# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 105 | 0 | 1.0000 | Resistance of the cholera vaccine candidate IEM108 against CTXPhi infection. The cholera toxin (CT) genes ctxAB are carried on a lysogenic phage of Vibrio cholerae, CTXPhi, which can transfer ctxAB between toxigenic and nontoxigenic strains of bacteria. This transfer may pose a problem when live oral cholera vaccine is given to people in epidemic areas, because the toxin genes can be reacquired by the vaccine strains. To address this problem, we have constructed a live vaccine candidate, IEM108, which carries an El Tor-derived rstR gene. This gene encodes a repressor and can render bacterial resistance to CTXPhi infection. In this study, we evaluated the resistance of IEM108 against CTXPhi infection by using a CTXPhi marked for chloramphenicol (CAF) resistance and an in vivo model. We found that the cloned rstR gene rendered IEM108 immune to infection with the marked CTXPhi. In addition, the infection rate of IEM108 was even lower than that of the native CTXPhi-positive strain. These results suggest that the vaccine candidate IEM108 is resistant to infection by CTXPhi. | 2006 | 16343705 |
| 6193 | 1 | 0.9975 | Giardia, Entamoeba, and Trichomonas enzymes activate metronidazole (nitroreductases) and inactivate metronidazole (nitroimidazole reductases). Infections with Giardia lamblia, Entamoeba histolytica, and Trichomonas vaginalis, which cause diarrhea, dysentery, and vaginitis, respectively, are each treated with metronidazole. Here we show that Giardia, Entamoeba, and Trichomonas have oxygen-insensitive nitroreductase (ntr) genes which are homologous to those genes that have nonsense mutations in metronidazole-resistant Helicobacter pylori isolates. Entamoeba and Trichomonas also have nim genes which are homologous to those genes expressed in metronidazole-resistant Bacteroides fragilis isolates. Recombinant Giardia, Entamoeba, and Trichomonas nitroreductases used NADH rather than the NADPH used by Helicobacter, and two recombinant Entamoeba nitroreductases increased the metronidazole sensitivity of transformed Escherichia coli strains. Conversely, the recombinant nitroimidazole reductases (NIMs) of Entamoeba and Trichmonas conferred very strong metronidazole resistance to transformed bacteria. The Ehntr1 gene of the genome project HM-1:IMSS strain of Entamoeba histolytica had a nonsense mutation, and the same nonsense mutation was present in 3 of 22 clinical isolates of Entamoeba. While ntr and nim mRNAs were variably expressed by cultured Entamoeba and Trichomonas isolates, there was no relationship to metronidazole sensitivity. We conclude that microaerophilic protists have bacterium-like enzymes capable of activating metronidazole (nitroreductases) and inactivating metronidazole (NIMs). While Entamoeba and Trichomonas displayed some of the changes (nonsense mutations and gene overexpression) associated with metronidazole resistance in bacteria, these changes did not confer metronidazole resistance to the microaerophilic protists examined here. | 2009 | 19015349 |
| 287 | 2 | 0.9974 | Reversion of mutations in the thymidine kinase gene in herpes simplex viruses resistant to phosphonoacetate. Mutations in the DNA polymerase locus of phage, bacteria, and eukaryotic may change the mutation rates at other loci of the genome. We used resistance to phosphonoacetate to select mutants of herpes simplex virus with mutated DNA polymerase and then determined the reversion frequency of viral thymidine kinase mutation in mutants and recombinants. The results obtained indicate that mutations causing resistance to phosphonoacetate do not affect the mutation rate of the viral genes. This finding is consistent with the existence of two functional regions in the DNA polymerase molecule, one involving the pyrophosphate acceptor site and responsible for resistance to phosphonoacetate and another involved in the editing ability and recognition specificity of the enzyme. | 1984 | 6331620 |
