.202031671218
105760.9999Emergence of ciprofloxacin-resistant extended-spectrum β-lactamase-producing enteric bacteria in hospital wastewater and clinical sources. This study aimed to evaluate the incidence of ciprofloxacin-resistant extended-spectrum β-lactamase (ESBL)-producing enteric bacteria in hospital wastewater and clinical sources. Enteric bacteria, mainly Escherichia coli, were isolated from clinical sources (urinary tract and gastrointestinal tract infections; 80 isolates) and hospital wastewater (103 isolates). The antibiotic resistance profile and ESBL production of the isolates were investigated by disc diffusion assay and combined disc diffusion test, respectively. Plasmid profiling was performed by agarose gel electrophoresis, and elimination of resistance markers was performed by a plasmid curing experiment. Antibiotic susceptibility testing revealed a high incidence of β-lactam resistance, being highest to ampicillin (88.0%) followed by amoxicillin, ceftriaxone, cefpodoxime, cefotaxime, aztreonam, cefepime and ceftazidime. Among the non-β-lactam antibiotics, the highest resistance was recorded to nalidixic acid (85.7%). Moreover, 50.8% of enteric bacteria showed resistance to ciprofloxacin. Among 183 total enteric bacteria, 150 (82.0%) exhibited multidrug resistance. ESBL production was detected in 78 isolates (42.6%). A significantly higher incidence of ciprofloxacin resistance was observed among ESBL-producing enteric bacteria both in clinical (P=0.0015) and environmental isolates (P=0.012), clearly demonstrating a close association between ESBL production and ciprofloxacin resistance. Plasmid profiling of selected ESBL-positive strains indicated the presence of one or more plasmids of varying sizes. Plasmid curing resulted in loss of ciprofloxacin and cefotaxime resistance markers simultaneously from selected ESBL-positive isolates, indicating the close relationship of these markers. This study revealed a common occurrence of ciprofloxacin-resistant ESBL-producing enteric bacteria both in hospital wastewater and clinical sources, indicating a potential public health threat.201627436461
115670.9999Detection of qnr, aac(6')-Ib-cr and qepA genes in Escherichia coli isolated from cooked meat products in Henan, China. Antimicrobial resistance in Escherichia coli has increased in recent years in China. Antimicrobial resistant isolates and resistance genes of E. coli can be transferred to humans through the food chain and this presents a public health risk. However, few studies have investigated the prevalence of antimicrobial resistance-encoding genes in E. coli isolated from food samples in China. The aim of this study was to investigate the presence of quinolone resistance genes (QRGs) and extended-spectrum β-lactamases (ESBLs) in E. coli isolated from cooked meat products in Henan, China. A total of 75 E. coli isolates (12.1%) were detected from 620 samples. High rates of resistance to the following drugs were observed: tetracycline (56.0%), trimethoprim/sulfamethoxazole (41.3%), streptomycin (29.3%), ampicillin (26.7%) and nalidixic acid (14.7%). Of the 75 isolates, QRGs were present in 10 isolates (13.3%), with qnr and aac(6')-Ib-cr detected alone or in combination in five (6.7%) and eight isolates (10.7%). The qnr genes detected in this study included qnrS (n=3) and qnrA (n=2). The qepA gene was absent among these isolates. Three types of β-lactamase genes were identified in the five ESBL-producing E. coli isolates: blaCTX-M-1, blaCTX-M-9, and blaTEM-1. The qnrS gene was found to be co-transferred with blaCTX-M-1 and blaTEM-1 in one isolate. Our data suggest that cooked meat products may act as reservoirs for multi-resistant bacteria and facilitate the dissemination of antimicrobial resistance genes.201425036771
115080.9999Occurrence of multidrug resistance associated with extended-spectrum β‑lactamase and the biofilm forming ability of Escherichia coli in environmental swine husbandry. Extended-spectrum beta-lactamase (ESBL) production and biofilm formation are mechanisms employed by Escherichia coli to resist beta-lactam antibiotics. Thus, we aimed to examine antibiotic resistance associated with ESBL production and biofilm formation in E. coli isolates from swine farms in Southern Thailand. In total, 159 E. coli isolates were obtained, with 44 isolates identified as ESBL producers, originating from feces (18.87 %) and wastewater (8.80 %) samples. All ESBL-producing strains exhibited resistance