The occurrence and molecular detection of mcr-1 and mcr-5 genes in Enterobacteriaceae isolated from poultry and poultry meats in Malaysia. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
108501.0000The occurrence and molecular detection of mcr-1 and mcr-5 genes in Enterobacteriaceae isolated from poultry and poultry meats in Malaysia. The advent of antimicrobials-resistant (AMR), including colistin-resistant bacteria, poses a significant challenge to animal and human health, food safety, socio-economic growth, and the global environment. This study aimed to ascertain the colistin resistance prevalence and molecular mechanisms of colistin resistance in Enterobacteriaceae. The colistin resistance was determined using broth microdilution assay, PCR; and Sanger sequencing of mcr genes responsible for colistin resistance in Enterobacteriaceae (n = 627), including Escherichia coli (436), Salmonella spp. (n = 140), and Klebsiella pneumoniae (n = 51), obtained from chicken and chicken meats. Out of 627 Enterobacteriaceae, 8.6% of isolates exhibited colistin resistance phenotypically. Among these colistin resistant isolates, 9.3% (n = 37) were isolated from chicken meat, 7.2% (n = 11) from the cloacal swab of chicken and 7.9% (n = 6) from the litter samples. Overall, 12.96% of colistin-resistant isolates were positive with mcr genes, in which mcr-1 and mcr-5 genes were determined in 11.11% and 1.85% of colistin-resistant isolates, respectively. The E. coli isolates obtained from chicken meats, cloacal swabs and litter samples were found positive for mcr-1, and Salmonella spp. originated from the chicken meat sample was observed with mcr-5, whereas no mcr genes were observed in K. pneumoniae strains isolated from any of the collected samples. The other colistin resistance genes, including mcr-2, mcr-3, mcr-4, mcr-6, mcr-7, mcr-8, mcr-9, and mcr-10 were not detected in the studied samples. The mcr-1 and mcr-5 genes were sequenced and found to be 100% identical to the mcr-1 and mcr-5 gene sequences available in the NCBI database. This is the first report of colistin resistance mcr-5 gene in Malaysia which could portend the emergence of mcr-5 harboring bacterial strains for infection. Further studies are needed to characterize the mr-5 harbouring bacteria for the determination of plasmid associated with mcr-5 gene.202337601372
108410.9999The emergence of colistin-resistant Escherichia coli in chicken meats in Nepal. The emergence and dissemination of colistin resistance among Gram-negative bacteria is a global problem. We initiated a surveillance of colistin-resistant and -susceptible Escherichia coli in raw meats from chicken in Nepal. A total of 180 meat samples were collected; from these, 60 E. coli strains were isolated (33.33%), of which 16 (26.66%) were colistin-resistant and harboured the mcr-1 gene. All isolates were characterised by antibiotic susceptibility testing, the presence of antibiotic resistance genes, phylogenetic analysis and plasmid replicon typing. Most of the colistin-resistant E. coli had the antibiotic resistant pattern CIP/CN/SXT/TE (43.75%). Coexistence of tet, qnr, sul and dfr genes was detected in both colistin-resistant and -susceptible E. coli. Most colistin-resistant E. coli strains belonged to phylogroup C, whereas 10% of isolates belonged to phylogroup D. Inc FIB was the dominant plasmid Inc type in the isolates. Dissemination of antibiotic-resistant E. coli in raw meats is a public health concern in Nepal and requires further investigation to ascertain the sources of contamination.201931755930
108620.9999Antimicrobial Resistance Profiles and Co-Existence of Multiple Antimicrobial Resistance Genes in mcr-Harbouring Colistin-Resistant Enterobacteriaceae Isolates Recovered from Poultry and Poultry Meats in Malaysia. The co-existence of the colistin resistance (mcr) gene with multiple drug-resistance genes has raised concerns about the possibility of the development of pan-drug-resistant bacteria that will complicate treatment. This study aimed to investigate the antibiotic resistance profiles and co-existence of antibiotic resistance genes among the colistin-resistant Enterobacteriaceae isolates recovered from poultry and poultry meats. The antibiotic susceptibility to various classes of antibiotics was performed using the Kirby-Bauer disk diffusion method and selected antimicrobial resistance genes were detected using PCR in a total of 54 colistin-resistant Enterobacteriaceae isolates including Escherichia coli (E. coli) (n = 32), Salmonella spp. (n = 16) and Klebsiella pneumoniae (K. pneumoniae) (n = 6) isolates. Most of the isolates had multi-drug resistance (MDR), with antibiotic resistance against up to seven classes of antibiotics. All