Biomonitoring marine habitats in reference to antibiotic resistant bacteria and ampicillin resistance determinants from oviductal fluid of the nesting green sea turtle, Chelonia mydas. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
106601.0000Biomonitoring marine habitats in reference to antibiotic resistant bacteria and ampicillin resistance determinants from oviductal fluid of the nesting green sea turtle, Chelonia mydas. During the egg-laying process, oviductal fluid was collected using a non-invasive procedure from the cloacal vent of the green turtles. Forty-two independent isolates of antibiotic-resistant bacteria from 11 genera were obtained from 20 turtles during nesting. The dominant isolate was Citrobacter (52.4%), followed by Pseudomonas, Proteus, Enterobacter, Salmonella, Escherichia coli, Shigella, Edwardsiella, Morganella, Providencia and Arcomobacter. Most of the isolates were resistant to ampicillin. Ampicillin-resistant isolates showed variations in their resistance for the following classes of β-lactamases: extended-spectrum β-lactamases (EBSLs), AmpC type β-lactamases C (AmpC), and screen-positive β-lactamase. None of the isolates produced metallo β-lactamase. Some ampicillin-resistant genes were detected by multiplex polymerase chain reaction (PCR) only. Inhibitor based test (IBT) categorized some isolates as AmpC β-lactamase producers. β-Lactamase genes were detected from a few strains. The sequencing of those genes revealed the presence of cephamycinase (CMY) and AmpC β-lactamases. The oviductal fluid was used in this study as a source of bacterial antibiotic-resistant determinants for biomonitoring marine turtles exposed to contaminated effluents. This data can be of value in understanding the decline of this endangered species as a result of exposure to marine pollution which is threatening their survival.201222406312
276410.9996Solid waste dumpsite leachate and contiguous surface water contain multidrug-resistant ESBL-producing Escherichia coli carrying Extended Spectrum β-Lactamase (ESBL) genes. Dumpsites generate leachates containing bacteria that may carry antibiotic resistance genes, such as extended spectrum β-lactamase (ESBL). However, the contribution of dumpsite leachates in the environmental spread of ESBL genes has not been investigated in greater detail. This study aimed to quantify the impact of Ajakanga dumpsite leachate on the spread of ESBL genes through surface water. The susceptibility of Escherichia coli isolated from dumpsite leachate and the accompanying surface water to selected antibiotics was assessed by the standardized disc diffusion method. The isolates were evaluated for phenotypic ESBL production using the double disc synergy test (DDST). The detection of ESBL genes in the isolates was carried out using a primer-specific polymerase chain reaction (PCR). Escherichia coli isolates from leachate (n = 26/32) and surface water (n = 9/12) expressed ESBL phenotype. The ESBL-producing isolates showed the highest level of resistance to the 3rd generation cephalosporin antibiotics: cefotaxime (100%), cefpodoxime (97%), ceftazidime (97%), with low resistance observed to imipenem (6%) and azithromycin (3%). All the isolates were multidrug-resistant, showing resistance to three or more classes of antibiotics. All the ESBL-producing E. coli obtained carried bla(CTX-M), 21/35 (60%) carried bla(TEM) while none of the isolates bore bla(SHV). This study found that ESBL-producing Escherichia coli from dumpsite leachate and nearby surface water had identical resistance signatures indicating the relatedness of the isolates, and that dumpsite leachate could contribute to the transfer of ESBL-producing bacteria and their genes to receiving surface water. This study has necessitated the need for a review of the guidelines and operational procedures of dumpsites to forestall a potential public health challenge.202439164664
