# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1064 | 0 | 1.0000 | Isolation of AmpC- and extended spectrum β-lactamase-producing Enterobacterales from fresh vegetables in the United States. Vegetables may serve as a reservoir for antibiotic resistant bacteria and resistance genes. AmpC β-lactamases and extended spectrum beta-lactamases (ESBL) inactivate commonly used β-lactam antibiotics, including penicillins and cephalosporins. In this study, we determined the prevalence of AmpC and ESBL-producing Enterobacterales in retail vegetables in the United States. A total of 88 vegetable samples were collected for the screening of AmpC and ESBL-producing Enterobacterales using CHROMagar ESBL agar. These vegetables included washed ready-to-eat salad (23), microgreens/sprouts (13), lettuce (11), herbs (11), spinach (5), mushrooms (5), brussels sprouts (4), kale (3), and other vegetable samples (13). AmpC and ESBL activity in these isolates were determined using double disk combination tests. Two vegetable samples (2.27%), organic basil and brussels sprouts, were positive for AmpC-producing Enterobacterales and eight samples (9.09%), including bean sprouts, organic parsley, organic baby spinach, and several mixed salads, were positive for ESBL-producing Enterobacterales. Whole genome sequencing was used to identify the bacterial species and resistance genes in these isolates. Genes encoding AmpC β-lactamases were found in Enterobacter hormaechei strains S43-1 and 74-2, which were consistent with AmpC production phenotypes. Multidrug-resistant E. hormaechei strains S11-1, S17-1, and S45-4 possess an ESBL gene, bla(SHV66) , whereas five Serratia fonticola isolates contain genes encoding a minor ESBL, FONA-5. In addition, we used shotgun metagenomic sequencing approach to examine the microbiome and resistome profiles of three spinach samples. We found that Pseudomonas was the most prevalent bacteria genus in the spinach samples. Within the Enterobacteriaceae family, Enterobacter was the most abundant genus in the spinach samples. Moreover, antibiotic resistance genes encoding 12 major classes of antibiotics, including β-lactam antibiotics, aminoglycoside, macrolide, fluoroquinolone, and others, were found in these spinach samples. Therefore, vegetables can serve as an important vehicle for transmitting antibiotic resistance. The study highlights the need for antibiotic resistance surveillance in vegetable products. | 2022 | 34629764 |
| 1049 | 1 | 0.9997 | Multiple Antibiotic-Resistant, Extended Spectrum-β-Lactamase (ESBL)-Producing Enterobacteria in Fresh Seafood. Members of the family Enterobacteriaceae include several human pathogens that can be acquired through contaminated food and water. In this study, the incidence of extended spectrum β-lactamase (ESBL)-producing enterobacteria was investigated in fresh seafood sold in retail markets. The ESBL-positive phenotype was detected in 169 (78.60%) isolates, with Escherichia coli being the predominant species (53), followed by Klebsiella oxytoca (27), and K. pneumoniae (23). More than 90% of the isolates were resistant to third generation cephalosporins, cefotaxime, ceftazidime, and cefpodoxime. Sixty-five percent of the isolates were resistant to the monobactam drug aztreonam, 40.82% to ertapenem, and 31.36% to meropenem. Resistance to at least five antibiotics was observed in 38.46% of the isolates. Polymerase Chain Reaction (PCR) analysis of ESBL-encoding genes detected bla(CTX), bla(SHV), and bla(TEM) genes in 76.92%, 63.3%, and 44.37% of the isolates, respectively. Multiple ESBL genes were detected in majority of the isolates. The recently discovered New Delhi metallo-β-lactamase gene (bla(NDM-1)) was detected in two ESBL⁺ isolates. Our study shows that secondary contamination of fresh seafood with enteric bacteria resistant to multiple antibiotics may implicate seafood as a potential carrier of antibiotic resistant bacteria and emphasizes an urgent need to prevent environmental contamination and dissemination of such bacteria. | 2017 | 28867789 |
| 1017 | 2 | 0.9997 | Evaluation of canine raw food products for the presence of extended-spectrum beta-lactamase- and carbapenemase-producing bacteria of the order Enterobacterales. OBJECTIVE: To assess the potential contamination of commercial raw dog food products with bacteria of the Enterobacterales order that produce extended spectrum beta-lactamase (ESBL) and carbapenemase enzymes, determine risk factors for contamination, and understand isolate genetic diversity. SAMPLES: A total of 200 canine raw food products. METHODS: Products were cultured on selective chromogenic agar following enrichment steps. Whole-genome sequencing was performed for isolates that were confirmed to produce an ESBL. Isolates were characterized by antimicrobial resistance genes, and multilocus