mcr-harbouring, colistin-resistant Enterobacteriaceae isolates showed this MDR (100%) phenotype. The mcr-1 harbouring E. coli isolates were co-harbouring multiple antibiotic resistance genes. The seven most commonly identified resistance genes ((bla)TEM, tetA, floR, aac-3-IV, aadA1, fosA, aac(6_)-lb) were detected in an mcr-1-harbouring E. coli isolate recovered from a cloacal swab. The mcr-5 harbouring Salmonella spp. isolate recovered from poultry meats was positive for (bla)TEM, tetA, floR, aac-3-IV, fosA and aac(6_)-lb genes. In conclusion, the colistin-resistant Enterobacteriaceae with mcr genes co-existing multiple clinically important antimicrobial resistance genes in poultry and poultry meats may cause potential future threats to infection treatment choices in humans and animals.202337370378
89130.9999Identification of mobile colistin resistance genes (mcr-1.1, mcr-5 and mcr-8.1) in Enterobacteriaceae and Alcaligenes faecalis of human and animal origin, Nigeria. Colistin is a last-resort drug used to treat infections caused by multidrug-resistant Gram-negative bacteria that have developed carbapenem resistance. Emergence and rapid dissemination of the nine plasmid-mediated mobile colistin resistance genes (mcr-1 to mcr-9) has led to fear of pandrug-resistant infections worldwide. To date, there is only limited information on colistin resistance in African countries where the drug is widely used in agriculture. In this Nigerian study, 583 non-duplicate bacterial strains were isolated from 1119 samples from humans, camels, cattle, dogs, pigs and poultry using colistin-supplemented MacConkey agar, among which 17.0% (99/583) were colistin-resistant. PCR (mcr-1 to mcr-9) and whole-genome sequencing (WGS) identified mcr in 21.2% (21/99) of colistin-resistant isolates: mcr-1.1 (n = 13), mcr-8.1 (n = 5), mcr-1.1 and mcr-8.1 (n = 2), and mcr-1.1 and mcr-5 (n = 1). Of the 21 mcr-positive strains, 9 were isolated from human samples, with 8 being Klebsiella pneumoniae, and 6 of these human K. pneumoniae had a high colistin MIC (>64 μg/mL). In contrast, 9 of the 12 mcr-positive animal isolates were Escherichia coli, of which only 2 had a colistin MIC of >64 μg/mL. This study is the first to report mcr-1 in Alcaligenes faecalis and the emergence of mcr-5 and mcr-8 in Nigeria. WGS determined that mcr-1 was localised on an IncX4 plasmid and that 95.2% of mcr-1 harbouring isolates (20/21) transferred colistin resistance successfully by conjugation. These findings highlight the global spread of colistin resistance and emphasise the urgent need for co-ordinated global action to combat resistant bacteria.202032721596
114140.9999Abundance of Colistin-Resistance Genes in Retail Meats in Vietnam. The degree of contamination of retail meat with colistin-resistant bacteria and its potential contribution to dissemination within communities remains to be determined. Thus, we aimed to elucidate the contamination status of colistin-resistance genes, indicative of colistin-resistant bacteria, in retail meats in Vietnam. In total, 46 chicken and 49 pork meats from stores in Vietnam and Japan were examined. Multiplex real-time polymerase chain reaction with TaqMan probes was performed for detecting mcr-1, mcr-3, and Escherichia coli 16S rRNA. Colistin-resistant bacteria in meats were isolated using selective media. The minimum inhibitory concentrations of colistin were determined using the broth microdilution method. The results showed that 70.7% of chicken meats in Vietnam were contaminated with both mcr-1 and mcr-3. Meanwhile, mcr-1 and mcr-3 were detected in 15.9% and 40.9% of pork meat, respectively. Only mcr-3 was detected in 40% of chicken in Japan. In addition, mcr-1-harboring E. coli and mcr-3-harboring Aeromonas were isolated from chicken meats in Vietnam. Some of these isolates showed colistin resistance. These results showed that most retail meats were highly contaminated with colistin-resistance genes. Notably, our results suggest that mcr-3 is more prevalent in the contaminated samples compared with mcr-1.202438700849
