Characterization of carbapenem-resistant gram-negative bacterial isolates from Nigeria by whole genome sequencing. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
107201.0000Characterization of carbapenem-resistant gram-negative bacterial isolates from Nigeria by whole genome sequencing. This study characterized the mechanisms of carbapenem resistance in gram-negative bacteria isolated from patients in Yola, Nigeria. Whole genome sequencing (WGS) was performed on 66 isolates previously identified phenotypically as carbapenem-non-susceptible. The patterns of beta-lactamase resistance genes identified were primarily species-specific. However, bla(NDM-7) and bla(CMY-4) were detected in all Escherichia coli and most Providencia rettgeri isolates; bla(NDM-7) was also detected in 1 Enterobacter cloacae. The E. coli and E. cloacae isolates also shared bla(OXA-1,) while bla(OXA-10) was found in all P. rettgeri, one Pseudomonas aeruginosa and 1 E. coli. Except for Stenotrophomonas maltophilia isolates, which only contained bla(L1), most species carried multiple beta-lactamase genes, including those encoding extended-spectrum beta-lactamases, AmpC and OXA in addition to a carbapenemase gene. Carbapenemase genes were either class B or class D beta-lactamases. No carbapenemase gene was detected by WGS in 13.6% of isolates.202134111650
107110.9999Characterization of Beta-Lactamase and Fluoroquinolone Resistance Determinants in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa Isolates from a Tertiary Hospital in Yola, Nigeria. Infections due to antimicrobial resistant gram-negative bacteria cause significant morbidity and mortality in sub-Saharan Africa. To elucidate the molecular epidemiology of antimicrobial resistance in gram-negative bacteria, we characterized beta-lactam and fluoroquinolone resistance determinants in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa isolates collected from November 2017 to February 2018 (Period 1) and October 2021 to January 2022 (Period 2) in a tertiary medical center in north-eastern Nigeria. Whole genome sequencing (WGS) was used to identify sequence types and resistance determinants in 52 non-duplicate, phenotypically resistant isolates. Antimicrobial susceptibility was determined using broth microdilution and modified Kirby-Bauer disk diffusion methods. Twenty sequence types (STs) were identified among isolates from both periods using WGS, with increased strain diversity observed in Period 2. Common ESBL genes identified included bla(CTX-M), bla(SHV,) and bla(TEM) in both E. coli and K. pneumoniae. Notably, 50% of the E. coli in Period 2 harbored either bla(CTX-M-15) or bla(CTX-M-1 4) and phenotypically produced ESBLs. The bla(NDM-7) and bla(VIM-5) metallo-beta-lactamase genes were dominant in E. coli and P. aeruginosa in Period 1, but in Period 2, only K. pneumoniae contained bla(NDM-7), while bla(NDM-1) was predominant in P. aeruginosa. The overall rate of fluoroquinolone resistance was 77% in Period 1 but decreased to 47.8% in Period 2. Various plasmid-mediated quinolone resistance (PMQR) genes were identified in both periods, including aac(6')-Ib-cr, oqxA/oqxB, qnrA1, qnrB1, qnrB6, qnrB18, qnrVC1, as well as mutations in the chromosomal gyrA, parC and parE genes. One E. coli isolate in Period 2, which was phenotypically multidrug resistant, had ESBL bla(CTX-M-15,) the serine carbapenemase, bla(OXA-181) and mutations in the gyrA gene. The co-existence of beta-lactam and fluoroquinolone resistance markers observed in this study is consistent with widespread use of these antimicrobial agents in Nigeria. The presence of multidrug resistant isolates is concerning and highlights the importance of continued surveillance to support antimicrobial stewardship programs and curb the spread of antimicrobial resistance.202337999619
106820.9999Dissemination of IncF plasmids carrying beta-lactamase genes in Gram-negative bacteria from Nigerian hospitals. INTRODUCTION: Production of beta-lactamases is the predominant cause of resistance to beta-lactam antibiotics in Gram-negative bacteria. We investigated the diversity of plasmid-borne beta-lactamase genes and replicon type of the plasmids carrying the respective genes in Gram-negative bacteria recovered from clinical infection in Nigerian hospitals. METHODOLOGY: A total of 134 Gram-negative bacteria of 13 species were analyzed for antimicrobial susceptibility, phenotypic and genotypic detection of various beta-lactamases, and plasmid analysis, including replicon typing. RESULTS: Of the 134 isolates, 111 (82.8%) contained beta-lactamases, while 28 (20.9%) carried extended-spectrum beta-lactamases. PCR and sequencing identified TEM-1 in 109 isolates (81.3%), SHV-1 in 33 isolates (24.6%), OXA-1 in 15 isolates (11.2%) and CTX-M enzymes (24 CTX-M-15 and 1 CTX-M-3) in 25 isolates (18.7%). Multiplex PCR showed that 6 isolates carried plasmidic AmpCs (ACT-1, DHA-1 and CMY-2); these enzymes were detected only in isolates possessing CTX-M beta-lactamases. Of 13 (76.9%) representative plasmids investigated in detail, 9 (69.2%) were self-transferable when selected by a beta-lactam and the plasmids once transferred coded for beta-lactam resistance. Replicon typing indicated IncF as the common vector encoding for beta-lactamases. CONCLUSIONS: The study showed a diversity of beta-lactamase genes disseminated by conjugative IncF plasmids in Gram-negative bacteria; TEM-1, SHV-1, OXA-1, CTX-M-15, CTX-M-3 and plasmidic AmpC enzymes are in common circulation in Nigeria.201323669427