sequences typing, and compared to other isolates in the NCBI database for clonality. Preservation method and protein sources were assessed as potential risk factors for contamination with ESBL and carbapenemase-producing bacteria of the Enterobacterales order. RESULTS: No carbapenemase-producing Enterobacterales (CPE) were identified, but ESBL-producing Enterobacterales bacteria were isolated from 20/200 products (10.0%; 95% CI, 7.3 to 16.5%), all of which were frozen. Pork-derived protein source products were 8.1 times (P = .001; 95% CI, 2.53 to 26.2) more likely to carry ESBL-producing Enterobacterales bacteria than other protein sources. WGS analysis confirmed the presence of ESBL genes in a total of 25 distinct isolates (19 Escherichia coli, 5 Klebsiella pneumoniae, and 1 Citrobacter braakii). Genes encoding CTX-M type ESBL enzymes were the most common (24/25 isolates, 96.0%) with blaCTX-M-27 being the most common allele (8/25, 32.0%). CLINICAL RELEVANCE: Frozen, raw food products may serve as a route of transmission of ESBL-producing Enterobacterales bacteria to companion animals. Veterinarians should advise owners about the risks of raw food diets, including potential exposure to antimicrobial-resistant bacteria. | 2022 | 35895774 |
| 943 | 3 | 0.9997 | Occurrence, Antimicrobial Resistance Profile, and Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Minced Meat at Local Markets in Thailand. Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli exhibits strong multidrug resistance (MDR) to ampicillin and third-generation cephalosporins. This study examined the occurrence, antimicrobial susceptibility, and molecular genetic features of ESBL-producing E. coli isolates from three commonly consumed minced meat varieties, namely pork, chicken, and beef. In total, 150 samples were collected from 10 local markets in Thailand. ESBL-producing E. coli was identified in 78 samples (52%), and minced chicken meat was most contaminated (79.17%). The isolates exhibited potential susceptibility to amikacin (96.16%) and carbapenems (91-95%). However, ESBL-producing E. coli displayed strong resistance to ampicillin and cefpodoxime (100%) and high MDR to 3-5 antibiotic classes (94.87%). Most presumptive ESBL producers harbored ESBL resistance genes (97.44%), most commonly bla(TEM) (78.21%). Indeed, our results demonstrated that raw minced meat has a high occurrence of ESBL-producing E. coli harboring ESBL resistance genes, highlighting the importance of implementation of sanitary handling practices to reduce microbial contamination in commercial meat as well as the need for consumer education on safe handling and cooking of meat products. | 2022 | 34941425 |
| 1025 | 4 | 0.9997 | Detection of Extended Spectrum Beta-Lactamases Resistance Genes among Bacteria Isolated from Selected Drinking Water Distribution Channels in Southwestern Nigeria. Extended Spectrum Beta-Lactamases (ESBL) provide high level resistance to beta-lactam antibiotics among bacteria. In this study, previously described multidrug resistant bacteria from raw, treated, and municipal taps of DWDS from selected dams in southwestern Nigeria were assessed for the presence of ESBL resistance genes which include bla TEM, bla SHV, and bla CTX by PCR amplification. A total of 164 bacteria spread across treated (33), raw (66), and municipal taps (68), belonging to α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Flavobacteriia, Bacilli, and Actinobacteria group, were selected for this study. Among these bacteria, the most commonly observed resistance was for ampicillin and amoxicillin/clavulanic acid (61 isolates). Sixty-one isolates carried at least one of the targeted ESBL genes with bla TEM being the most abundant (50/61) and bla CTX being detected least (3/61). Klebsiella was the most frequently identified genus (18.03%) to harbour ESBL gene followed by Proteus (14.75%). Moreover, combinations of two ESBL genes, bla SHV + bla TEM or bla CTX + bla TEM, were observed in 11 and 1 isolate, respectively. In conclusion, classic bla TEM ESBL gene was present in multiple bacterial strains that were isolated from DWDS sources in Nigeria. These environments may serve as foci exchange of genetic traits in a diversity of Gram-negative bacteria. | 2016 | 27563674 |