114250.9999Virulence Determinants and Plasmid-Mediated Colistin Resistance mcr Genes in Gram-Negative Bacteria Isolated From Bovine Milk. A major increase of bacterial resistance to colistin, a last-resort treatment for severe infections, was observed globally. Using colistin in livestock rearing is believed to be the ground of mobilized colistin resistance (mcr) gene circulation and is of crucial concern to public health. This study aimed to determine the frequency and virulence characteristics of colistin-resistant Gram-negative bacteria from the milk of mastitic cows and raw unpasteurized milk in Egypt. One hundred and seventeen strains belonging to Enterobacteriaceae (n = 90), Pseudomonas aeruginosa (n = 10), and Aeromonas hydrophila (n = 17) were screened for colistin resistance by antimicrobial susceptibility testing. The genetic characteristics of colistin-resistant strains were investigated for mcr-1-9 genes, phylogenetic groups, and virulence genes. Moreover, we evaluated four commonly used biocides in dairy farms for teat disinfection toward colistin-resistant strains. Multidrug-resistant (MDR) and extensive drug-resistant (XDR) phenotypes were detected in 82.91% (97/117) and 3.42% (4/117) of the isolates, respectively. Of the 117 tested isolates, 61 (52.14%) were colistin resistant (MIC >2 mg/L), distributed as 24/70 (34.29%) from clinical mastitis, 10/11 (90.91%) from subclinical mastitis, and 27/36 (75%) from raw milk. Of these 61 colistin-resistant isolates, 47 (19 from clinical mastitis, 8 from subclinical mastitis, and 20 from raw milk) harbored plasmid-borne mcr genes. The mcr-1 gene was identified in 31.91%, mcr-2 in 29.79%, mcr-3 in 34.04%, and each of mcr-4 and mcr-7 in 2.13% of the colistin-resistant isolates. Among these isolates, 42.55% (20/47) were E. coli, 21.28% (10/47) A. hydrophila, 19.12% (9/47) K. pneumoniae, and 17.02% (8/47) P. aeruginosa. This is the first report of mcr-3 and mcr-7 in P. aeruginosa. Conjugation experiments using the broth-mating technique showed successful transfer of colistin resistance to E. coli J53-recipient strain. Different combinations of virulence genes were observed among colistin-resistant isolates with almost all isolates harboring genes. Hydrogen peroxide has the best efficiency against all bacterial isolates even at a low concentration (10%). In conclusion, the dissemination of mobile colistin resistance mcr gene and its variants between MDR- and XDR-virulent Gram-negative isolates from dairy cattle confirms the spread of mcr genes at all levels; animals, humans, and environmental, and heralds the penetration of the last-resort antimicrobial against MDR bacteria. Consequently, a decision to ban colistin in food animals is urgently required to fight XDR and MDR bacteria.202134888259
108360.9999Molecular Characterization of Colistin-Resistant Escherichia coli Isolated from Chickens: First Report from Nepal. Dissemination of mcr-1 encoding colistin resistance in Gram-negative bacteria has created critical situation in poultry, livestock farming, and public health. In Nepal, for the first time, we initiated surveillance of colistin-resistant Escherichia coli in broilers from seven different chicken farms. A total of 324 cloacal swabs were collected and 118 E. coli were isolated, of which 27 (22.8%) were colistin resistance all harboring mcr-1 gene, but lacking ISApI1. Colistin-resistant isolates were characterized by antibiotic susceptibility testing, detecting antibiotic resistance genes, phylogenetic analysis, and plasmid replicon typing. These isolates belonged to the phylo-group A (70.37%) and phylo-group D (29.63%). In addition, most isolates (>80%) were resistant to ciprofloxacin, tetracycline, and sulfamethoxazole-trimethoprim. As much as 3 of the 27 mcr-1 encoding isolates were confirmed as extended-spectrum β-lactamase (ESBL) producer, all 3 isolates carrying bla(CTX-M) gene. We performed the conjugation experiment to check transferability of mcr-1, tet, and bla(CTX-M) genes, and only two donors were found to have transferred resistance to ticarcillin. The transfer of colistin and tetracycline resistance was not detected, which suggests the chromosomal location of mcr-1 and tet genes. The prevalence of Inc K/B and Inc I1 was 96.3% and 81.48%, respectively. This study shows the co-existence of mcr-1 with tet, sul, qnr, dfr, and bla(CTX-M) genes and dissemination of these resistant isolates in Nepalese chicken farms, which may pose huge threat to the livestock, especially chickens, and public health in Nepal.201930874473
89070.9999Mobile Colistin-Resistant Genes mcr-1, mcr-2, and mcr-3 Identified in Diarrheal Pathogens among Infants, Children, and Adults in Bangladesh: Implications for the Future. Colistin is a last-resort antimicrobial for treating multidrug-resistant Gram-negative bacteria. Phenotypic colistin resistance is highly associated with plasmid-mediated mobile colistin resistance (mcr) genes. mcr-bearing Enterobacteriaceae have been detected in many countries, with the emergence of colistin-resistant pathogens a global concern. This study assessed the distribution of mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5 genes with phenotypic colistin resistance in isolates from diarrheal infants and children in Bangladesh. Bacteria were identified using the API-20E biochemical panel and 16s rDNA gene sequencing. Polymerase chain reactions detected mcr gene variants in the isolates. Their