107330.9999Occurrence of Extended Spectrum Cephalosporin-, Carbapenem- and Colistin-Resistant Gram-Negative Bacteria in Fresh Vegetables, an Increasing Human Health Concern in Algeria. The aim of this study was to screen for extended spectrum cephalosporin-, carbapenem- and colistin-resistant Gram-negative bacteria in fresh vegetables in Batna, Algeria. A total of 400 samples of fresh vegetables were collected from different retail stores. Samples were immediately subjected to selective isolation, then the representative colonies were identified using matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-MS). Phenotypic and genotypic analyses were carried out in terms of species identification and relative antibiotic resistance. Transferability of the carbapenemase and mcr-bearing plasmids was verified by conjugation. The clonal relationships of carbapenemase and mcr-positive Escherichia coli isolates were studied by multi-locus sequence typing (MLST). Sixty-seven isolates were characterised and were mostly isolated from green leafy vegetables, where the dominant species identified included Citrobacter freundii, Klebsiella pneumoniae, Enterobacter cloacae, Stenotrophomona maltophilia, E. coli and Citrobacter braakii. PCR and sequencing results showed that E. coli was the bacterial species presenting the highest antibiotic resistance level in parallel to bla(TEM) (n = 16) and bla(CTX-M-15) (n = 11), which were the most detected genes. Moreover, five isolates carried carbapenemase genes, including the bla(OXA-48) and/or bla(VIM-4) genes. The mcr-1 gene was detected in two E. coli isolates. MLST analysis revealed three different E. coli sequence types: ST101 (n = 1), ST216 (n = 1) and ST2298 (n = 1). Conjugation assays confirmed the transferability of the bla(OXA-48) and mcr-1 genes. In this study we report, for the first time, the detection of the bla(OXA-48) gene in E. coli and C. braakii isolates and the bla(VIM-4) gene in vegetables. To the best of our knowledge, this is the first report on the detection of mcr-1 genes from vegetables in Algeria.202235892378
107440.9999Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae from Pharmaceutical Wastewaters in South-Western Nigeria. Emergence and spread of Klebsiella pneumoniae isolates producing extended-spectrum β-lactamases (ESBLs) present a major threat to public health. In this study, we characterized β-lactam-resistant K. pneumoniae isolates from six wastewater samples obtained from two pharmaceutical industries located in Lagos and Ogun States, Nigeria. Bacteria were isolated by using MacConkey agar; species identification and antibacterial susceptibility testing were performed by Vitek 2. Etest was used for ESBL phenotype confirmation. The presence of β-lactamase genes was investigated by PCR and sequencing. Bacterial strain typing was done by XbaI-macrorestriction and subsequent pulsed-field gel electrophoresis (PFGE) as well as multilocus sequence typing (MLST). Thirty-five bacterial species were isolated from the six samples; among them, we identified seven K. pneumoniae isolates with resistance to β-lactams and co-resistance to fluoroquinolones, aminoglycosides, and folate pathway inhibitors. The ESBL phenotype was confirmed in six K. pneumoniae isolates that harbored ESBL genes bla(CTX-M-15) (n = 5), bla(SHV-2) (n = 1), and bla(SHV-12) (n = 1). PFGE and MLST analysis revealed five clones belonging to four sequence types (ST11, ST15, ST37, ST101), and clone K. pneumoniae-ST101 was present in the wastewater samples from two different pharmaceutical industries. Additionally performed conjugation assays confirmed the location of β-lactamase genes on conjugative plasmids. This is the first confirmation of K. pneumoniae isolates producing CTX-M-15-ESBL from pharmaceutical wastewaters in Nigeria. The co-resistance observed might be a reflection of the different drugs produced by these industries. Continuous surveillance of the environmental reservoirs of multidrug-resistant bacteria is necessary to prevent their further spread.201728375698