103520.9996Multidrug resistance and transferability of blaCTX-M among extended-spectrum β-lactamase-producing enteric bacteria in biofilm. This study aimed to investigate the occurrence of biofilm-forming extended-spectrum β-lactamase (ESBL)-producing enteric bacteria in hospital wastewater and to evaluate their antibiotic resistance behaviour and transferability of the plasmid-encoded blaCTX-M gene in biofilm. ESBL production was confirmed using the combined disc test and Etest. Amplification of blaCTX-M was performed by PCR. Antibiotic susceptibility was evaluated using the disc diffusion assay and broth dilution method. Transfer of blaCTX-M in planktonic and biofilm state was performed by broth mating and filter mating experiments, respectively. Among 110 enteric bacteria, 24 (21.8%) isolates belonging to Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae were found to produce ESBL and formed varying levels of biofilm in vitro. Presence of blaCTX-M was detected in 18 (75%) ESBL-producing isolates. A many fold increase in resistance to antibiotics was observed in biofilm. Among ESBL-producers, seven isolates could transfer the blaCTX-M gene by conjugation, with transfer frequencies ranging from 2.22×10(-4) to 7.14×10(-2) transconjugants/recipient cell in the planktonic state and from 3.04×10(-3) to 9.15×10(-1) in biofilm. The transfer frequency of blaCTX-M was significantly higher in biofilm compared with the planktonic state, and co-transfer of ciprofloxacin resistance was also detected in five isolates. This study demonstrates that biofilm-forming ESBL-producing enteric bacteria with a greater transfer frequency of resistance genes will lead to frequent dissemination of β-lactam and fluoroquinolone resistance genes in environmental settings. The emergence and spread of such multidrug resistance is a serious threat to animal and public health.201627530857
103230.9996Molecular investigation of antibiotic resistant bacterial strains isolated from wastewater streams in Pakistan. Antibiotic resistance is a global public health issue and it is even more daunting in developing countries. The main objective of present study was to investigate molecular responses of antibiotic-resistant bacteria. The 48 bacterial strains, which were previously isolated and identified were subjected to disc diffusion and MIC (minimum inhibitory concentration) determination, followed by investigating the production of the three beta-lactamases (ESBLs (Extended-spectrum Beta-lactamases), MBLs (Metallo Beta-lactamases), AmpCs) and exploring prevalence of the two antibiotic-resistant genes (ARGs); blaTEM and qnrS. Higher MIC values were observed for penicillin(s) than that for fluoroquinolones (ampicillin > amoxicillin > ofloxacin > ciprofloxacin > levofloxacin). Resistance rates were high (58-89%) for all of the tested beta-lactams. Among the tested strains, 5 were ESBL producers (4 Aeromonas spp. and 1 Escherichia sp.), 2 were MBL producers (1 Stenotrophomonas sp. and 1 Citrobacter sp.) and 3 were AmpC producers (2 Pseudomonas spp. and 1 Morganella sp.). The ARGs qnrS2 and blaTEM were detected in Aeromonas spp. and Escherichia sp. The results highlighted the role of Aeromonas as a vector. The study reports bacteria of multidrug resistance nature in the wastewater environment of Pakistan, which harbor ARGs of clinical relevance and could present a public health concern.202032802720
102740.9996Identification of CTX-M-15 and CTX-M-27 in Antibiotic-Resistant Gram-Negative Bacteria Isolated from Three Rivers Running in Central Italy. The main goal of this study was to identify Gram-negative bacteria resistant to antibiotics, in particular β-lactams, in stream waters and effluents from urban wastewater treatment plants draining into Fino, Tavo, and Saline rivers of the Abruzzo region, Italy. Eight sampling sites were selected because they were the most contaminated by coliforms during previous sampling campaign. One sample for each site was collected for the detection of total and fecal coliforms, Escherichia coli and Enterococcus species by Colilert-18 and Enterolert-E Quanti-Tray/2000. Antibiotic-resistant bacteria, selected on ampicillin and cefotaxime-supplemented agar plates, were identified by EnteroPluri test systems and then confirmed by MALDI-TOF. The resistant determinants were identified and characterized by PCR and sequencing. The microbiological analysis allowed to detect E. coli, total coliforms, fecal coliforms, and enterococci with a coefficient of variation of 215.7%, 212.8%, 242.5%, and 188.5%, respectively. Several Gram-negative bacteria were identified: Serratia liquefaciens, E. coli, Enterobacter cloacae, Citrobacter freundii, Raoultella ornithinolytica, Acinetobacter johnsonii, Aeromonas veronii, Aeromonas hydrophila, and Pseudomonas koreensis. All strains possessed class 1 integrons, insertion sequences, and genes encoding for serin- and metallo-β-lactamases. Extended-spectrum β-lactamases, such as CTX-M-15 and CTX-M-27, were found in Enterobacteriaceae, whereas CphA metallo-β-lactamase was found in A. veronii and A. hydrophila. The main resistance's mechanism to β-lactams observed among the analyzed strains is represented by the production of serin β-lactamases (CTX-M-15, CTX-M-27, and SHV-1) and metallo β-lactamase (CphA).201930994417