susceptibilities to colistin were determined by agar dilution and E-test by minimal inhibitory concentration (MIC) measurements. Over 31.6% (71/225) of isolates showed colistin resistance according to agar dilution assessment (MIC > 2 μg/mL). Overall, 15.5% of isolates carried mcr genes (7, mcr-1; 17, mcr-2; 13, and mcr-3, with co-occurrence occurring in two isolates). Clinical breakout MIC values (≥4 μg/mL) were associated with 91.3% of mcr-positive isolates. The mcr-positive pathogens included twenty Escherichia spp., five Shigella flexneri, five Citrobacter spp., two Klebsiella pneumoniae, and three Pseudomonas parafulva. The mcr-genes appeared to be significantly associated with phenotypic colistin resistance phenomena (p = 0.000), with 100% colistin-resistant isolates showing MDR phenomena. The age and sex of patients showed no significant association with detected mcr variants. Overall, mcr-associated colistin-resistant bacteria have emerged in Bangladesh, which warrants further research to determine their spread and instigate activities to reduce resistance.202438927200
101080.9998Prevalence of Antibiotic Resistance and Virulence Genes in Escherichia coli Carried by Migratory Birds on the Inner Mongolia Plateau of Northern China from 2018 to 2023. (1) Background: Antibiotic resistance in bacteria is an urgent global threat to public health. Migratory birds can acquire antibiotic-resistant and pathogenic bacteria from the environment or through contact with each other and spread them over long distances. The objectives of this study were to explore the relationship between migratory birds and the transmission of drug-resistant pathogenic Escherichia coli. (2) Methods: Faeces and swab samples from migratory birds were collected for isolating E. coli on the Inner Mongolia Plateau of northern China from 2018 to 2023. The resistant phenotypes and spectra of isolates were determined using a BD Phoenix 100 System. Conjugation assays were performed on extended-spectrum β-lactamase (ESBL)-producing strains, and the genomes of multidrug-resistant (MDR) and ESBL-producing isolates were sequenced and analysed. (3) Results: Overall, 179 isolates were antibiotic-resistant, with 49.7% MDR and 14.0% ESBL. Plasmids were successfully transferred from 32% of ESBL-producing strains. Genome sequencing analysis of 91 MDR E. coli strains identified 57 acquired resistance genes of 13 classes, and extraintestinal pathogenic E. coli and avian pathogenic E. coli accounted for 26.4% and 9.9%, respectively. There were 52 serotypes and 54 sequence types (STs), including ST48 (4.4%), ST69 (4.4%), ST131 (2.2%) and ST10 (2.2%). The international high-risk clonal strains ST131 and ST10 primarily carried bla(CTX-M-27) and bla(TEM-176). (4) Conclusions: There is a high prevalence of multidrug-resistant virulent E. coli in migratory birds on the Inner Mongolian Plateau. This indicates a risk of intercontinental transmission from migratory birds to livestock and humans.202438930458
114390.9998Antimicrobial Resistance and Virulence Profiles of mcr-1-Positive Escherichia coli Isolated from Swine Farms in Heilongjiang Province of China. ABSTRACT: The emergence and global distribution of the mcr-1 gene for colistin resistance have become a public concern because of threats to the role of colistin as the last line of defense against some bacteria. Because of the prevalence of mcr-1-positive Escherichia coli isolates in food animals, production of these animals has been regarded as one of the major sources of amplification and spread of mcr-1. In this study, 249 E. coli isolates were recovered from 300 fecal samples collected from swine farms in Heilongjiang Province, People's Republic of China. Susceptibility testing revealed that 186 (74.70%) of these isolates were colistin resistant, and 86 were positive for mcr-1. The mcr-1-positive isolates had extensive antimicrobial resistance profiles and additional resistance genes, including blaTEM, blaCTX-M, aac3-IV, tet(A), floR, sul1, sul2, sul3, and oqxAB. No mutations in genes pmrAB and mgrB were associated with colistin resistance. Phylogenetic group analysis revealed that the mcr-1-positive E. coli isolates belonged to groups A (52.33% of isolates), B1 (33.72%), B2 (5.81%), and D (8.14%). The prevalence of the virulence-associated genes iutA, iroN, fimH, vat, ompA, and traT was moderate. Seven mcr-1-positive isolates were identified as extraintestinal pathogenic. Among 20 mcr-1-positive E. coli isolates, multilocus sequence typing revealed that sequence type 10 was the most common (five isolates). The conjugation assays revealed that the majority of mcr-1 genes were transferable at frequencies of 7.05 × 10-7 to 7.57 × 10-4. The results of this study indicate the need for monitoring and minimizing the further dissemination of mcr-1 among E. coli isolates in food animals, particularly swine.202032730609