to ampicillin (100 %), followed by the cephalosporin group (97.73 %) and tetracycline (84.09 %). Multidrug resistance was observed in 17 isolates (38.63 %). Among the isolates from feces samples, the bla(GES) gene was the most prevalent, detected in 90 % of the samples, followed by bla(CTX-M9) (86.67 %) and bla(CTX-M1) (66.67 %), respectively. In the bacteria isolated from wastewater, both bla(GES) and bla(CTX-M9) genes were the predominant resistance genes, detected in 100 % of the isolates, followed by bla(CTX-M1) (64.29 %) and bla(TEM) (50 %), respectively. Strong biofilm formation was observed in 11 isolates (36.67 %) from feces and 4 isolates (25.57 %) from wastewater samples. Notably, nearly 100 % of ESBL-producing strains isolated from feces tested positive for both pgaA and pgaC genes, which play a role in intracellular adhesion and biofilm production. These findings contribute to the understanding and potential control of ESBL-producing E. coli, and the dissemination of antibiotic resistance and biofilm-related genes in swine farms.202337976973
114990.9999Antimicrobial resistance, Extended-Spectrum β-Lactamase production and virulence genes in Salmonella enterica and Escherichia coli isolates from estuarine environment. The impact of antimicrobial resistance (AMR) on global public health has been widely documented. AMR in the environment poses a serious threat to both human and animal health but is frequently overlooked. This study aimed to characterize the association between phenotype and genotype of AMR, virulence genes and Extended-Spectrum β-Lactamase (ESBL) production from estuarine environment. The Salmonella (n = 126) and E. coli (n = 409) were isolated from oysters and estuarine water in Thailand. The isolates of Salmonella (96.9%) and E. coli (91.4%) showed resistance to at least one antimicrobial agent. Multidrug resistance (MDR) was 40.1% of Salmonella and 23.0% of E. coli. Resistance to sulfamethoxazole was most common in Salmonella (95.2%) and E. coli (77.8%). The common resistance genes found in Salmonella were sul3 (14.3%), followed by blaTEM (11.9%), and cmlA (11.9%), while most E. coli were blaTEM (31.5%) and tetA (25.4%). The ESBL production was detected in Salmonella (1.6%, n = 2) of which one isolate was positive to blaTEM-1. Eight E. coli isolates (2.0%) were ESBL producers, of which three isolates carried blaCTX-M-55 and one isolate was blaTEM-1. Predominant virulence genes identified in Salmonella were invA (77.0%), stn (77.0%), and fimA (69.0%), while those in E. coli isolates were stx1 (17.8%), lt (11.7%), and stx2 (1.2%). Logistic regression models showed the statistical association between resistance phenotype, virulence genes and ESBL production (p < 0.05). The findings highlighted that estuarine environment were potential hotspots of resistance. One Health should be implemented to prevent AMR bacteria spreading.202337115770
1146100.9999Molecular detection and prevalence of colistin-resistant Escherichia coli in poultry and humans: a one health perspective. Multidrug-resistant (MDR) bacteria significantly threaten humans and animals worldwide. Colistin is the last resort of antibiotics against gram-negative bacterial infections. Its irrational use in poultry is a major factor in transmitting MDR bacteria to humans. The present study investigated the risk factors, prevalence, and molecular detection of colistin resistance associated with poultry and humans. A total of (n = 140) cloacal swabs from chickens and human stool samples (n = 140) were processed to identify E. coli using conventional methods, followed by genotypic confirmation. Phenotypic and genotypic confirmation of antibiotic resistance genes qnrA, blaTEM, tetA, aadA, and mcr genes was performed on these E. coli isolates. These isolates were confirmed at 69.3% and 62.8% in chickens and humans, respectively. Limited education and poor hygiene significantly increased the infection rate (p = 0.0001). The E. coli isolates from commercial poultry showed 100% resistance to amoxicillin/clavulanic acid, 98.9% to ampicillin, and 93.8% to tetracycline. The E. coli isolates from humans exhibited 90% resistance to ciprofloxacin, 88% to ampicillin, and 85% to ceftriaxone. Among these, MDR E. coli isolates of both commercial poultry and humans, colistin resistance was found in 78.6% and 48.1%, respectively. Genotypic confirmation of mcr genes such as mcr-1 (42%), mcr-2 (19.6%), mcr-3 (15.1%), mcr-4 (7.6%), and mcr-5 (4.5%) in commercial poultry. However, only the mcr-1 (15.6%) gene was found in human isolates. The current study findings highlight the prevalence of mcr genes in E. coli, potentially contributing to broader antibiotic resistance concerns.202540956559