111750.9999CTX-M-type ESBL-mediated resistance to third-generation cephalosporins and conjugative transfer of resistance in Gram-negative bacteria isolated from hospitals in Tamil Nadu, India. Clinical pathogens, especially Gram-negative bacteria developing resistance to third-generation cephalosporins, are making clinical outcomes more complicated and serious. This study was undertaken to evaluate the distribution of CTX-M-type extended-spectrum β-lactamases (ESBLs) in Tamil Nadu, India. For this study, clinical samples were collected from five different hospitals located in Tamil Nadu and the ESBL-producing Gram-negative isolates were characterized. MIC was performed using cefotaxime and ceftazidime. The bla (ESBL)-producing genes were screened using multiplex PCR for the genes, CTX-M group-1, -2, -8, -9, -26. The conjugation studies were performed using Escherichia coli AB1157 as a recipient for the isolates harbouring plasmid-borne resistance following broth-mating experiment. In total, 1500 samples were collected and 599 Gram-negative bacteria were isolated that included E. coli (n=233), Klebsiella pneumoniae (n=182), Pseudomonas aeruginosa (n=79), Citrobacter spp. (n=30), Proteus mirabilis (n=28), Salmonella spp. (n=21), Acinetobacter baumannii (n=12), Serratia spp. (n=6), Shigella spp. (n=4), Morganella morganii (n=3) and Providencia spp. (n=1). MIC results showed that 358 isolates were resistant to cefotaxime and ceftazidime. Further, ESBL gene-amplification results showed that 19 isolates had CTX-M group-1 gene including E. coli (n=16), K. pneumoniae (n=2) and P. aeruginosa (n=1) whereas one M. morganii isolate had CTX-M group-9, which was plasmid-borne. Through conjugation studies, 12/20 isolates were found to be involved in the transformation of its plasmid-borne resistance gene. Our study highlighted the importance of horizontal gene transfer in the dissemination of plasmid-borne bla (CTX-M-type) resistance genes among the clinical isolates.202134151148
150260.9999Tunisian Multicenter Study on the Prevalence of Colistin Resistance in Clinical Isolates of Gram Negative Bacilli: Emergence of Escherichia coli Harbouring the mcr-1 Gene. BACKGROUND: Actually, no data on the prevalence of plasmid colistin resistance in Tunisia are available among clinical bacteria. OBJECTIVES: This study aimed to investigate the current epidemiology of colistin resistance and the spread of the mcr gene in clinical Gram-negative bacteria (GNB) isolated from six Tunisian university hospitals. METHODS: A total of 836 GNB strains were inoculated on COL-R agar plates with selective screening agar for the isolation of GNB resistant to colistin. For the selected isolates, mcr genes, beta-lactamases associated-resistance genes and molecular characterisation were screened by PCRs and sequencing. RESULTS: Colistin-resistance was detected in 5.02% (42/836) of the isolates and colistin-resistant isolates harboured an ESBL (bla(CTX-M-15)) and/or a carbapenemase (bla(OXA-48), bla(VIM)) encoding gene in 45.2% of the cases. The mcr-1 gene was detected in four E. coli isolates (0.59%) causing urinary tract infections and all these isolates also contained the bla(TEM-1) gene. The bla(CTX-M-15) gene was detected in three isolates that also carried the IncY and IncFIB replicons. The genetic environment surrounding the mcr-carrying plasmid indicated the presence of pap-2 gene upstream mcr-1 resistance marker with unusual missing of ISApl1 insertion sequence. THE CONCLUSIONS: This study reports the first description of the mcr-1 gene among clinical E. coli isolates in Tunisia and provides an incentive to conduct routine colistin susceptibility testing in GNB clinical isolates.202236290048
150170.9999High-level and novel mechanisms of carbapenem resistance in Gram-negative bacteria from tertiary hospitals in Nigeria. To determine the occurrence and molecular basis of carbapenem resistance in Gram-negative bacteria from tertiary hospitals in Nigeria, 182 non-duplicate Gram-negative bacterial isolates were investigated for antimicrobial susceptibility, presence of carbapenemases (tested phenotypically and genotypically), random amplified polymorphic DNA (RAPD) typing, plasmid sizing and replicon typing. Minimum inhibitory concentrations of carbapenems showed a high degree of resistance, with 67 isolates (36.8%) being resistant to all carbapenems, of which 40 (59.7%) produced enzymes able to hydrolyse imipenem. PCR and sequencing identified only 10 isolates (5.5%) carrying known carbapenemase genes, including bla(NDM), bla(VIM) and bla(GES). The majority of phenotypically carbapenem-resistant and carbapenemase-producing isolates did not carry a known carbapenemase gene. Transconjugant or transformant plasmid sizes were estimated to be 115 kb for bla(NDM)- and 93 kb for bla(VIM)-carrying plasmids. These plasmids were untypeable for replicon/incompatibility and transferred various other genes including plasmid-mediated quinolone resistance (PMQR) genes and bla(CTX-M-15). Typing showed that the isolates in this study were not clonally related. There is a high level of carbapenem resistance in Nigeria. As well as the globally relevant carbapenemases (bla(NDM), bla(VIM) and bla(GES)), there are other unknown gene(s) or variant(s) in circulation able to hydrolyse carbapenems and confer high-level resistance.201424613608