1017100.9998Evaluation of canine raw food products for the presence of extended-spectrum beta-lactamase- and carbapenemase-producing bacteria of the order Enterobacterales. OBJECTIVE: To assess the potential contamination of commercial raw dog food products with bacteria of the Enterobacterales order that produce extended spectrum beta-lactamase (ESBL) and carbapenemase enzymes, determine risk factors for contamination, and understand isolate genetic diversity. SAMPLES: A total of 200 canine raw food products. METHODS: Products were cultured on selective chromogenic agar following enrichment steps. Whole-genome sequencing was performed for isolates that were confirmed to produce an ESBL. Isolates were characterized by antimicrobial resistance genes, and multilocus sequences typing, and compared to other isolates in the NCBI database for clonality. Preservation method and protein sources were assessed as potential risk factors for contamination with ESBL and carbapenemase-producing bacteria of the Enterobacterales order. RESULTS: No carbapenemase-producing Enterobacterales (CPE) were identified, but ESBL-producing Enterobacterales bacteria were isolated from 20/200 products (10.0%; 95% CI, 7.3 to 16.5%), all of which were frozen. Pork-derived protein source products were 8.1 times (P = .001; 95% CI, 2.53 to 26.2) more likely to carry ESBL-producing Enterobacterales bacteria than other protein sources. WGS analysis confirmed the presence of ESBL genes in a total of 25 distinct isolates (19 Escherichia coli, 5 Klebsiella pneumoniae, and 1 Citrobacter braakii). Genes encoding CTX-M type ESBL enzymes were the most common (24/25 isolates, 96.0%) with blaCTX-M-27 being the most common allele (8/25, 32.0%). CLINICAL RELEVANCE: Frozen, raw food products may serve as a route of transmission of ESBL-producing Enterobacterales bacteria to companion animals. Veterinarians should advise owners about the risks of raw food diets, including potential exposure to antimicrobial-resistant bacteria.202235895774
1073110.9998Occurrence of Extended Spectrum Cephalosporin-, Carbapenem- and Colistin-Resistant Gram-Negative Bacteria in Fresh Vegetables, an Increasing Human Health Concern in Algeria. The aim of this study was to screen for extended spectrum cephalosporin-, carbapenem- and colistin-resistant Gram-negative bacteria in fresh vegetables in Batna, Algeria. A total of 400 samples of fresh vegetables were collected from different retail stores. Samples were immediately subjected to selective isolation, then the representative colonies were identified using matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-MS). Phenotypic and genotypic analyses were carried out in terms of species identification and relative antibiotic resistance. Transferability of the carbapenemase and mcr-bearing plasmids was verified by conjugation. The clonal relationships of carbapenemase and mcr-positive Escherichia coli isolates were studied by multi-locus sequence typing (MLST). Sixty-seven isolates were characterised and were mostly isolated from green leafy vegetables, where the dominant species identified included Citrobacter freundii, Klebsiella pneumoniae, Enterobacter cloacae, Stenotrophomona maltophilia, E. coli and Citrobacter braakii. PCR and sequencing results showed that E. coli was the bacterial species presenting the highest antibiotic resistance level in parallel to bla(TEM) (n = 16) and bla(CTX-M-15) (n = 11), which were the most detected genes. Moreover, five isolates carried carbapenemase genes, including the bla(OXA-48) and/or bla(VIM-4) genes. The mcr-1 gene was detected in two E. coli isolates. MLST analysis revealed three different E. coli sequence types: ST101 (n = 1), ST216 (n = 1) and ST2298 (n = 1). Conjugation assays confirmed the transferability of the bla(OXA-48) and mcr-1 genes. In this study we report, for the first time, the detection of the bla(OXA-48) gene in E. coli and C. braakii isolates and the bla(VIM-4) gene in vegetables. To the best of our knowledge, this is the first report on the detection of mcr-1 genes from vegetables in Algeria.202235892378