1125110.9999Detection of emerging antibiotic resistance in bacteria isolated from subclinical mastitis in cattle in West Bengal. AIM: The aim of this work was to detect antibiotic resistance in Gram-negative bacteria isolated from subclinical mastitis in cattle in West Bengal. MATERIALS AND METHODS: The milk samples were collected from the cattle suffering with subclinical mastitis in West Bengal. The milk samples were inoculated into the nutrient broth and incubated at 37°C. On the next day, the growth was transferred into nutrient agar and MacConkey agar. All the pure cultures obtained from nutrient agar slant were subjected to Gram-staining and standard biochemical tests. All the bacterial isolates were tested in vitro for their sensitivity to different antibiotics commonly used in veterinary practices. All Gram-negative isolates including positive control were subjected to polymerase chain reaction (PCR) for detection of bla(CTX-M), bla(TEM), bla(SHV), bla(VIM), tetA, tetB, tetC, and tetM genes considered for extended-spectrum β-lactamase (ESBL), metallo-β-lactamase, and tetracycline resistance. RESULTS: In total, 50 Gram-negative organisms (Escherichia coli, Proteus, Pseudomonas, Klebsiella, and Enterobacter) were isolated from milk samples of subclinical mastitis infected cattle. Among these Gram-negative isolates, 48% (24/50) were found either ESBL producing or tetracycline resistant. Out of total 50 Gram-negative isolates, bla(CTX-M) was detected in 18 (36%) isolates, and 6 (12%) harbored bla(TEM) genes in PCR. None of the isolates carried bla(SHV) genes. Further, in this study, 5 (10%) isolates harbored tet(A) gene, and 8 (16%) isolates carried tet(B) gene. No tet(C) gene was detected from the isolates. CONCLUSION: This study showed emerging trend of antibiotic-resistant Gram-negative bacteria associated with subclinical mastitis in cattle in West Bengal, India.201728620255
1083120.9999Molecular Characterization of Colistin-Resistant Escherichia coli Isolated from Chickens: First Report from Nepal. Dissemination of mcr-1 encoding colistin resistance in Gram-negative bacteria has created critical situation in poultry, livestock farming, and public health. In Nepal, for the first time, we initiated surveillance of colistin-resistant Escherichia coli in broilers from seven different chicken farms. A total of 324 cloacal swabs were collected and 118 E. coli were isolated, of which 27 (22.8%) were colistin resistance all harboring mcr-1 gene, but lacking ISApI1. Colistin-resistant isolates were characterized by antibiotic susceptibility testing, detecting antibiotic resistance genes, phylogenetic analysis, and plasmid replicon typing. These isolates belonged to the phylo-group A (70.37%) and phylo-group D (29.63%). In addition, most isolates (>80%) were resistant to ciprofloxacin, tetracycline, and sulfamethoxazole-trimethoprim. As much as 3 of the 27 mcr-1 encoding isolates were confirmed as extended-spectrum β-lactamase (ESBL) producer, all 3 isolates carrying bla(CTX-M) gene. We performed the conjugation experiment to check transferability of mcr-1, tet, and bla(CTX-M) genes, and only two donors were found to have transferred resistance to ticarcillin. The transfer of colistin and tetracycline resistance was not detected, which suggests the chromosomal location of mcr-1 and tet genes. The prevalence of Inc K/B and Inc I1 was 96.3% and 81.48%, respectively. This study shows the co-existence of mcr-1 with tet, sul, qnr, dfr, and bla(CTX-M) genes and dissemination of these resistant isolates in Nepalese chicken farms, which may pose huge threat to the livestock, especially chickens, and public health in Nepal.201930874473