| 1014 | 5 | 0.9996 | Contamination of retail market meat with extended-spectrum beta-lactamase genes in Vietnam. The contamination of retail meat with antibiotic-resistant bacteria poses a substantial public health risk because of the potential spread of these bacteria within communities. The contamination of retail meat with extended-spectrum beta-lactamase (ESBL)-producing bacteria was investigated in four cities in Vietnam using real-time PCR, employing ESBL marker genes. This method provides a more comprehensive assessment of ESBL-producing bacterial contamination in meat samples than culture-based methods because it directly detects resistance genes from the extracted sample DNA. Retail meats in Vietnam were substantially contaminated with ESBL genes [54 % (n = 46) and 48 % (n = 49) of chicken and pork samples, respectively]. No significant differences in ESBL gene detection rates were observed between chicken and pork. The most frequently detected ESBL gene was blaTEM, followed by blaSHV, whereas blaCTX-M was found in only 4-8 % of the samples. Ho Chi Minh City showed significantly higher contamination rates for both chicken and pork than those in other cities. ESBL-producing Escherichia coli strains were isolated from contaminated meat samples and genomically analyzed. All isolated strains carried blaCTX-M, with some harboring blaTEM, whereas blaSHV was not detected. Although IncFIB plasmids were prevalent among the ESBL-producing E. coli strains, the variability in resistance gene profiles suggested that the endemic spread of specific resistance gene-carrying plasmids was unlikely. Overall, these findings highlight the effectiveness of the ESBL gene detection method and the high levels of ESBL-producing E. coli in retail meat. | 2025 | 39827751 |
| 1105 | 6 | 0.9996 | Cross-Sectional Survey of Antibiotic Resistance in Extended Spectrum β-Lactamase-Producing Enterobacteriaceae Isolated from Pigs in Greece. This study aimed to estimate the prevalence of extended-spectrum β-lactamase-producing (ESBL) bacteria in swine. Thus, 214 fecal samples were collected from suckling and weaned piglets from 34 farms in Greece (out of an overall population of about 14,300 sows). A subset of 78 (36.5%) ESBL producers were identified as E. coli (69/78, 88.5%), K. pneumoniae spp. pneumoniae (3.8%), P. mirabilis (5.1%), E. cloacae complex (1.3%) and S. enterica spp. diarizonae (1.3%). Resistance to at least one class of non-β-lactam antibiotics was detected in 78 isolates. Among the E. coli strains, resistance was identified with regard to aminoglycosides (n = 31), fluoroquinolones (n = 49), tetracycline (n = 26) and trimethoprim/sulfamethoxazole (n = 46). Of the three K. pneumoniae spp. pneumoniae, two displayed resistances to aminoglycosides and all were resistant to fluoroquinolones, tetracyclines and trimethoprim/sulfamethoxazole. As for the four P. mirabilis isolates, three had a resistant phenotype for aminoglycosides and all were resistant to imipenem, fluoroquinolones, tetracyclines and trimethoprim/sulfamethoxazole. Molecular characterization of the isolates revealed the presence of CTX-M, SHV and TEM genes, as well as of genes conferring resistance to fluoroquinolones, aminoglycosides, sulfonamides, trimethoprim, macrolides and colistin. High levels of antimicrobial resistance (AMR) were demonstrated in Greek swine herds posing a concern for the efficacy of treatments at the farm level as well as for public health. | 2022 | 35739896 |
| 1027 | 7 | 0.9996 | Identification of CTX-M-15 and CTX-M-27 in Antibiotic-Resistant Gram-Negative Bacteria Isolated from Three Rivers Running in Central Italy. The main goal of this study was to identify Gram-negative bacteria resistant to antibiotics, in particular β-lactams, in stream waters and effluents from urban wastewater treatment plants draining into Fino, Tavo, and Saline rivers of the Abruzzo region, Italy. Eight sampling sites were selected because they were the most contaminated by coliforms during previous sampling campaign. One sample for each site was collected for the detection of total and fecal coliforms, Escherichia coli and Enterococcus species by Colilert-18 and Enterolert-E Quanti-Tray/2000. Antibiotic-resistant bacteria, selected on ampicillin and cefotaxime-supplemented agar plates, were identified by EnteroPluri test systems and then confirmed by MALDI-TOF. The resistant determinants were identified and characterized by PCR and sequencing. The microbiological analysis allowed to detect E. coli, total coliforms, fecal coliforms, and enterococci with a coefficient of variation of 215.7%, 212.8%, 242.5%, and 188.5%, respectively. Several Gram-negative bacteria were identified: Serratia liquefaciens, E. coli, Enterobacter cloacae, Citrobacter freundii, Raoultella ornithinolytica, Acinetobacter johnsonii, Aeromonas veronii, Aeromonas hydrophila, and Pseudomonas koreensis. All strains possessed class 1 integrons, insertion sequences, and genes encoding for serin- and metallo-β-lactamases. Extended-spectrum β-lactamases, such as CTX-M-15 and CTX-M-27, were found in Enterobacteriaceae, whereas CphA metallo-β-lactamase was found in A. veronii and A. hydrophila. The main resistance's mechanism to β-lactams observed among the analyzed strains is represented by the production of serin β-lactamases (CTX-M-15, CTX-M-27, and SHV-1) and metallo β-lactamase (CphA). | 2019 | 30994417 |