144780.9998Molecular detection of β-lactamase and integron genes in clinical strains of Klebsiella pneumoniae by multiplex polymerase chain reaction. INTRODUCTION: Infections caused by β-lactamase-producing gram-negative bacteria, such as Klebsiella pneumoniae, are increasing globally with high morbidity and mortality. The aim of the current study was to determine antimicrobial susceptibility patterns and the prevalence of antibiotic resistance genes (β-lactamase and integron genes) using multiplex PCR. METHODS: One-hundred K. pneumoniae isolates were collected from different clinical samples. Antibiotic susceptibility testing was performed with thirteen different antibiotics. Multiplex-PCR was used to detect β-lactamase (bla TEM, bla CTX-M, bla SHV , bla VEB, bla PER, bla GES, bla VIM, bla IMP, bla OXA, and bla KPC) and integron genes (int I, int II, and int III). RESULTS: The highest and lowest rate of resistance was exhibited against amikacin (93%) and imipenem (8%), respectively. The frequency of β-lactamase-positive K. pneumoniae was 37%, and the prevalence of the bla TEM, bla CTX-M, bla SHV , bla VEB, bla PER, bla GES, bla VIM, bla IMP, bla OXA, and bla KPC genes was 38%, 24%, 19%, 12%, 6%, 11%, 33%, 0%, 28%, and 23%, respectively. Of the 100 isolates, eight (8%) were positive for class I integrons; however, class II and III integrons were not detected in any of the strains. CONCLUSIONS: These results indicate co-carriage of a number of β-lactamase genes and antibiotic resistance integrons on the same plasmids harboring multi-drug resistance genes. It seems that these properties help to decrease treatment complications due to resistant bacterial infections by rapid detection, infection-control programs and prevention of transmission of drug resistance.201728700049
143990.9998Molecular characteristics of carbapenem-resistant gram-negative bacteria in southern China. A total of 368 nonreplicate gram-negative bacteria with resistance to imipenem or meropenem were collected to search for carbapenemase genes, class 1 integrons, and insertion sequence with common region 1 (ISCR1). The carbapenemase genes blaIMP-4, blaKPC-2, and blaNDM-1 were found in two Enterobacteriaceae and seven Pseudomonas aeruginosa isolates, nine Klebsiella pneumoniae isolates, and seven Enterobacteriaceae and two Acinetobacter spp. isolates. The class D OXA-type carbapenemase genes blaOXA-23-like, blaOXA-24-like, blaOXA-58, and blaOXA-51-like were detected in 59 (34.9%), 2 (1.2%), 16 (9.5%), and 126 (74.6%) Acinetobacter strains. This is the first description of blaNDM-1 in Enterobacter hormaechei and Acinetobacter genomic species 13TU. Of the integrase-positive strains, 135 (90.0%) Acinetobacter spp., 22 (61.1%) P. aeruginosa, and 14 (100%) Enterobacteriaceae isolates were identified by five, ten, and four different gene cassette arrays, respectively. Three novel gene cassette arrays aadB-aadA1, dfrA25, and dfrA16-aadA2 were reported for the first time in some species. Of the ISCR1-positive strains, the nonfermentative strains (102 Acinetobacter spp. and 13 P. aeruginosa. isolates) contained the same arrangement blaPER-1-putative glutathione-S-transferase-novel type ABC transporter, and three Enterobacteriaceae isolates harbored three different arrangements. Four distinct complex class 1 integron structures were observed. The complex class 1 integron detected in New Delhi, metallo-β-lactamase (NDM-1)-producing E. hormaechei, was found to coexist in the NDM-1-carrying plasmid. Our results suggested that we should pay more attention to the strict implementation of infection control measures and active antibiotic resistance surveillance to avoid the rapid spread or outbreak of carbapenemase-producing gram-negative bacteria.201525469995
1070100.9998Survey for beta-lactamase among bacterial isolates from Guangzhou, China hospitals between 2005-2006. The beta-lactamase genes, which confer multi-drug resistance, are spreading among clinical bacterial isolates. As part of a routine surveillance program, we collected 302 bacilli isolates between June 2005 and October 2006 from four hospitals in Guangzhou, China. The isolates were screened for multidrug resistance and for the presence of beta-lactamases. In all, 80 isolates were identified as multidrug-resistant with the K-B method. These isolates were phenotypically screened for beta-lactamase activity by disk diffusion prescreening, diffusion confirmation, the cefoxitin three-dimensional test and the metallo-beta-lactamase (MBL) synergy test. Bacteria were genotypically screened for beta-lactamase genes by PCR and DNA sequencing. Among the 80 strains, drug resistance was lowest to amikacin (18.75%) and highest to ampicillin (97.50%), 26.49% had a beta-lactamase phenotype, 16.56% had the extended-spectrum beta-lactamase (ESBL) phenotype, 24.83% had a beta-lactamase genotype, 51 carried integrons, 30 carried class I integrons and 18.75% had the ISEcp1B insertion sequence. Sequencing also detected a new CTX-M ESBL gene subtype, which had an ISEcp1B element upstream of bla(CTX-M-Like), and an IS903 element downstream, forming a composite transposon. Multidrug resistance and beta-lactamases continue to be prevalent in Guangzhou. Our results suggest that resistance genes are evolving and being horizontally transmitted between species.201020339396
912110.9998Carbapenem and colistin-resistant bacteria in North Lebanon: Coexistence of mcr-1 and NDM-4 genes in Escherichia coli. INTRODUCTION: The increasing incidence of infections caused by multidrug-resistant bacteria is considered a global health problem. This study aimed to investigate this resistance in Gram-negative bacteria isolated from patients hospitalized in North-Lebanon. METHODOLOGY: All isolates were identified using the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Antibiotic susceptibility testing was achieved using disk diffusion, E-test and Broth microdilution methods. Phenotypic detection of carbapenemase was carried out using the CarbaNP test. RT-PCR, standard-PCR and sequencing were performed to detect resistance genes and oprD gene. Conjugal transfer was carried out between our isolates and Escherichia coli J53 to detect the genetic localization of resistance genes. MLST was conducted to determine the genotype of each isolate. RESULTS: Twenty-three carbapenem-resistant Enterobacterales of which eight colistin-resistant Escherichia coli, and Twenty carbapenem-resistant Pseudomonas aeruginosa were isolated. All isolates showed an imipenem MIC greater than 32 mg/mL with MICs for colistin greater than 2 mg/L for E. coli isolates. All the Enterobacterales isolates had at least one carbapenemase-encoding gene, with E. coli isolates coharboring blaNDM-4 and mcr-1 genes. Moreover, 16/20 Pseudomonas aeruginosa harbored the blaVIM-2 gene and 18/20 had mutations in the oprD gene. MLST revealed that the isolates belonged to several clones. CONCLUSIONS: We report here the first description in the world of clinical E. coli isolates coharboring blaNDM-4 and mcr-1 genes, and K. pneumoniae isolates producing NDM-6 and OXA-48 carbapenemases. Also, we describe the emergence of NDM-1-producing E. cloacae in Lebanon. Screening for these isolates is necessary to limit the spread of resistant microorganisms in hospitals.202134343118
990120.9998Resistance phenotype-genotype correlation and molecular epidemiology of Citrobacter, Enterobacter, Proteus, Providencia, Salmonella and Serratia that carry extended-spectrum β-lactamases with or without plasmid-mediated AmpC β-lactamase genes in Thailand. Extended-spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC β-lactamases (pAmpCs) have been increasingly reported among less commonly encountered genera of Enterobacteriaceae. However, little is known regarding the genetic characteristics of resistance genes and epidemiology of these genera. Lack of accurate ESBL and pAmpC detection may adversely affect therapeutic outcomes. This study investigated resistance phenotype-genotype correlation and molecular epidemiology among six genera of Enterobacteriaceae (Citrobacter, Enterobacter, Proteus, Providencia, Salmonella and Serratia) that carried ESBL with or without pAmpC genes at a university hospital in Thailand. From a total of 562 isolates, 105 isolates (18.7%) had ESBL-positive phenotype whilst 140 isolates (24.9%) harboured one or more ESBL genes. CTX-M and TEM were common ESBL-related bla genes among these isolates. The sensitivity and specificity of ESBL phenotypic detection as opposed to ESBL gene detection were 70.7% and 98.6%, respectively. pAmpC genes were detected in 96 ESBL gene-carrying isolates (68.6%) and significantly caused false negative detection of ESBL. Molecular typing based on pulsed-field gel electrophoresis revealed several clones that may be endemic in this hospital. This study indicated a high prevalence of ESBLs and pAmpCs among less common members of the family Enterobacteriaceae in Thailand and these resistant bacteria need to be monitored.201120880563