1025130.9999Detection of Extended Spectrum Beta-Lactamases Resistance Genes among Bacteria Isolated from Selected Drinking Water Distribution Channels in Southwestern Nigeria. Extended Spectrum Beta-Lactamases (ESBL) provide high level resistance to beta-lactam antibiotics among bacteria. In this study, previously described multidrug resistant bacteria from raw, treated, and municipal taps of DWDS from selected dams in southwestern Nigeria were assessed for the presence of ESBL resistance genes which include bla TEM, bla SHV, and bla CTX by PCR amplification. A total of 164 bacteria spread across treated (33), raw (66), and municipal taps (68), belonging to α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Flavobacteriia, Bacilli, and Actinobacteria group, were selected for this study. Among these bacteria, the most commonly observed resistance was for ampicillin and amoxicillin/clavulanic acid (61 isolates). Sixty-one isolates carried at least one of the targeted ESBL genes with bla TEM being the most abundant (50/61) and bla CTX being detected least (3/61). Klebsiella was the most frequently identified genus (18.03%) to harbour ESBL gene followed by Proteus (14.75%). Moreover, combinations of two ESBL genes, bla SHV + bla TEM or bla CTX + bla TEM, were observed in 11 and 1 isolate, respectively. In conclusion, classic bla TEM ESBL gene was present in multiple bacterial strains that were isolated from DWDS sources in Nigeria. These environments may serve as foci exchange of genetic traits in a diversity of Gram-negative bacteria.201627563674
1152140.9999Gut Commensal Escherichia coli, a High-Risk Reservoir of Transferable Plasmid-Mediated Antimicrobial Resistance Traits. BACKGROUND: Escherichia coli (E. coli), the main human gut microorganism, is one of the evolved superbugs because of acquiring antimicrobial resistance (AMR) determinants via horizontal gene transfer (HGT). PURPOSE: This study aimed to screen isolates of gut commensal E. coli from healthy adult individuals for antimicrobial susceptibility and plasmid-mediated AMR encoding genes. METHODS: Gut commensal E. coli bacteria were isolated from fecal samples that were taken from healthy adult individuals and investigated phenotypically for their antimicrobial susceptibility against diverse classes of antimicrobials using the Kirby Bauer disc method. PCR-based molecular assays were carried out to detect diverse plasmid-carried AMR encoding genes and virulence genes of different E. coli pathotypes (eaeA, stx, ipaH, est, elt, aggR and pCVD432). The examined AMR genes were β-lactam resistance encoding genes (bla (CTX-M1), bla (TEM), bla (CMY-2)), tetracycline resistance encoding genes (tetA, tetB), sulfonamides resistance encoding genes (sul1, sulII), aminoglycoside resistance encoding genes (aac(3)-II, aac(6')-Ib-cr) and quinolones resistance encoding genes (qnrA, qnrB, qnrS). RESULTS: PCR results revealed the absence of pathotypes genes in 56 isolates that were considered gut commensal isolates. E. coli isolates showed high resistance rates against tested antimicrobial agents belonging to both β-lactams and sulfonamides (42/56, 75%) followed by quinolones (35/56, 62.5%), tetracyclines (31/56, 55.4%), while the lowest resistance rate was to aminoglycosides (24/56, 42.9%). Antimicrobial susceptibility profiles revealed that 64.3% of isolates were multidrug-resistant (MDR). High prevalence frequencies of plasmid-carried AMR genes were detected including bla (TEM) (64%) sulI (60.7%), qnrA (51.8%), aac(3)-II (37.5%), and tetA (46.4%). All isolates harbored more than one gene with the most frequent genetic profile among isolates was bla (TEM)-bla (CTX-M1-like)-qnrA-qnrB-tetA-sulI. CONCLUSION: Results are significant in the evaluation of plasmid-carried AMR genes in the human gut commensal E. coli, suggesting a potential human health risk and the necessity of strict regulation of the use of antibiotics in Egypt. Commensal E. coli bacteria may constitute a potential reservoir of AMR genes that can be transferred to other bacterial species.202235321080
1315150.9999Neonatal calf diarrhea: A potent reservoir of multi-drug resistant bacteria, environmental contamination and public health hazard in Pakistan. Though emergence of multi-drug resistant bacteria in the environment is a demonstrated worldwide phenomenon, limited research is reported about the prevalence of resistant bacteria in fecal ecology of neonatal calf diarrhea (NCD) animals in Pakistan. The present study aimed to identify and assess the prevalence of bacterial pathogens and their resistance potential in the fecal ecology of NCD diseased animals of Pakistan. The presence of antibiotic resistance genes (bla(TEM), bla(NDM-1), bla(CTX-M), qnrS) was also investigated. A total of 51 bacterial isolates were recovered from feces of young diarrheic animals (n = 11), collected from 7 cities of Pakistan and identified on the basis of 16S rRNA gene sequence and phylogenetic analysis. Selected isolates were subjected to antimicrobial susceptibility by disc