117750.9996High carriage of plasmid-mediated quinolone resistance (PMQR) genes by cefotaxime-resistant Escherichia coli recovered from surface-leaking sanitary sewers. There is a rapid rise in the incidence of quinolone resistant bacteria in Nigeria. Most studies in Nigeria have focused on isolates from the clinical settings, with few focusing on isolates of environmental origin. This study aimed to investigate the antibiogram and carriage of plasmid-mediated quinolone resistance (PMQR) genes by quinolone-resistant isolates obtained from a pool of cefotaxime-resistant Escherichia coli (E. coli) recovered from sewage leaking out of some surface-leaking sanitary sewers in a University community in Nigeria. Isolation of E. coli from the sewage samples was done on CHROMagar E. coli, after enrichment of the samples was done in Brain Heart Infusion broth amended with 6 µg/mL of cefotaxime. Identification of presumptive E. coli was done using molecular methods (detection of uidA gene), while susceptibility to antibiotics was carried out using the disc diffusion method. Detection of PMQR genes (qnrA, qnrB, qnrS, aac(6')-lb-cr, qepA and oqxAB) was carried out using primer-specific PCR. A total of 32 non-repetitive cefotaxime-resistant E. coli were obtained from the sewage, with 21 being quinolone-resistant. The quinolone-resistant isolates showed varying level of resistance to the tested antibiotics, with imipenem being the only exception with 0% resistance. The PMQR genes: aac(6')-lb-cr, qnrA, qnrB, qnrS and qepA and oqxAB were detected in 90.5%, 61.9%, 47.6%, 38.1%, 4.8% and 0% respectively of the isolates. The findings of this study showed a high level of resistance to antibiotics and carriage of PMQR genes by quinolone-resistant E. coli obtained from the leaking sanitary sewers, suggesting a potential environmental and public health concern.202235000007
203460.9996Multidrug-resistant Klebsiella pneumoniae isolated from farm environments and retail products in Oklahoma. Multidrug-resistant enteric bacteria were isolated from turkey, cattle, and chicken farms and retail meat products in Oklahoma. Among the isolated species, multidrug-resistant Klebsiella pneumoniae was prevalently isolated from most of the collected samples. Therefore, a total of 132 isolates of K. pneumoniae were characterized to understand their potential roles in the dissemination of antibiotic-resistance genes in the food chains. Multidrug-resistant K. pneumoniae was most frequently recovered from a turkey farm and ground turkey products among the tested samples. All isolates were resistant to ampicillin, tetracycline, streptomycin, gentamycin, and kanamycin. Class 1 integrons located in plasmids were identified as a common carrier of the aadA1 gene, encoding resistance to streptomycin and spectinomycin. Production of beta-lactamase in the K. pneumoniae isolates played a major role in the resistance to beta-lactam agents. Most isolates (96%) possessed bla(SHV1). Five strains were able to express both SHV-11 (pI 6.2) and TEM-1 (pI 5.2) beta-lactamase. Transfer of these antibiotic-resistance genes to Escherichia coli was demonstrated by transconjugation. The bacterial genomic DNA restriction patterns by pulsed-field gel electrophoresis showed that the same clones of multidrug-resistant K. pneumoniae remained in feathers, feed, feces, and drinking water in turkey environments, indicating the possible dissemination of antibiotic-resistance genes in the ecosystem and cross-contamination of antibiotic-resistant bacteria during processing and distribution of products.200516245702
102170.9996The detection of extensive-spectrum beta-lactamase (ESBL) producing genes in Escherichia coli strains, isolated from apparently healthy and enteric pet birds. In this study, totally, 295 cloacal swabs were collected from apparently healthy (195 swabs) and enteric (100 swabs) pet birds. After identification of Escherichia coli (E. coli) strains, to determining the E. coli producing extensive-spectrum beta-lactamase (ESBL) (EPE) strains, double disc synergy test was applied. TEM, CTX and SHV genes were detected in strains known as EPE phenotypically. The results showed that the detection rate of EPE strains in enteric birds is higher than apparently healthy birds (25.6 vs. 16.2%). The CTX gene was the highest ESBL gene. The SHV gene was not detected in any of E. coli strains. Furthermore, the ceftazidime and cefotaxime resistant E. coli strains were contained in the CTX gene. By considering the possibility of transmitting these genes along with other resistance genes to other bacteria, it can be stated that pet birds can be the source of transmission of resistance genes to human.202436966490