| 1016 | 8 | 0.9996 | Investigation of CTX-M Type Extended-Spectrum β-Lactamase, Carbapenem and Colistin Resistance in Enterobacterales Isolated From Dairy Cattle in Turkey. BACKGROUND: The increasing prevalence of antimicrobial resistance in animals, particularly the spread of multidrug-resistant Enterobacterales, poses a significant zoonotic and public health risk. OBJECTIVE: The aim of this study was to investigate extended-spectrum β-lactamase (ESBL), carbapenem and colistin resistance among Enterobacterales in faecal swabs of dairy cattle. METHODS: A total of 400 samples were cultured on Mac Conkey screening media for ESBL, carbapenem and colistin resistance. The grown Enterobacterales were identified by MALDI-TOF-MS, followed by ceftriaxone, cefotaxime and ceftazidime resistance and double disk synergy. ESBL resistance genes were identified by polymerase chain reaction (PCR) and Sanger sequencing. Bacteria grown on colistin screening media were investigated for colistin resistance by EUCAST microbroth dilution method. RESULTS: A total of 89 (22.25%) of the bacteria grown from 400 samples were identified as potential ESBL-producing Enterobacterales members. A number of 53 (59.5%) of them were identified as ESBL blaCTX-M as a result of PCR, and 10 of them were identified as blaCTX-M-15/28/36/66 as a result of sequencing. None of the samples cultured on carbapenem medium grew. A total of 18 samples grown in colistin medium were found to be colistin sensitive by broth microdilution. Genotypes were not included in the study. All isolated bacteria were identified as Escherichia coli. SOLUTION: In this study, blaCTX-M-15 and its derivatives, which are common in humans, were also found to be the predominant ESBL type in animals. Monitoring resistance in animals together with resistance in human infections may provide more important data on the spread of resistance. | 2025 | 40704983 |
| 956 | 9 | 0.9996 | Detection of Extended-Spectrum Beta-Lactamase-Producing and Carbapenem-Resistant Bacteria from Mink Feces and Feed in the United States. Antibiotic-resistant infections caused by extended-spectrum β-lactamases (ESBLs) and carbapenemases are increasing worldwide. Bacteria resistant to extended-spectrum cephalosporins and last resort carbapenems have been reported from food animals and their environments. Other concentrated nonfood-producing animals such as mink farming can be a reservoir of bacteria resistant to these critically important antibiotics. The objective of this study was to determine the prevalence of ESBL-producing bacteria and carbapenem-resistant (CR) bacteria from mink fecal (n = 42) and feed (n = 8) samples obtained from a commercial mink farm in the United States. The most prevalent ESBL-producing bacteria identified from the fecal samples were Escherichia coli (93%), Klebsiella pneumoniae (76%), and Proteus species (88%). E. coli (100%) and K. pneumoniae (75%) were also the most prevalent ESBL-producing bacteria identified from feed samples. All ESBL E. coli isolates were resistant to penicillin and most cephem beta-lactam antibiotics. Among the ESBL E. coli isolates, co-resistance was observed to ciprofloxacin (33%) and gentamicin (28%) indicating multidrug resistance. ESBL E. coli isolates predominantly carried bla(CTX-M-14) and bla(CTX-M-15) genes. Although all feed K. pneumoniae isolates carried bla(CTX-M-9), all fecal K. pneumoniae isolates carried bla(SHV). CR Pseudomonas species (7%), Hafnia alvei (24%), and Myroides odoratimimus (9.5%) were detected from fecal samples. H. alvei (37.5%) was the only CR bacteria detected from the feed samples. All CR isolates were polymerase chain reaction negative for the tested carbapenemases that are commonly reported, which may indicate intrinsic rather than acquired resistance. This study indicates that mink production can be a reservoir for bacteria resistant to the highest priority critically important antibiotics for human health. | 2021 | 33978469 |
| 1104 | 10 | 0.9996 | Predominance of Multidrug-Resistant Gram-Negative Bacteria Isolated from Supermarket Retail Seafood in Japan. Reports have documented antimicrobial usage in aquaculture, and the aquatic ecosystem can be considered a genetic storage site for antibiotic-resistant bacteria. This study assessed the prevalence of antimicrobial resistance (AMR) among Gram-negative bacteria recovered from retail seafood in Hiroshima, Japan. A total of 412 bacteria were isolated and screened for the presence of β-lactamases, acquired carbapenemases, and mobile colistin-resistance (mcr) genes. Forty-five (10.9%) isolates were dominated by Morganella (28%), Proteus (22%), Aeromonas (14%), Citrobacter (8%), and Escherichia (8%) and carried AMR genes. The identified AMR genes included those encoded in integrons (19), aac(6՛)-Ib (11), bla(TEM-1) (7), bla(CTX-M-like) (12), bla(CTX-M-65) (2), bla(SHV-12) (1), bla(SHV-27) (1), bla(OXA-10) (1), bla(OXA-2) (1), and mcr (2). The most common clinical resistances were against ampicillin, colistin, sulfamethoxazole/trimethoprim, tetracycline, and ciprofloxacin. Multidrug resistance (MDR) occurred in 27 (60%) AMR isolates, and multiple antibiotic resistance indices ranged from 0.2 to 0.8. A conjugation experiment showed that 10 of the 11 selected MDR strains harbored conjugable plasmids, although PCR-based replicon typing described seven strains as untypable. IncF replicon was identified in MDR extended-spectrum β-lactamase-producing Escherichia coli of the pathogenic B2 phylogroup. Our findings suggest that retail seafood harbors MDR bacteria of human interest that require strict resistance surveillance in the seafood production continuum. | 2023 | 38138079 |
| 1011 | 11 | 0.9996 | Mechanisms of cephalosporin resistance in indicator Escherichia coli isolated from food animals. Resistance to β-lactams is considered one of the major global problems and recently it became the most frequently studied topic in the area of antimicrobial resistance. The study was focused on phenotypic and genetic characterisation of commensal Escherichia coli (E. coli), including those producing cephalosporinases, isolated from gut flora of healthy slaughter animals. E. coli were cultured simultaneously on MacConkey agar (MCA) and cefotaxime supplemented MCA. The isolates were confirmed with ONPG and indol tube tests as well as PCR targeting uspA gene. Microbroth dilution method was applied for determination of Minimal Inhibitory Concentrations and interpreted according to EUCAST epidemiological cut-off values. Cephalosporin resistance phenotypes were defined by E-tests (BioMerieux) and relevant gene amplicons from selected strains were sequenced. A total of 298 E. coli isolates with cephalosporin resistance (ESC) found in 99 ones, were obtained from 318 cloacal or rectal swabs deriving from broilers, layers, turkeys, pigs and cattle. Both extended spectrum β-lactamase (ESBL) and ampC-cephalosporinase resistance phenotypes were noted in all tested animal species but cattle. At least one of the analysed genes was identified in 90 out of 99 cephalosporin-resistant isolates: bla(TEM) (n=44), bla(CMY) (n=38), bla(CTX-M) (n=33) and bla(SHV) (n=12). None of the phenotypes was identified in nine isolates. Sequencing of PCR products showed occurrence of ESBL-genes: bla(CTX-M-1/-61), bla(SHV-12), bla(TEM-1,-52/-92,-135) and ampC-gene bla(CMY-2). They were located on numerous and diverse plasmids and resistance transferability was proved by electroporation of bla(SHV-12) and bla(CTX-M-1/-61) located on X1 plasmids. Detection of cephalosporin resistant E. coli confirms the existence of resistance genes reservoir in farm animals and their possible spread (i.e. via IncX1 plasmids) to other bacteria including human and animal pathogens. The identified genetic background indicates on ecological aspects of selection and dissemination of cephalosporin resistance in E. coli isolated from food-producing animals rather than its potential role for public health threats. | 2016 | 26869096 |
| 1056 | 12 | 0.9996 | Multi-drug resistance and extended spectrum beta lactamase producing Gram negative bacteria from chicken meat in Bharatpur Metropolitan, Nepal. OBJECTIVE: Multidrug resistance (MDR) and extended spectrum beta lactamase (ESBL) producer Gram negative bacteria are considered as a major health problem, globally. ESBL enzyme hydrolyses the beta lactam ring of third generation cephalosporins, which alters the structure of the antibiotic. Due to the modification in structure of the antibiotic, bacteria show resistance to these antibiotics. Resistant bacterial strains are transmitted to humans from animals through consumption of uncooked meat, through contact with uncooked meat and meat surfaces. This study aims to assess bacteriological profile and analyze the situation of antibiotic resistance, multidrug resistance, and ESBL producing Gram negative bacteria in chicken meat. RESULTS: A total of 38 chicken meat samples were studied in which 103 Gram negative bacteria were isolated. Species of Gram negative bacteria were identified as Citrobacter spp. (44.7%), Salmonella spp. (26.2%), Proteus spp. (18.4%), Escherichia coli (4.8%), Shigella spp. (3.9%), Pseudomonas spp. (1.9%), and Klebsiella spp. (1.0%). The prevalence of MDR isolates was found to be 79.6%. Total ESBL producer was 36.9% and ESBL producer among MDR was 34.9%. This concludes wide range of antibiotic resistance bacteria is prevalent in raw chicken meat. | 2017 | 29116010 |