1120130.9998Occurrence of NDM-1 and VIM-2 Co-Producing Escherichia coli and OprD Alteration in Pseudomonas aeruginosa Isolated from Hospital Environment Samples in Northwestern Tunisia. Hospital environments constitute the main reservoir of multidrug-resistant bacteria. In this study we aimed to investigate the presence of Gram-negative bacteria in one Northwestern Tunisian hospital environment, and characterize the genes involved in bacterial resistance. A total of 152 environmental isolates were collected from various surfaces and isolated using MacConkey medium supplemented with cefotaxime or imipenem, with 81 fermenter bacteria (27 Escherichia coli, and 54 Enterobacter spp., including 46 Enterobacter cloacae), and 71 non-fermenting bacteria (69 Pseudomonas spp., including 54 Pseudomonas aeruginosa, and 2 Stenotrophomonas maltophilia) being identified by the MALDI-TOF-MS method. Antibiotic susceptibility testing was performed by disk diffusion method and E-Test was used to determine MICs for imipenem. Several genes implicated in beta-lactams resistance were characterized by PCR and sequencing. Carbapenem resistance was detected among 12 isolates; nine E. coli (bla(NDM-1) (n = 8); bla(NDM-1) + bla(VIM-2) (n = 1)) and three P. aeruginosa were carbapenem-resistant by loss of OprD porin. The whole-genome sequencing of P. aeruginosa 97H was determined using Illumina MiSeq sequencer, typed ST285, and harbored bla(OXA-494). Other genes were also detected, notably bla(TEM) (n = 23), bla(CTX-M-1) (n = 10) and bla(CTX-M-9) (n = 6). These new epidemiological data imposed new surveillance strategies and strict hygiene rules to decrease the spread of multidrug-resistant bacteria in this area.202134573959
844140.9998Whole Genome Sequencing of Extended Spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae Isolated from Hospitalized Patients in KwaZulu-Natal, South Africa. Extended spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae remain a critical clinical concern worldwide. The aim of this study was to characterize ESBL-producing K. pneumoniae detected within and between two hospitals in uMgungundlovu district, South Africa, using whole genome sequencing (WGS). An observational period prevalence study on antibiotic-resistant ESKAPE (i.e. Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) bacteria was carried out in hospitalized patients during a two-month period in 2017. Rectal swabs and clinical specimens were collected from patients hospitalized and were screened for ESBL-producing, Gram-negative ESKAPE bacteria using cefotaxime-containing MacConkey agar and ESBL combination disk tests. Nine confirmed ESBL-K. pneumoniae isolated from six patients and two hospitals were whole genome sequenced using an Illumina MiSeq platform. Genome sequences were screened for presence of integrons, insertion sequences, plasmid replicons, CRISPR regions, resistance genes and virulence genes using different software tools. Of the 159 resistant Gram-negative isolates collected, 31 (19.50%) were ESBL-producers, of which, nine (29.03%) were ESBL-K. pneumoniae. The nine K. pneumoniae isolates harboured several β-lactamase genes, including bla(CTX-M-15), bla(TEM-1b), bla(SHV-1), bla(OXA-1) concomitantly with many other resistance genes e.g. acc(6')-lb-cr, aadAI6, oqxA and oqxB that confer resistance to aminoglycosides and/or fluoroquinolones, respectively. Three replicon plasmid types were detected in both clinical and carriage isolates, namely ColRNAI, IncFIB(K), IncF(II). Sequence type ST152 was confirmed in two patients (one carriage isolate detected on admission and one isolate implicated in infection) in one hospital. In contrast, ST983 was confirmed in a clinical and a carriage isolate of two patients in two different hospitals. Our data indicate introduction of ESBL-producing K. pneumoniae isolates into hospitals from the community. We also found evidence of nosocomial transmission within a hospital and transmission between different hospitals. The Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-associated cas3 genes were further detected in two of the nine ESBL-KP isolates. This study showed that both district and tertiary hospital in uMgungundlovu District were reservoirs for several resistance determinants and highlighted the necessity to efficiently and routinely screen patients, particularly those receiving extensive antibiotic treatment and long-term hospitalization stay. It also reinforced the importance of infection, prevention and control measures to reduce the dissemination of antibiotic resistance within the hospital referral system in this district.201931000772