1502120.9998Tunisian Multicenter Study on the Prevalence of Colistin Resistance in Clinical Isolates of Gram Negative Bacilli: Emergence of Escherichia coli Harbouring the mcr-1 Gene. BACKGROUND: Actually, no data on the prevalence of plasmid colistin resistance in Tunisia are available among clinical bacteria. OBJECTIVES: This study aimed to investigate the current epidemiology of colistin resistance and the spread of the mcr gene in clinical Gram-negative bacteria (GNB) isolated from six Tunisian university hospitals. METHODS: A total of 836 GNB strains were inoculated on COL-R agar plates with selective screening agar for the isolation of GNB resistant to colistin. For the selected isolates, mcr genes, beta-lactamases associated-resistance genes and molecular characterisation were screened by PCRs and sequencing. RESULTS: Colistin-resistance was detected in 5.02% (42/836) of the isolates and colistin-resistant isolates harboured an ESBL (bla(CTX-M-15)) and/or a carbapenemase (bla(OXA-48), bla(VIM)) encoding gene in 45.2% of the cases. The mcr-1 gene was detected in four E. coli isolates (0.59%) causing urinary tract infections and all these isolates also contained the bla(TEM-1) gene. The bla(CTX-M-15) gene was detected in three isolates that also carried the IncY and IncFIB replicons. The genetic environment surrounding the mcr-carrying plasmid indicated the presence of pap-2 gene upstream mcr-1 resistance marker with unusual missing of ISApl1 insertion sequence. THE CONCLUSIONS: This study reports the first description of the mcr-1 gene among clinical E. coli isolates in Tunisia and provides an incentive to conduct routine colistin susceptibility testing in GNB clinical isolates.202236290048
1051130.9998Multi-drug Resistance, β-Lactamases Production, and Coexistence of bla (NDM-1) and mcr-1 in Escherichia coli Clinical Isolates From a Referral Hospital in Kathmandu, Nepal. The ability of pathogenic Escherichia coli to produce carbapenemase enzymes is a characteristic that allows them to resist various antibiotics, including last-resort antibiotics like colistin and carbapenem. Our objectives were to identify rapidly developing antibiotic resistance (AR), assess β-lactamases production, and detect mcr-1 and bla (NDM-1) genes in the isolates. A prospective cross-sectional study was carried out in a referral hospital located in Kathmandu from November 2019 to December 2020 using standard laboratory and molecular protocols. Among 77 total E. coli isolates, 64 (83.1%) of them were categorized as MDR. Phenotypically 13 (20.3%) colistin-resistant, 30 (46.9%) ESBL and 8 (12.5%) AmpC producers, and 5 (7.8%) ESBL/AmpC co-producers were distributed among MDR-E. coli. Minimum inhibitory concentrations (MIC) against the majority of MDR isolates were exhibited at 1 g/L. Of these 77 E. coli isolates, 24 (31.2%) were carbapenem-resistant. Among these carbapenem-resistant bacteria, 11 (45.9%) isolates were reported to be colistin-resistant, while 15 (62.5%) and 2 (8.3%) were MBL and KPC producers, respectively. Out of 15 MBL producers, 6 (40%) harbored bla (NDM-1), and 8 (61.5%) out of 13 colistin-resistant pathogens possessed mcr-1. The resistance by colistin- and carbapenem were statistically associated (P < .001). However, only 2 (18.2%) of the co-resistant bacteria were found to have both genes. Our study revealed the highly prevalent MDR and the carbapenem-resistant E. coli and emphasized that the pathogens possess a wide range of capabilities to synthesize β-lactamases. These findings could assist to expand the understanding of AR in terms of enzyme production.202336741474
1146140.9998Molecular detection and prevalence of colistin-resistant Escherichia coli in poultry and humans: a one health perspective. Multidrug-resistant (MDR) bacteria significantly threaten humans and animals worldwide. Colistin is the last resort of antibiotics against gram-negative bacterial infections. Its irrational use in poultry is a major factor in transmitting MDR bacteria to humans. The present study investigated the risk factors, prevalence, and molecular detection of colistin resistance associated with poultry and humans. A total of (n = 140) cloacal swabs from chickens and human stool samples (n = 140) were processed to identify E. coli using conventional methods, followed by genotypic confirmation. Phenotypic and genotypic confirmation of antibiotic resistance genes qnrA, blaTEM, tetA, aadA, and mcr genes was performed on these E. coli isolates. These isolates were confirmed at 69.3% and 62.8% in chickens and humans, respectively. Limited education and poor hygiene significantly increased the infection rate (p = 0.0001). The E. coli isolates from commercial poultry showed 100% resistance to amoxicillin/clavulanic acid, 98.9% to ampicillin, and 93.8% to tetracycline. The E. coli isolates from humans exhibited 90% resistance to ciprofloxacin, 88% to ampicillin, and 85% to ceftriaxone. Among these, MDR E. coli isolates of both commercial poultry and humans, colistin resistance was found in 78.6% and 48.1%, respectively. Genotypic confirmation of mcr genes such as mcr-1 (42%), mcr-2 (19.6%), mcr-3 (15.1%), mcr-4 (7.6%), and mcr-5 (4.5%) in commercial poultry. However, only the mcr-1 (15.6%) gene was found in human isolates. The current study findings highlight the prevalence of mcr genes in E. coli, potentially contributing to broader antibiotic resistance concerns.202540956559