diffusion method while polymerase chain reaction (PCR) was used to characterize the bla(TEM), bla(NDM-1), bla(CTX-M), qnrS and mcr-1 antibiotic resistance genes. Based on the 16S rRNA gene sequences (Accession numbers: LC488898 to LC488948), all isolates were identified that belonged to seventeen genera with the highest prevalence rate for phylum Proteobacteria and genus Bacillus (23%). Antibiotic susceptibility explained the prevalence of resistance in isolates ciprofloxacin (100%), ampicillin (100%), sulfamethoxazole-trimethoprim (85%), tetracycline (75%), amoxicillin (55%), ofloxacin (50%), ceftazidime (45%), amoxicillin/clavulanic acid (45%), levofloxacin (30%), cefpodoxime (25%), cefotaxime (25%), cefotaxime/clavulanic acid (20%), and imipenem (10%). MICs demonstrated that almost 90% isolates were multi-drug resistant (against at least three antibiotics), specially against ciprofloxacin, and tetracycline with the highest resistance levels for Shigella sp. (NCCP-421) (MIC-CIP up to 75 μg mL(-1)) and Escherichia sp. (NCCP-432) (MIC-TET up to 250 μg mL(-1)). PCR-assisted detection of antibiotic resistance genes showed that 54% isolates were positive for bla(TEM) gene, 7% isolates were positive for bla(CTX-M) gene, 23% isolates were positive for each of qnrS and mcr-1 genes, 23% isolates were co-positive in combinations of qnrS and mcr-1 genes and bla(TEM) and mcr-1 genes, whereas none of the isolate showed presence of bla(NDM-1) gene.202134426357
1198160.9999Third-Generation Cephalosporin- and Tetracycline-Resistant Escherichia coli and Antimicrobial Resistance Genes from Metagenomes of Mink Feces and Feed. American mink (Neovison vison) is a significant source of global fur production. Except for a few studies from Denmark and Canada reporting antimicrobial resistance in bacteria isolated from clinical cases, studies from the general mink population are scarce and absent in the United States. Mink feces (n = 42) and feed (n = 8) samples obtained from a mink farm were cultured for the enumeration and detection of tetracycline-resistant (TET(r))- and third-generation cephalosporin-resistant (TGC(r))-Escherichia coli. Isolates were characterized phenotypically for their resistance to other antibiotics and genotypically for resistance genes. TET(r)E. coli were detected from 98% of feces samples (mean concentration = 6 log(10)) and from 100% of feed samples (mean concentration = 3.2 logs). Among TET(r)E. coli isolates, 44% (n = 41) of fecal- and 50% (n = 8) of feed isolates were multidrug resistant (MDR; resistance to ≥3 antimicrobial classes), and 96% (n = 49) of TET(r) isolates were positive for tet(A) and/or tet(B). TGC(r)E. coli were detected from 95% of feces and 75% of feed samples with 78% (n = 40) of fecal isolates, and all six of the feed isolates were MDR. Nearly two-thirds (65%) of the TGC(r)E. coli isolates (n = 46) were positive for bla(CMY-2); the remaining 35% were positive for bla(CTX-M,) with the bla(CTX-M-14) being the predominant (75%, n = 16) variant detected. Metagenomic DNA was extracted directly from feces and feed samples, and it was tested for 84 antimicrobial resistance genes by using quantitative polymerase chain reaction (PCR) array; selected genes were also quantified by droplet digital PCR. The genes detected from the fecal samples belonged mainly to five antimicrobial classes: macrolide-lincosamide-streptogramin B (MLS(B); 100% prevalence), TETs (88.1%), β-lactams (71.4%), aminoglycosides (66.7%), and fluoroquinolones (47.6%). β-Lactam, MLS(B), and TET resistance genes were also detected from feed samples. Our study serves as a baseline for further studies and to streamline antimicrobial use in mink production in accordance with current regulations as in food animals.202133085531
1082170.9999High β-lactam resistance in Gram-negative bacteria associated with kennel cough and cat flu in Egypt. Antimicrobial resistance within pets has gained worldwide attention due to pets close contact with humans. This report examined at the molecular level, the antimicrobial resistance mechanisms associated with kennel cough and cat flu. 1378 pets in total were assessed for signs of respiratory infection, and nasal and conjunctival swabs were collected across 76 diseased animals. Phenotypically, 27% of the isolates were characterized by multidrug resistance and possessed high levels of resistance rates to β-lactams. Phenotypic ESBLs/AmpCs production were identified within 40.5% and 24.3% of the