102380.9996Common presence of plasmid encoding bla(CTX-M-55) in extended-spectrum β-lactamase-producing Salmonella enterica and Escherichia coli isolates from the same edible river fish. The transmission of potentially life-threatening plasmid-mediated antibiotic-resistant bacteria poses a major threat to public health. This study aimed to determine the presence of commonly observed plasmids encoding plasmid-mediated antibiotic-resistance genes in Salmonella and Escherichia coli isolates from fishery products. Eighty river fishes were purchased from retail stores and supermarkets in Vietnam. Only Salmonella-positive fishes were used for antibiotic-resistant E. coli isolation. Salmonella serotyping was performed using Salmonella antisera. Isolated bacterial DNA was extracted, and antibiotic susceptibility, resistance genes, and replicon typing were determined. Our results showed that Salmonella was isolated from 12.5% (10/80) of the river fishes. Cefotaxime-resistant Salmonella was isolated from 3.8% (3/80) of the fishes and colistin-resistant Salmonella from 1.3% (1/80) . Salmonella serotyping revealed Potsdam, Schwarzengrund, Bardo/Newport, Give, Infantis, Kentucky, and Typhimurium. Multiplex polymerase chain reaction revealed the presence of extended-spectrum β-lactamase-related genes bla(CTX-M-55) and bla(CTX-M-65) and the colistin resistance gene mcr-1. To date, no study has reported an antibiotic-resistance plasmid present in multiple bacteria collected from the same food. Thus, horizontal transmission of antibiotic-resistance plasmids may occur at the food level.202337394527
103890.9996Isolation of Extended Spectrum β-lactamase (ESBL) Producing Bacteria from Urban Surface Waters in Malaysia. BACKGROUND: This was a preliminary study to test for the presence of multiple antibiotic-resistant extended spectrum β-lactamase (ESBL) producing bacteria in Malaysian urban surface waters. Although the literature review revealed several published papers on clinical ESBL isolates in Malaysia, none were found on ESBL isolates obtained from local surface waters. METHODS: Isolated bacterial species were tested for resistance to cefotaxime, amoxicillin/clavulanate and aztreonam, and susceptibility to imipenem and meropenem using antibiotic susceptibility testing (AST) by disc diffusion. This served as a screening step to detect bacteria that could be potential ESBL species. 16S ribose ribonucleic acid (rRNA) polymerase chain reaction (PCR) testing with two clusters of bla (β-lactamase) gene primers was used to test for the bla genes CTX-M (Groups 1, 2, 9), OXA-1, SHV and TEM. RESULTS: A total of 19 isolates were found, possessing at least one of the bla genes tested for. There was a relatively high occurrence of CTX-M genes (84.2%) among these, followed by TEM genes (47.4%). The isolates were identified as Enterobacteriaceae (89.5%), predominantly Escherichia coli and Klebsiella pneumoniae. CONCLUSION: There appears to be a high occurrence of ESBL-bacteria in local surface waters, among these being opportunistic pathogens. The persistence and spread of these species in the environment poses a threat to exposed human populations.201323966820
1033100.9996Antimicrobial Resistance and β-Lactamase Production in Clinically Significant Gram-Negative Bacteria Isolated from Hospital and Municipal Wastewater. Hospital and municipal wastewater contribute to the spread of antibiotic-resistant bacteria and genes in the environment. This study aimed to examine the antibiotic resistance and β-lactamase production in clinically significant Gram-negative bacteria isolated from hospital and municipal wastewater. The susceptibility of bacteria to antibiotics was tested using the disk diffusion method, and the presence of extended-spectrum β-lactamases (ESBL) and carbapenemases was determined using an enzyme inhibitor and standard multiplex PCR. Analysis of antimicrobial resistance of total bacterial strains (n = 23) revealed that most of them were resistant to cefotaxime (69.56%), imipenem (43.47%), meropenem (47.82%) and amoxicillin-clavulanate (43.47%), gentamicin (39.13%), cefepime and ciprofloxacin (34.78%), trimethoprim-sulfamethoxazole (30.43%). A total of 8 of 11 phenotypically confirmed isolates were found to have ESBL genes. The bla(TEM) gene was present in 2 of the isolates, while the bla(SHV) gene was found in 2 of the