1045150.9998ESBL-Producing Enterobacter cloacae Complex and Klebsiella pneumoniae Harbouring bla(CTX-M-15) and bla(CTX-M-55) Potentially Risk the Worldwide Spread of ESBL-Producing Bacteria Through Contaminated Dried Fishery Products. The transmission of life-threatening bacteria with plasmid-mediated antibiotic resistance poses a significant challenge to public health. This study aimed to determine the presence of plasmid-mediated antibiotic resistance genes in Enterobacterales isolates obtained from dried fishery products. Eighty-one dried fishery products were purchased from Vietnamese markets. Enterobacterales were isolated using a CHROMagar Escherichia coli coliform agar containing cefotaxime or meropenem. The isolated strains were assessed for their susceptibility to 14 antibiotics using a disc diffusion assay. Extended-spectrum β-lactamase (ESBL) sub-group typing was performed based on multiplex PCR of isolated ESBL-producing strains. In addition, Enterobacter cloacae AD2-1, which showed multiple drug resistance, was subject to whole-genome sequence analysis. CTX-resistant bacteria were isolated from 22% and MEM-resistant bacteria from 27% of the Vietnamese samples. CTX-resistant bacteria were isolated from 17% and MEM-resistant bacteria from 4% of Japanese samples. Bacterial identification indicated that 98 strains were isolated, of which 29 strains of E. coli, 28 of Enterobacter cloacae complex, 19 of Staphylococcus spp., and 9 of Klebsiella pneumoniae were predominant in Vietnamese samples. Japanese samples were predominantly contaminated with E. cloacae complex. Multiplex PCR and sequencing was used to determine the presence of ESBL-related genes bla(CTX-M-15) and bla(CTX-M-55) in E. cloacae and K. pneumoniae isolates. E. cloacae AD2-1 isolated from the Vietnamese dried fish was resistant to 14 antibiotics, and approximately 300 kbp of the IncHI2 plasmid harboured multiple antibiotic resistance genes and formed an antibiotic resistance gene region. This E. cloacae is considered a risk for the spread of antibiotic resistance across countries.202541171320
1147160.9998Detection and Characterisation of Colistin-Resistant Escherichia coli in Broiler Meats. The irrational use of antimicrobials has led to the emergence of resistance, impacting not only pathogenic bacteria but also commensal bacteria. Resistance against colistin, a last-resort antibiotic, mediated by globally disseminated plasmid-borne mobile colistin resistance (mcr) genes, has raised significant global concerns. This cross-sectional study aimed to investigate the antimicrobial resistance patterns of colistin-resistant Escherichia coli (E. coli) and mobilised colistin resistance (mcr 1-5) genes from broiler meat. A total of 570 broiler samples (285 liver and 285 muscle) were collected from 7 supermarkets and 11 live bird markets (LBMs) in Chattogram metropolitan areas of Bangladesh. The isolation and identification of E. coli were carried out using standard bacteriological and molecular techniques. Antimicrobial susceptibility testing (AST) was performed using the Kirby-Bauer disc diffusion method, and colistin's minimum inhibitory concentration (MIC) was determined by the broth microdilution (BMD) method. Colistin-resistant isolates were further tested for the presence of mcr (1-5) genes using polymerase chain reaction (PCR). Out of the 570 samples, 311 (54.56%; 95% confidence interval: 50.46-58.60) were positive for E. coli. AST results showed the highest resistance to sulphamethoxazole-trimethoprim (89.39%), while the highest susceptibility was observed for cefalexin (62.70%). A total of 296 isolates (95.18%) were found to be multidrug-resistant (MDR), with the multiple antibiotic resistance (MAR) index ranging from 0.38 to 1. Additionally, 41 isolates (13.18%) exhibited resistance to five antimicrobial classes, with resistance patterns of CIP + SXT + AMP + DO + TE + CT. A total of 233 isolates (74.92%) were resistant to colistin (MIC > 2 mg/L). A strong correlation between colistin resistance and the presence of the mcr-1 gene was observed (r = 1). All phenotypic colistin-resistant E. coli isolates carried the mcr-1 gene, while no isolates were positive for mcr (2-5). The detection of mcr genes in E. coli strains from poultry sources poses a significant risk, as these resistance genes can be transferred to humans through the food chain. The prevalence of multidrug-resistant Escherichia coli and the mcr-1 gene in poultry products in Bangladesh presents a significant public health and food safety concern.202439770738