| 1199 | 13 | 0.9996 | Multi-drug resistant pathogenic bacteria in the gut of young children in Bangladesh. BACKGROUND: The gut of human harbors diverse commensal microbiota performing an array of beneficial role for the hosts. In the present study, the major commensal gut bacteria isolated by culturing methods from 15 children of moderate income families, aged between 10 and 24 months, were studied for their response to different antibiotics, and the molecular basis of drug resistance. RESULTS: Of 122 bacterial colonies primarily selected from Luria-Bertani agar, bacterial genera confirmed by analytical profile index (API) 20E(®) system included Escherichia as the predominant (52%) organism, followed by Enterobacter (16%), Pseudomonas (12%), Klebsiella (6%), Pantoea (6%), Vibrio (3%), and Citrobacter (3%); while Aeromonas and Raoultella were identified as the infrequently occurring genera. An estimated 11 and 22% of the E. coli isolates carried virulence marker genes stx-2 and eae, respectively. Antimicrobial susceptibility assay revealed 78% of the gut bacteria to be multidrug resistant (MDR) with highest resistance to erythromycin (96%), followed by ampicillin (63%), tetracycline (59%), azithromycin (53%), sulfamethoxazole-trimethoprim (43%), cefixime (39%), and ceftriaxone (33%). PCR assay results revealed 56% of the gut bacteria to possess gene cassette Class 1 integron; while 8, 17.5 and 6% of the strains carried tetracycline resistance-related genes tetA, tetB, and tetD, respectively. The macrolide (erythromycin and azithromycin) resistance marker genes mphA, ereB, and ermB were found in 28, 3 and 5% of bacterial isolates, respectively; while 26, 12, 17, 32, 7, 4 and 3% of the MDR bacterial isolates carried the extended spectrum β-lactamase (ESBL)-related genes e.g., bla(TEM), bla(SHV), bla(CMY-9), bla(CTX-M1), bla(CTX-M2), bla(CMY-2) and bla(OXA) respectively. Majority of the MDR gut bacteria harbored large plasmids [e.g., 140 MDa (43%), 105 MDa (30%), 90 MDa (14%)] carrying invasion and related antibiotic resistance marker genes. CONCLUSIONS: Our results suggest gut of young Bangladeshi children to be an important reservoir for multi-drug resistant pathogenic bacteria carrying ESBL related genes. | 2017 | 28439298 |
| 961 | 14 | 0.9996 | Predominance of CTX-M-15 among ESBL Producers from Environment and Fish Gut from the Shores of Lake Victoria in Mwanza, Tanzania. Extended-Spectrum Beta-Lactamase (ESBL)-producing bacteria are a common cause of healthcare and community-associated infections worldwide. The distribution of such isolates in the environment and their presence in fish as a result of sewage contamination is not well-studied. Here we examined fish and environmental samples from Mwanza city for the presence of ESBL-producing bacteria. From 196 fish sampled from local markets, 26 (13.3%) contained lactose-fermenting ESBL-producing bacteria, while 39/73 (53.4%) environmental samples from the same area were ESBL producers. Antibiotic resistance genes, multi locus sequence types (MLST) and plasmid replicon types in 24 selected isolates from both populations were identified with whole genome sequencing using Illumina MiSeq. Nine of eleven sequenced fish isolates had the bla(CTX-M-15) gene whereas 12/13 from environment carried bla(CTX-M-15). Antibiotic resistance genes encoding resistance to sulfonamides (sul1/sul2), tetracyclines [tet(A)/tet(B)] fluoroquinolones [e.g., aac(6')-Ib-cr, qnrS1], aminoglycosides [e.g., aac(3)-lld, strB, strA,] and trimethoprim (e.g., dfrA14) were detected. E. coli sequence type ST-38 (2) and ST-5173 (2) were detected in isolates both from the environment and fish. IncY plasmids carrying bla(CTX-M-15), qnrS1, strA, and strB were detected in five environmental E. coli isolates and in one E. coli isolate from fish. Our data indicate spillage of resistant environmental isolates into Lake Victoria through the sewage system. Persistence of bla(CTX-M-15) in the Mwanza city environment is complex, and involves both clonal spread of resistant strains as well as dissemination by commonly occurring IncY plasmids circulating in isolates present in humans, the environment as well as in the food chain. | 2016 | 27990135 |
| 1157 | 15 | 0.9996 | Isolation and Molecular Characterization of Antimicrobial Resistant Escherichia coli from Healthy Broilers in Retail Chicken Outlets of Hotspot Cities in Southern India. E. coli is one of the first commensal bacteria to colonize the chicken gut. It may act as a source for the spread of antibiotic resistance to human via the food chain and contamination of the environment. Isolation and characterization of such E. coli from commercial broilers in retail outlets of Southern India were carried out. Eighty-three E. coli isolates (76.9%) were obtained from cloacal/meat swabs (108 samples). Phenotypically, 78.3% of isolates were ESBL producers, 69.9% were fluoroquinolone-resistant, and 6% were carbapenemase producers. Genotypically, the blaSHV, blaTEM, and blaCTX-M were present in 48.2%, 43.4%, and 10.8% of the isolates, respectively. These isolates also carried fluoroquinolone-resistant genes viz qnrB (31.3%) and qnrS (34.9%) but not carbapenemase genes. Overall, ESBL were identified in 72.3% of isolates and fluoroquinolone-resistance genes in 51.8%. Strikingly, 53% of the isolates were multidrug-resistant, with both ESBL and fluoroquinolone-resistant genes. The study revealed the presence of MDR E. coli strains in broiler meat at retail outlets indicating the potential public health risks. | 2025 | 40778947 |