isolates. Furthermore, the bla(CTX-M) gene was found in 3 of the isolates. In one isolate, both the bla(TEM) and bla(SHV) genes were identified. Furthermore, of the 9 isolates that have been phenotypically confirmed to have carbapenemase, 3 were confirmed by PCR. Specifically, 2 isolates have the bla(OXA-48) type gene and 1 have the bla(NDM-1) gene. In conclusion, our investigation shows that there is a significant rate of bacteria that produce ESBL and carbapenemase, which can promote the spread of bacterial resistance. Identifying ESBL and carbapenemase production genes in wastewater samples and their resistance patterns can provide valuable data and guide the development of pathogen management strategies that could potentially help reduce the occurrence of multidrug resistance.202337107015
1005110.9996Prevalence and Characterization of Beta-Lactam and Carbapenem-Resistant Bacteria Isolated from Organic Fresh Produce Retailed in Eastern Spain. Fresh fruits and vegetables are potential reservoirs for antimicrobial resistance determinants, but few studies have focused specifically on organic vegetables. The present study aimed to determine the presence of third-generation cephalosporin (3GC)- and carbapenem-resistant Gram-negative bacteria on fresh organic vegetables produced in the city of Valencia (Spain). Main expanded spectrum beta-lactamase (ESBL)- and carbapenemase-encoding genes were also detected in the isolates. One hundred and fifteen samples were analyzed using selective media supplemented with cefotaxime and meropenem. Resistance assays for twelve relevant antibiotics in medical use were performed using a disc diffusion test. A total of 161 isolates were tested. Overall, 33.5% presented multidrug resistance and 16.8% were resistant to all β-lactam antibiotics tested. Imipenem resistance was observed in 18% of isolates, and low resistance levels were found to ceftazidime and meropenem. Opportunistic pathogens such as Acinetobacter baumannii, Enterobacter spp., Raoultella sp., and Stenotrophomonas maltophilia were detected, all presenting high rates of resistance. PCR assays revealed bla(VIM) to be the most frequently isolated ESBL-encoding gene, followed by bla(TEM) and bla(OXA-48). These results confirm the potential of fresh vegetables to act as reservoirs for 3GC- and carbapenem-producing ARB. Further studies must be carried out to determine the impact of raw organic food on the spread of AMRs into the community.202336830297
1713120.9996Conjugative plasmidic AmpC detected in Escherichia coli, Proteus mirabilis and Klebsiella pneumoniae human clinical isolates from Portugal. AmpC is a type of β-lactamase enzyme produced by bacteria; these enzymes are classified in Class C and Group 1, and these confer resistance to cephamycin. Enterobacterales producing AmpC are reported worldwide and have great clinical importance due to therapeutic restriction and epidemiological importance once the easy dissemination by plasmidic genes to other bacteria is a real threat. These genes are naturally found in some enterobacteria as Enterobacter cloacae, Morganella morganii, and Citrobacter freundii, but other species have demonstrated similar resistance phenotype of AmpC production. Genes carried in plasmids have been described in these species conferring resistance to cefoxitin and causing therapeutic failure in some bacterial infections. This work detected and described five clinical strains of Escherichia coli, Proteus mirabilis, and Klebsiella pneumoniae that presented plasmid ampC (pAmpC) isolated from the north of Portugal collected in 2009. AmpC production was confirmed by inhibition of the enzyme by cloxacillin and boronic acid in agar diffusion tests. Also, PCR (polymerase chain reaction) was performed for the detection of gene universal to AmpC, bla(ampC), and others to AmpC group: bla(ACC), bla(CIT), bla(CMY), bla(DHA), and bla(EBC). The conjugation in liquid medium for 24 h was realized to determine if gene is localized in chromosome or plasmid. The isolates and their conjugants showed phenotypic characteristics and bla(CMY) and bla(CIT) were detected by PCR corroborating the AmpC characteristics observed in these bacteria. Confirmation of transfer of plasmid containing genes encoding AmpC is of high epidemiological relevance to the hospital studied and demonstrated the importance of AmpC surveillance and studies in hospital and community environments in order to choose the appropriate therapy for bacterial infections.202032740783