2126150.9998Carbapenemase genes among multidrug resistant gram negative clinical isolates from a tertiary hospital in Mwanza, Tanzania. The burden of antimicrobial resistance (AMR) is rapidly growing across antibiotic classes, with increased detection of isolates resistant to carbapenems. Data on the prevalence of carbapenem resistance in developing countries is limited; therefore, in this study, we determined the prevalence of carbapenemase genes among multidrug resistant gram negative bacteria (MDR-GNB) isolated from clinical specimens in a tertiary hospital in Mwanza, Tanzania. A total of 227 MDR-GNB isolates were analyzed for carbapenem resistance genes. For each isolate, five different PCR assays were performed, allowing for the detection of the major carbapenemase genes, including those encoding the VIM-, IMP-, and NDM-type metallo-beta-lactamases, the class A KPC-type carbapenemases, and the class D OXA-48 enzyme. Of 227 isolates, 80 (35%) were positive for one or more carbapenemase gene. IMP-types were the most predominant gene followed by VIM, in 49 (21.59%) and 28 (12%) isolates, respectively. Carbapenemase genes were most detected in K. pneumoniae 24 (11%), followed by P. aeruginosa 23 (10%), and E. coli with 19 isolates (8%). We have demonstrated for the first time a high prevalence of MDR-GNB clinical isolates having carbapenem resistance genes in Tanzania. We recommend routine testing for carbapenem resistance among the MDR-GNB particularly in systemic infections.201424707481
2111160.9998Antimicrobial Resistance and Resistance Determinant Insights into Multi-Drug Resistant Gram-Negative Bacteria Isolates from Paediatric Patients in China. INTRODUCTION: The emergence of multi-drug-resistant Gram-negative bacteria (GNB) is a concern in China and globally. This study investigated antimicrobial resistance traits and resistance determinant detection in GNB isolates from paediatric patients in China. METHODS: In the present study, a total of 170 isolates of GNB including the most prevalent Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii were collected from Shenzhen Children's Hospital, China. ESBLs production was confirmed by using the combination disc diffusion method, and carbapenemase production was confirmed by using a carbapenem inactivation method followed by antimicrobial susceptibility. In addition, β-lactamase-encoding genes and co-existence of plasmid-borne colistin resistance mcr-1 gene were determined by PCR and sequencing. RESULTS: Overall, 170 etiological agents (GNB) were recovered from 158 paediatric patients. The most prevalent species was E. coli 40% (n=68), followed by K. pneumoniae 17.64% (n=30), and Enterobacter cloacae 14.11% (n=24). Of 170 GNB, 71.76% (n=122) were multi-drug-resistant, 12.35% (n=21) extreme-drug resistant, and 7.64% (n=13) single-drug-resistant, while 8.23% (n=14) were sensitive to all of the studied antibiotics. The prevalence of ESBLs and carbapenemase producers were 60% and 17%, respectively. bla (CTX-M) was the most prevalent resistance gene (59.42%), followed by bla (TEM) (41.17%), bla (SHV) (34.270%), bla (KPC) (34.11%), bla (OXA-48) (18.82%) and bla (NDM-1) (17.64%). CONCLUSION: The present study provides insights into the linkage between the resistance patterns of GNB to commonly used antibiotics and their uses in China. The findings are useful for understanding the genetics of resistance traits and difficulty in tackling of GNB in paediatric patients.201931819545
1503170.9998OXA-48 Carbapenemase-Encoding Transferable Plasmids of Klebsiella pneumoniae Recovered from Egyptian Patients Suffering from Complicated Urinary Tract Infections. Gram-negative bacteria are common causes of urinary tract infections (UTIs). Such pathogens can acquire genes encoding multiple mechanisms of antimicrobial resistance, including carbapenem resistance. The aim of this study was to detect the carbapenemase-producing ability of some Gram-negative bacterial isolates from urine specimens of patients suffering from complicated UTIs at two vital tertiary care hospitals in Cairo, Egypt; to determine the prevalence of carbapenemase genes among plasmid-bearing isolates; and explore the possibility of horizontal gene transfer to other bacterial species. The collected isolates were subjected to antimicrobial susceptibility testing, phenotypic analysis of carbapenemase production, and molecular detection of plasmid-borne carbapenemase genes, then the extracted plasmids were transformed into competent E. coli DH5α. A total of 256 Gram-negative bacterial clinical isolates were collected, 65 (25.4%) isolates showed carbapenem resistance of which 36 (55.4%) were carbapenemase-producers, and of these 31 (47.7%) harbored plasmids. The extracted plasmids were used as templates for PCR amplification of bla(KPC), bla(NDM), bla(VIM), bla(OXA-48,) and bla(IMP) carbapenemase genes. The bla(OXA-48) gene was detected in 24 (77.4%) of the tested isolates while bla(VIM) gene was detected in 8 (25.8%), both bla(KPC) and bla(NDM) genes were co-present in 1 (3.2%) isolate. Plasmids carrying the bla(OXA-48) gene from 4 K. pneumoniae clinical isolates were successfully transformed into competent E. coli DH5α. The transformants were carbapenemase-producers and acquired resistance to some of the tested antimicrobial agents as compared to untransformed E. coli DH5α. The study concluded that the rate of carbapenem resistance among Gram-negative bacterial uropathogens in Cairo, Egypt is relatively high and can be transferred horizontally to other bacterial host(s).202134571766