1145170.9998Abundance of Mobilized Colistin Resistance Gene (mcr-1) in Commensal Escherichia coli from Diverse Sources. Aims: Antimicrobial resistance (AMR) spreads not only by pathogenic but also by commensal bacteria, and the latter can become a reservoir for resistance genes. This study was aimed to investigate the AMR patterns along with the presence of mobilized colistin resistance (mcr) genes in commensal Escherichia coli circulating in chickens, farm environments, street foods, and human patients. Materials and Methods: By a cross-sectional survey, isolates obtained from 530 samples were tested for their AMR profiles against 9 antimicrobials. Minimum inhibitory concentration (MIC) of the phenotypically colistin-resistant isolates was determined and screened for a set of mcr genes followed by sequencing of mcr-1 gene in the multidrug-resistant (MDR) isolates. Results: A total of 313 E. coli strains were isolated and confirmed by polymerase chain reaction. Antimicrobial susceptibility testing revealed that about 98% (confidence interval [95% CI] 95-99) of the isolates were MDR, and 58% (95% CI 52-63) isolates exhibited resistance to colistin. MIC values of colistin against the isolates ranged from 4 to 64 mg/L. Except for human patients, 20.4% colistin-resistant isolates from other sources of isolation had mcr-1 gene. Conclusions: There is abundance of commensal MDR E. coli strains with the acquisition of mcr-1 gene circulating in chickens and farm environments in Bangladesh.202133909471
1157180.9998Isolation and Molecular Characterization of Antimicrobial Resistant Escherichia coli from Healthy Broilers in Retail Chicken Outlets of Hotspot Cities in Southern India. E. coli is one of the first commensal bacteria to colonize the chicken gut. It may act as a source for the spread of antibiotic resistance to human via the food chain and contamination of the environment. Isolation and characterization of such E. coli from commercial broilers in retail outlets of Southern India were carried out. Eighty-three E. coli isolates (76.9%) were obtained from cloacal/meat swabs (108 samples). Phenotypically, 78.3% of isolates were ESBL producers, 69.9% were fluoroquinolone-resistant, and 6% were carbapenemase producers. Genotypically, the blaSHV, blaTEM, and blaCTX-M were present in 48.2%, 43.4%, and 10.8% of the isolates, respectively. These isolates also carried fluoroquinolone-resistant genes viz qnrB (31.3%) and qnrS (34.9%) but not carbapenemase genes. Overall, ESBL were identified in 72.3% of isolates and fluoroquinolone-resistance genes in 51.8%. Strikingly, 53% of the isolates were multidrug-resistant, with both ESBL and fluoroquinolone-resistant genes. The study revealed the presence of MDR E. coli strains in broiler meat at retail outlets indicating the potential public health risks.202540778947
1122190.9998Antibiotic resistance profiles of gram-negative bacteria in southern Tunisia: Focus on ESBL, carbapenem and colistin resistance. The main objective of this cross-sectional study was to investigate the prevalence of beta-lactam (cephalosporins or carbapenems) or colistin resistant bacteria. Those were isolated from urine samples in two private polyclinics located in the Sfax region, in southern Tunisia. From September 2021 to August 2022, 116 strains resistant to β-lactams or colistin were isolated, identified by MALDI-TOF, and their antibiotic susceptibility was assessed by disk diffusion method. Resistance genes were detected by real-time PCR, standard PCR, and sequencing. The results revealed that the 116 strains consisted predominantly of Enterobacteriaceae (92.2 %) and non-fermenting bacteria (7.8 %). Among these strains, 21 (18.1 %) were resistant to carbapenems, three (2.7 %) to colistin, including two strains of Klebsiella pneumoniae (1.7 %) exhibiting resistance to both carbapenems and colistin. In Enterobacteriaceae, bla(CTX-A), bla(SHV), and bla(TEM) were found in 79.5 %, 46.7 %, and 40.2 % of strains, respectively. For these strains, the minimum inhibitory concentrations (MICs) of imipenem and ertapenem ranged from >32 to 6 μg/mL and > 32 to 2 μg/mL, respectively, with bla(OXA-48) and bla(NDM) detected in 21.7 % and 19.6 % of isolates, respectively. Seven A. baumannii isolates resistant to imipenem and meropenem (MICs >32 μg/mL and 8 μg/mL, respectively) carried bla(OXA-23) (n = 5) and bla(OXA-24) (n = 2). In addition, mutations in the mgrB gene conferring colistin resistance were identified in two isolates. Two K. pneumoniae were colistin-resistant and carried the bla(OXA-48) gene. These results highlight the urgency of developing new strategies for the identification and surveillance of pathogenic strains in humans to effectively combat this growing public health threat in Tunisia.202540553790