1022130.9996Characterization of Beta-lactamases in Faecal Enterobacteriaceae Recovered from Healthy Humans in Spain: Focusing on AmpC Polymorphisms. The intestinal tract is a huge reservoir of Enterobacteriaceae, some of which are opportunist pathogens. Several genera of these bacteria harbour intrinsic antibiotic resistance genes, such as ampC genes in species of Citrobacter, Enterobacter or Escherichia genera. In this work, beta-lactamases and other resistance mechanisms have been characterized in Enterobacteriaceae isolates recovered from healthy human faecal samples, focusing on the ampC beta-lactamase genes. Fifty human faecal samples were obtained, and 70 Enterobacteriaceae bacteria were isolated: 44 Escherichia coli, 4 Citrobacter braakii, 9 Citrobacter freundii, 8 Enterobacter cloacae, 1 Proteus mirabilis, 1 Proteus vulgaris, 1 Klebsiella oxytoca, 1 Serratia sp. and 1 Cronobacter sp. A high percentage of resistance to ampicillin was detected (57%), observing the AmpC phenotype in 22 isolates (31%) and the ESBL phenotype in 3 isolates. AmpC molecular characterization showed high diversity into bla CMY and bla ACT genes from Citrobacter and Enterobacter species, respectively, and the pulsed-field gel electrophoresis (PFGE) analysis demonstrated low clonality among them. The prevalence of people colonized by strains carrying plasmid-mediated ampC genes obtained in this study was 2%. The unique plasmid-mediated bla AmpC identified in this study was the bla CMY-2 gene, detected in an E. coli isolate ascribed to the sequence type ST405 which belonged to phylogenetic group D. The hybridization and conjugation experiments demonstrated that the ISEcp1-bla CMY-2-blc structure was carried by a ~78-kb self-transferable IncK plasmid. This study shows a high polymorphism among beta-lactamase genes in Enterobacteriaceae from healthy people microbiota. Extensive AmpC-carrier studies would provide important information and could allow the anticipation of future global health problems.201525501887
1057140.9996Emergence of ciprofloxacin-resistant extended-spectrum β-lactamase-producing enteric bacteria in hospital wastewater and clinical sources. This study aimed to evaluate the incidence of ciprofloxacin-resistant extended-spectrum β-lactamase (ESBL)-producing enteric bacteria in hospital wastewater and clinical sources. Enteric bacteria, mainly Escherichia coli, were isolated from clinical sources (urinary tract and gastrointestinal tract infections; 80 isolates) and hospital wastewater (103 isolates). The antibiotic resistance profile and ESBL production of the isolates were investigated by disc diffusion assay and combined disc diffusion test, respectively. Plasmid profiling was performed by agarose gel electrophoresis, and elimination of resistance markers was performed by a plasmid curing experiment. Antibiotic susceptibility testing revealed a high incidence of β-lactam resistance, being highest to ampicillin (88.0%) followed by amoxicillin, ceftriaxone, cefpodoxime, cefotaxime, aztreonam, cefepime and ceftazidime. Among the non-β-lactam antibiotics, the highest resistance was recorded to nalidixic acid (85.7%). Moreover, 50.8% of enteric bacteria showed resistance to ciprofloxacin. Among 183 total enteric bacteria, 150 (82.0%) exhibited multidrug resistance. ESBL production was detected in 78 isolates (42.6%). A significantly higher incidence of ciprofloxacin resistance was observed among ESBL-producing enteric bacteria both in clinical (P=0.0015) and environmental isolates (P=0.012), clearly demonstrating a close association between ESBL production and ciprofloxacin resistance. Plasmid profiling of selected ESBL-positive strains indicated the presence of one or more plasmids of varying sizes. Plasmid curing resulted in loss of ciprofloxacin and cefotaxime resistance markers simultaneously from selected ESBL-positive isolates, indicating the close relationship of these markers. This study revealed a common occurrence of ciprofloxacin-resistant ESBL-producing enteric bacteria both in hospital wastewater and clinical sources, indicating a potential public health threat.201627436461