2110180.9998First report of carbapenems encoding multidrug-resistant gram-negative bacteria from a pediatric hospital in Gaza Strip, Palestine. BACKGROUND: The worldwide prevalence of multi-drug resistance (MDR) in Gram-negative bacteria (GNB), particularly related to extended-spectrum beta-lactamases (ESBLs) and carbapenemases, poses significant global public health and clinical challenges. OBJECTIVES: To characterize ESBL-producing Gram-negative bacilli, within a pediatric hospital in Gaza using whole genome sequencing (WGS). METHODS: A total of 158 clinical isolates of Gram-negative bacilli were collected from Al-Nasser Pediatric Hospital. These isolates were tested for ESBL production using the double disk synergy test. The antibiotic susceptibility profile was determined using the Kirby Bauer method following the Clinical and Laboratory Standard Institute guidelines. Selected 15 phenotypically MDR isolates were whole-genome sequenced and characterized for their genome-based species identity and antibiotic resistance gene profile. RESULTS: Of the 158 isolates, 93 (58.9%) were positive for ESBL production. The frequency of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Proteus mirabilis, and Serratia marcescens was 50%, 22.7%, 22.7%, 1.8%, 1.2%, and 1.2% respectively. The prevalence of ESBL among urine, pus, blood, and sputum was 64%, 44%, 23%, and 63.6%, respectively. Chloramphenicol, Imipenem, and Meropenem were the most effective antibiotics against ESBL producers. In sequenced isolates,  an average of six anti-microbial resistance (AMR) genes were noted per isolate, where one of them carried up to 13 antibiotic resistance genes. Carbapenem resistance genes such as bla(KPC-2)(6.6%), bla(PDC-36/12) (6.6%), and bla(POM-1) (6.6%) were detected. All the sequenced E. coli isolates (n = 8) showed multiple resistance genes, mainly against β-lactamase (25.0%), aminoglycosides (37.5%), sulfonamides (37.5%), and genes conferring resistance to tetracyclines (25.0). CONCLUSION: Our results showed a high prevalence of ESBL-producing GNB isolated from a pediatric hospital in the Gaza Strip. Various antibiotic resistance genes were identified, including those encoding ESBL and carbapenems. The results highlight the significant challenge posed by MDR in GNB and emphasize the need for effective antibiotic strategies. Given the high endemicity observed in various studies from Palestine, it is important to conduct clinical and molecular epidemiology research to identify risk factors, transmission patterns, and clinical outcomes associated with GNB strains that carry ESBL and carbapenem resistance genes.202439379824
1045190.9998ESBL-Producing Enterobacter cloacae Complex and Klebsiella pneumoniae Harbouring bla(CTX-M-15) and bla(CTX-M-55) Potentially Risk the Worldwide Spread of ESBL-Producing Bacteria Through Contaminated Dried Fishery Products. The transmission of life-threatening bacteria with plasmid-mediated antibiotic resistance poses a significant challenge to public health. This study aimed to determine the presence of plasmid-mediated antibiotic resistance genes in Enterobacterales isolates obtained from dried fishery products. Eighty-one dried fishery products were purchased from Vietnamese markets. Enterobacterales were isolated using a CHROMagar Escherichia coli coliform agar containing cefotaxime or meropenem. The isolated strains were assessed for their susceptibility to 14 antibiotics using a disc diffusion assay. Extended-spectrum β-lactamase (ESBL) sub-group typing was performed based on multiplex PCR of isolated ESBL-producing strains. In addition, Enterobacter cloacae AD2-1, which showed multiple drug resistance, was subject to whole-genome sequence analysis. CTX-resistant bacteria were isolated from 22% and MEM-resistant bacteria from 27% of the Vietnamese samples. CTX-resistant bacteria were isolated from 17% and MEM-resistant bacteria from 4% of Japanese samples. Bacterial identification indicated that 98 strains were isolated, of which 29 strains of E. coli, 28 of Enterobacter cloacae complex, 19 of Staphylococcus spp., and 9 of Klebsiella pneumoniae were predominant in Vietnamese samples. Japanese samples were predominantly contaminated with E. cloacae complex. Multiplex PCR and sequencing was used to determine the presence of ESBL-related genes bla(CTX-M-15) and bla(CTX-M-55) in E. cloacae and K. pneumoniae isolates. E. cloacae AD2-1 isolated from the Vietnamese dried fish was resistant to 14 antibiotics, and approximately 300 kbp of the IncHI2 plasmid harboured multiple antibiotic resistance genes and formed an antibiotic resistance gene region. This E. cloacae is considered a risk for the spread of antibiotic resistance across countries.202541171320