| 1195 | 16 | 0.9996 | Multi-drug resistant (MDR) Gram-negative pathogenic bacteria isolated from poultry in the Noakhali region of Bangladesh. Rapidly increasing antibiotic-resistant bacterial strains in Bangladesh's food and farm animals stem from the excessive and inappropriate use of antibiotics. To assess the prevalence of multi-drug resistant (MDR) Gram-negative bacteria in poultry chicks, we sought to isolate and identify strains carrying antimicrobial resistance genes. Isolation and identification involved biochemical tests, 16S rRNA sequencing, and PCR screening of species-specific genes. MDR patterns were evaluated using CLSI guidelines with seventeen antibiotics across twelve classes. Targeted gene sequences were amplified for the detection of Extended-spectrum β-Lactamase (ESBL), carbapenem, tetracycline, sulfonamide, and colistin resistance genes. Common isolates, such as Escherichia coli, Klebsiella pneumoniae, Proteus penneri, and Enterobacter hormaechei, exhibited average Multiple Antimicrobial Resistance (MAR) indices of 0.66, 0.76, 0.8, 0.84, and 0.81, 0.76, 0.84, 0.41 for broiler and layer chicken, respectively. Providencia stuartii and Salmonella enterica, exclusive to broiler samples, had MAR indices of 0.82 and 0.84, respectively. Additional isolates Morganella morganii, Aeromonas spp., and Wohlfahrtiimonas chitiniclastica were found in layers (Average MAR indices: 0.73, 0.71, and 0.91). Notably, M. morganii, E. hormaechei and W. chitiniclastica were identified for the first time in Bangladeshi poultry chicken, although their evolution is yet to be understood. In this study, Pan-drug resistance was observed in one P. stuartii (broiler) and one Aeromonas spp. (layer) with a MAR index 1, while all isolates exhibited MAR indices >0.2, indicating MDR. Antimicrobial resistance (AMR) gene screening identified blaTEM, blaSHV, tetA, and sul1 in a majority of the MDR strains. Interestingly, E. coli (lactose positive and negative) and E. hormaechei were exclusively found to possess the tetB gene. In addition, E. coli (lactose negative), Klebsiella pneumoniae, Enterobacter hormaechei, M. morganii, and P. stuartii were observed to carry the colistin-resistant mcr-1 gene, whereas sul2 was detected in E. coli (lactose positive and negative), E. hormaechei, P. stuartii, and P. penneri. These findings emphasize the health risk of our consumers of both broiler and layer chickens as they have turned into a potent reservoir of various AMR gene carrying MDR and Pan-drug resistant bacteria. | 2024 | 39088478 |
| 1009 | 17 | 0.9996 | The resistance patterns and molecular characteristics of ESBL/AmpC-producing Escherichia coli from captive panda ecosystem in China. Escherichia coli (E. coli) plays an important ecological role, and is a useful bioindicator to recognize the evolution of resistance in human, animal and environment. Recently, extended-spectrum β-lactamases (ESBL) producing E.coli has posed a threat to public health. Generally, captive healthy giant pandas are not exposed to antibiotics; however, they still acquire antimicrobial resistant bacteria. In order to understand whether there is an exchange of resistance genes within the ecosystems of captive giant pandas, this study explored resistance characteristics of 330 commensal E. coli isolates from feces of giant pandas, the surroundings, and breeders. Isolates from different sources showed similar resistance phenotype, and ESBL/AmpC-producing isolates showed more profound resistance to antibiotics than non-ESBL/AmpC-producing isolates (P<0.05). Furthermore, the occurrence of broad-spectrum β-lactamase related resistance genes and colistin resistance genes was detected, and isolates phylogenetic typing and multilocus sequence typing (MLST) were applied in this study. Seven different β-lactamase resistance genes (bla(CTX-M-55), bla(CTX-M-15), bla(CTX-M-27), bla(CTX-M-65), bla(TEM-1), bla(OXA-1) and bla(CMY)) and mcr-1 were found in 68 ESBL/AmpC-producing isolates. bla(CTX-M-55) (48.53 %) was found the most predominant resistance genes, followed by bla(TEM-1) (19.12 %) and bla(CTX-M-27) (16.18 %). Nonetheless, bla(CTX-M-55) was commonly detected in the isolates from giant pandas (63.16 %), the surroundings (43.48 %), and breeders (33.33 %). However, there were no carbapenemase genes detected in this study. mcr-1 was harbored in