1058150.9996First Detection of FOX-1 AmpC β-lactamase Gene Expression Among Escherichia coli Isolated from Abattoir Samples in Abakaliki, Nigeria. OBJECTIVES: Gram-negative bacteria represent the most relevant reservoir of resistance to antibiotics in the environment. The natural selection of resistant clones of bacteria in the environment by antimicrobial selective pressure is a relevant mechanism for spreading antibiotic resistance traits in both the community and hospital environment. This is in scenarios where antimicrobials are used irrationally, and even in the propagation of livestock, poultry birds, and for other veterinary purposes. This study sought to detect the prevalence of FOX-1 AmpC β-lactamase genes from abattoir samples. METHODS: The isolation of Escherichia coli, antimicrobial susceptibility testing, and β-lactamase characterization was carried out using standard microbiology techniques. The production of AmpC β-lactamase was phenotypically carried out using the cefoxitin-cloxacillin double-disk synergy test (CC-DDST), and FOX-1 AmpC genes was detected in the E. coli isolates using multiplex polymerase chain reaction. RESULTS: Forty-eight E. coli isolates were recovered from the anal swabs of cows and 35 (72.9%) isolates were positive for the production of β-lactamase. Notably, high percentages of resistance to cefoxitin (91.7%), ceftriaxone (83.3%), imipenem (85.4%), ceftazidime (87.5%), ofloxacin (81.3%), and gentamicin (85.4%) were found. FOX-1 genes were detected in three (6.3%) of the 48 E. coli isolates phenotypically screened for AmpC enzyme production. CONCLUSIONS: Abattoirs could represent a major reservoir of resistance genes especially AmpC β-lactamase, and this could serve as a route for the dissemination of multidrug-resistant bacteria in the community. Thus, the molecular identification of drug-resistant genes is vital for a reliable epidemiological investigation and the forestalling of the emergence and spread of these organisms through the food chain in this region.201829896333
1037160.9996Genetic Background of β-Lactamases in Enterobacteriaceae Isolates from Environmental Samples. The prevalence of β-lactamase-producing Enterobacteriaceae has increased worldwide. Although antibiotic-resistant bacteria are usually associated with hospitals, there are a growing number of reports of resistant bacteria in other environments. Concern about resistant microorganisms outside the hospital setting highlights the need to investigate mechanisms of antibiotic resistance in isolates collected from the environment. The present study evaluated the resistance mechanism to β-lactam antibiotics in 40 isolates from hospital sewage and surface water from the Dilúvio Stream, Porto Alegre City, Southern Brazil. The multiplex PCR technique was used to detect several resistance genes of β-lactamases: extended-spectrum β-lactamases (ESBLs), carbapenemases, and β-lactamase AmpC. After genes, detection amplicons were sequenced to confirm their identification. The clonal relationship was established by DNA macrorestriction using the XbaI enzyme, followed by pulsed-field gel electrophoresis (PFGE). The results indicated that resistance genes were present in 85% of the isolates. The most prevalent genes encoded narrow-spectrum β-lactamase, such as TEM-1 and SHV-1 with 70% of the strains, followed by carbapenemase KPC and GES (45%), ESBL types SHV-5 and CTX-M-8 (27.5%), and AmpC (ACT-1/MIR-1) (2.5%). Twelve isolates contained only one resistance gene, 14 contained two, and eight isolates had three resistance genes. PFGE indicated a clonal relationship among K. pneumoniae isolates. It was not possible to establish a clonal relationship between Enterobacter sp. isolates. The results highlight the potential of these resistance genes to spread in the polluted environment and to present a health risk to communities. This report is the first description of these resistance genes present in environmental samples other than a hospital in the city of Porto Alegre/RS.201728378066
1015170.9996Antimicrobial-resistant and extended-spectrum β-lactamase-producing Escherichia coli in raw cow's milk. The occurrence of antimicrobial-resistant bacteria is an important public health issue. The aim of this study was the monitoring of resistant Escherichia coli in raw cow's milk with a focus on the detection of extended-spectrum β-lactamase (ESBL)-producing strains. In total, 263 samples of raw milk from 40 farms were collected and investigated in 2010 to 2013 in the Czech Republic. Detection of E. coli was performed and evaluated according to ISO 16649-2, and antibiotic resistance was screened by the disk diffusion method. The presence of E. coli was detected in 243 (92.4%) samples. In total, 270 isolates were obtained. Resistance to β-lactam (31.8%) and tetracycline (13.0%) antibiotics was detected most often and also multiresistant strains (5.5%) were observed. E. coli isolates found to be resistant to β-lactam, tetracycline, and quinolone antibiotics were assayed by PCR to detect selected genes encoding those resistance mechanisms. In isolates in which any bla genes were detected, a double-disk synergy test was performed. ESBL production was confirmed in 2 (0.7%) isolates. The genetic analysis identified the presence of the blaCTX-M gene and other resistance genes (tet(B) and qnrB). Both ESBL-positive isolates originated from the same farm and had an identical pulsed-field gel electrophoresis profile. The findings of our study indicate that milk can be a reservoir of bacteria carrying resistance genes with a potential for spreading through the food chain.201525581180