isolates, respectively. Genotypically, ESBL- and AmpC-encoding genes were detected in 33.8% and 10.8% of the isolates, respectively, with bla(SHV) comprising the most identified ESBL, and bla(CMY) and bla(ACT) present as the AmpC with the highest levels. qnr genes were identified in 64.9% of the isolates, with qnrS being the most prevalent (44.6%). Several antimicrobial resistance determinants were detected for the first time within pets from Africa, including bla(CTX-M-37), bla(CTX-M-156), bla(SHV-11), bla(ACT-23), bla(ACT25/31), bla(DHA-1), and bla(CMY-169). Our results revealed that pets displaying symptoms of respiratory illness are potential sources for pathogenic microbes possessing unique resistance mechanisms which could be disseminated to humans, thus leading to the development of severe untreatable infections in these hosts.202133558604
1069180.9999High Prevalence of Antimicrobial Resistance in Gram-Negative Bacteria Isolated from Clinical Settings in Egypt: Recalling for Judicious Use of Conventional Antimicrobials in Developing Nations. This study was designed to investigate, at the molecular level, the antimicrobial resistance mechanisms of different antimicrobial resistance genes, including, extended-spectrum β-lactamases, AmpC β-lactamases, class 1 and 2 integrons, and plasmid-mediated quinolone resistance genes of Gram-negative bacteria isolated from clinical settings in Egypt. A total of 126 nonduplicate Gram-negative isolates were recovered from different clinical samples taken from hospitalized patients in Egypt in 2014. Antimicrobial susceptibility testing showed that, 93.6% (118/126) of the isolates had a multidrug-resistant phenotype. Interestingly, we reported a high level of antimicrobial resistance nearly for all tested antibiotics; to our knowledge, this is the first report from Egypt indicating very high level of antibiotic resistance in Egypt. Polymerase chain reaction screening and DNA sequencing revealed that, 75.4% (95/126) of the isolates harbored at least one extended-spectrum β-lactamase-encoding gene, with bla(CTX-M) being the most prevalent (65.9%), followed by bla(SHV) (46.8%). The AmpC β-lactamase, bla(CMY), was detected in 7.1% (9/126) of bacterial isolates, with bla(CMY-42) being the most prevalent. Class 1 integrons were detected in 50.8% (64/126) of the isolates, and class 2 integrons were detected in 2.4% (3/126) of the isolates. The plasmid-mediated quinolone resistance gene, qnr, was detected in 58.7% (74/126) of the tested isolates, with qnrS being the most prevalent. Several antimicrobial resistance determinants were identified in Egypt for the first time, such as SHV-27, SHV-28, SHV-33, SHV-63, SHV-71, SHV-82, SHV-142, CMY-42, CMY-6, and the new CMY-72 like. This study highlights the importance of the conscious use of conventional antimicrobials to overcome the multidrug resistance problem.201930681401
1048190.9999Characterizing the co-existence of metallo-β-lactamase-producing and extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in community wastewater samples of Dhaka, Bangladesh. Escherichia coli and Klebsiella pneumoniae isolates with multiple antibiotic-resistance genes in wastewater pose serious public health risks, as they can potentially contaminate the food and water supply. The main aim of this study was to isolate and identify E. coli and K. pneumoniae from community wastewater samples, and determine their antibiotic-resistance profiles and their antibiotic-resistant genes. From the northern part of Dhaka, Bangladesh, 36 wastewater samples were collected across 11 different areas, which were then serially diluted, and cultured using selective media. Isolates were identified via polymerase chain reaction. Out of the 197 isolates identified, E. coli and K. pneumoniae accounted for 55.8% (n = 110) and 44.2% (n = 87), respectively. Antibiotic susceptibility tests revealed multidrug resistance (MDR) in 30% of E. coli and 35.56% of K. pneumoniae isolates. Among E. coli, the prevalence of antibiotic-resistance genes included bla(NDM-1) (8.9%), bla(SHV) (13.9%), and bla(CTX-M) (7.6%). In K. pneumoniae, the percentages were bla(NDM-1) (12.8%), bla(SHV) (4.3%), and bla(CTX-M) (5.0%). Co-existence of multiple antibiotic-resistance genes was observed in 4.54% of E. coli isolates (n = 5) and 5.74% of K. pneumoniae isolates (n = 5). This suggests the escalating issue of infectious species becoming increasingly resistant to antibiotics in wastewater systems.202540298266