only one isolate from giant panda. Forty-five tansconjugants were successfully obtained in the conjugation experiments. The presence of antimicrobial resistance and related resistance genes tested were observed in the transconjugants. The results indicated that 52.63 % of the isolates from giant panda 73.91 % of the isolates from surroundings, and 100 % of the isolates from breeders were phylogroup A. Total of 27 sequence types (ST) were recognized from the isolate by MLST and found that ST48 (19/68; 27.94 %) was the predominant ST type, especially in the isolates from giant pandas and the surroundings. In conclusion, commensal ESBL/AmpC-producing E. coli becomes a reservoir of ESBL resistance genes, which is a potential threaten to health of giant pandas. The interaction between giant pandas, surroundings and breeders contribute to development of resistant phenotypes and genotypes which might transfer across species or the surroundings easily; hence, strict monitoring based on a "One Health" approach is recommended. | 2024 | 38728939 |
| 1020 | 18 | 0.9996 | Prevalence and characteristics of Escherichia coli strains producing extended-spectrum β -lactamases in slaughtered animals in the Czech Republic. Resistance of bacteria to antibiotics is a global medical problem requiring close cooperation between veterinary and human physicians. Raw materials and foods of animal origin may be not only a source of pathogenic bacteria causing alimentary tract infections but also a source of bacteria with a dangerous extent of resistance to antibiotics, potentially entering the human food chain. This article presents results of the first study in the Czech Republic detecting the presence of Enterobacteriaceae-producing extended-spectrum b -lactamases (ESBLs) in swabs collected in slaughterhouses from surfaces of healthy animal carcasses. In 2012, swabs taken from pig (n = 166) and cattle (n = 140) carcass surfaces were analyzed. In 17 % of 53 studied slaughterhouses, ESBL-producing Escherichia coli strains were isolated. ESBLs were found in 11 and 4 % of porcine and bovine samples, respectively. Swabs collected from pigs yielded 18 ESBL-producing E. coli strains. The bla genes were found to encode production of CTX-M-1 group enzymes in 16 strains, SHV in one case, and both CTX-M-1-like and TEM in another case. In swabs taken from cattle, five ESBL-producing E. coli strains were isolated. In three cases, the bla genes for CTX-M-1-like production were identified; in two cases, genes for both CTX-M-1-like and TEM production were found. The similarity/identity of ESBL-positive isolates was compared by pulsed-field gel electrophoresis. This is the first report and characterization of the presence and nature of ESBL-producing E. coli in swabs collected from surfaces of healthy pig and cattle carcasses in slaughterhouses in the Czech Republic. | 2013 | 24112579 |
| 957 | 19 | 0.9996 | Occurrence, Typing, and Resistance Genes of ESBL/AmpC-Producing Enterobacterales in Fresh Vegetables Purchased in Central Israel. Beta-lactam resistance can lead to increased mortality, higher healthcare expenses, and limited therapeutic options. The primary mechanism of beta-lactam resistance is the production of extended-spectrum beta-lactamases (ESBL) and AmpC beta-lactamases. The spread of beta-lactamase-producing Enterobacterales via the food chain may create a resistance reservoir. The aims of this study were to determine the prevalence of ESBL/AmpC-producing Enterobacterales in vegetables, to examine the association between EBSL/AmpC-producing bacteria and types of vegetables, packaging, and markets, and to investigate the genetic features of ESBL-producing isolates. The antibiotic susceptibilities were determined using VITEK. Phenotypic ESBL/AmpC production was confirmed using disk diffusion. ESBL-producing isolates were subjected to Fourier-transform infrared (FT-IR) spectroscopy and to whole genome sequencing using Oxford Nanopore sequencing technology. Of the 301 vegetable samples, 20 (6.6%) were positive for ESBL producers (16 Klebsiella pneumoniae and 4 Escherichia coli), and 63 (20.9%) were positive for AmpC producers (56 Enterobacter cloacae complex, 4 Enterobacter aerogenes/cancerogenus, and 3 Pantoea spp., Aeromonas hydrophila, and Citrobacter braakii). The blaCTX-M and blaSHV genes were most common among ESBL-producing isolates. The beta-lactamase genes of the ESBL producers were mainly carried on plasmids. Multilocus sequence typing and FT-IR typing revealed high diversity among the ESBL producers. AmpC producers were significantly more common in leafy greens and ESBL producers were significantly less common in climbing vegetables. The presence of ESBL/AmpC-producing Enterobacterales in raw vegetables may contribute to the dissemination of resistance genes in the community. | 2023 | 37887229 |