1012180.9995Antimicrobial resistance profile and prevalence of extended-spectrum beta-lactamases (ESBL), AmpC beta-lactamases and colistin resistance (mcr) genes in Escherichia coli from swine between 1999 and 2018. The frequent usage of antibiotics in livestock has led to the spread of resistant bacteria within animals and their products, with a global warning in public health and veterinarians to monitor such resistances. This study aimed to determine antibiotic resistance patterns and genes in pig farms from Spain during the last twenty years. Susceptibility to six antibiotics commonly used in pig production was tested by qualitative (disk diffusion) and quantitative (minimum inhibitory concentration, MIC) methods in 200 strains of Escherichia coli which had been isolated between 1999 and 2018 from clinical cases of diarrhoea in neonatal and post-weaned piglets. Results showed resistance around 100% for amoxicillin and tetracycline since 1999, and a progressive increase in ceftiofur resistance throughout the studied period. For colistin, it was detected a resistance peak (17.5% of the strains) in the 2011-2014 period. Concerning gentamicin, 11 of 30 strains with intermediate susceptibility by the disk diffusion method were resistant by MIC. Besides, the most frequent antimicrobial resistance genes were the extended-spectrum beta-lactamase (ESBL) bla (CTX-M) (13.5% of strains, being CTX-M-14, CTX-M-1 and CTX-M-32 the most prevalent genomes, followed by CTX-M-27, CTX-M-9 and CTX-M-3), AmpC-type beta-lactamase (AmpC) bla (CMY-2) (3%) and colistin resistance genes mcr-4 (13%), mcr-1 (7%) and in less proportion mcr-5 (3%). Interestingly, these mcr genes were already detected in strains isolated in 2000, more than a decade before their first description. However, poor concordance between the genotypic mcr profile and the phenotypical testing by MIC was found in this study. These results indicate that although being a current concern, resistance genes and therefore antimicrobial resistant phenotypes were already present in pig farms at the beginning of the century.202032266079
1030190.9995Occurrence of extended-spectrum β-lactamase-producing bacteria in urban Clinton River habitat. OBJECTIVE: The aim of this study was to determine whether Clinton River water is contaminated with antibiotics and is a reservoir of antimicrobial-resistant bacteria. METHODS: Water samples were taken from two sites of Clinton River. Antimicrobial-resistant bacteria were enumerated on agar plates supplemented with six commonly used antibiotics. Extended-spectrum β-lactamase (ESBL)-producing bacteria were identified using a BD Phoenix™ System and by 16S rRNA gene sequencing. Antimicrobial resistance gene transfer was performed by conjugation studies and the location of genes was determined by Southern hybridisation. Virulence properties of ESBL-producing isolates were determined by assessing their biofilm-forming ability, cellular toxicity, and induction of an inflammatory response in intestinal epithelial (Caco-2) cells. RESULTS: 16S rRNA analysis of water samples showed the presence of potentially pathogenic bacteria (e.g. Shigella flexneri, Klebsiella pneumoniae, Aeromonas punctata and Pseudomonas aeruginosa). Among 64 biochemically identified bacterial isolates tested, 42% were resistant to cefotaxime, 34% to chloramphenicol, 9% to tetracycline, 11% to ciprofloxacin and 9% to gentamicin. Of 27 cefotaxime-resistant isolates, 11 (41%) were ESBL-positive and possessed either bla(CTX-M) (n=9), bla(TEM) (n=1) or bla(KPC) (n=1). Comparative analysis of ESBL gene sequences from Clinton River water bacteria showed 98-100% identity with clinical isolates. ESBL-producing isolates from Clinton River water were found to form biofilms, induced inflammatory cytokines and caused toxicity to epithelial cells. CONCLUSIONS: Clinton River water contains isolates with ESBL genes identical to clinical isolates and possessing virulence properties, thus it could be a potential reservoir in causing human infections.201930316964