| 9316 | 3 | 0.9974 | Molecular basis of metronidazole resistance in pathogenic bacteria and protozoa. The molecular basis of metronidazole resistance has been examined in anaerobic bacteria, such as Bacteroides, Clostridium, and Helicobacter, and anaerobic parasitic protists such as Giardia, Entamoeba, and trichomonads. A variety of enzymatic and cellular alterations have been shown to correlate with metronidazole susceptibility in these pathogens; however, a common theme has been revealed. Resistant cells are typically deficient in drug activation. The frequent correlation between metronidazole resistance and ineffective drug activation suggests that drug resistance is the result of modification of proteins involved in drug activation. Copyright 1999 Harcourt Publishers Ltd. | 1999 | 11504503 |
| 284 | 4 | 0.9973 | Expression of a transposable antibiotic resistance element in Saccharomyces. Some eukaryotic genes can be expressed in bacteria but there are few examples of the expression of prokaryotic genes in eukaryotes. Antibiotic G418 is a 2-deoxystreptamine antibiotic that is structurally related to gentamicin but has inhibitory activity against a much wider variety of pro- and eukaryotic organisms. In bacteria, resistance to G418 can be determined by several plasmid-encoded modifiying enzymes and, in view of the broad spectrum of activity of G418, we considered that this antibiotic might be useful as a selective agent for the introduction of these antibiotic resistance genes into a eukaryotic organism such as Saccharomyces cerevisiae. Additional impetus for these experiments came from the knowledge that certain of the G418-resistance determinants in bacteria are carried on transposable elements; a study of the properties of these elements in eukaryotes would be intriguing. | 1980 | 6253817 |
| 285 | 5 | 0.9973 | Streptothricin resistance as a novel selectable marker for transgenic plant cells.  Streptothricins are known as antimicrobial agents produced by Streptomyces spp. Bacterial resistance to streptothricin is mediated by specific enzymes exhibiting an acetyltransferase activity which renders the drug non-toxic for bacteria. The nucleotide sequence of several streptothricin resistance genes from bacteria have been described. Certain cells of eukaryotic parasites (such as Ustilago maydis or Leishmania spp.) are sensitive to streptothricin and the introduction of the bacterial resistance gene sat2 renders them resistant. We show that numerous species of plants are sensitive to low concentrations of streptothricin. Moreover, introduction of the bacterial resistance gene sat3 under the control of the 35S cauliflower mosaic virus promoter protects these cells from the toxic action of streptothricin. Therefore, sat3-mediated streptothricin resistance appears to be a promising selective marker for genetic manipulation of plant cells. | 2000 | 30754912 |
| 279 | 6 | 0.9973 | In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Interkingdom gene transfer is limited by a combination of physical, biological, and genetic barriers. The results of greenhouse experiments involving transplastomic plants (genetically engineered chloroplast genomes) cocolonized by pathogenic and opportunistic soil bacteria demonstrated that these barriers could be eliminated. The Acinetobacter sp. strain BD413, which is outfitted with homologous sequences to chloroplastic genes, coinfected a transplastomic tobacco plant with Ralstonia solanacearum and was transformed by the plant's transgene (aadA) containing resistance to spectinomycin and streptomycin. However, no transformants were observed when the homologous sequences were omitted from the Acinetobacter sp. strain. Detectable gene transfer from these transgenic plants to bacteria were dependent on gene copy number, bacterial competence, and the presence of homologous sequences. Our data suggest that by selecting plant transgene sequences that are nonhomologous to bacterial sequences, plant biotechnologists could restore the genetic barrier to transgene transfer to bacteria. | 2002 | 12089013 |
| 6219 | 7 | 0.9972 | Isolation and characterization of bacteriophage-resistant mutants of Vibrio cholerae O139. Vibrio cholerae O139 strains produce a capsule which is associated with complement resistance and is used as a receptor by bacteriophage JA1. Spontaneous JA1-resistant mutants were found to have several phenotypes, with loss of capsule and/or O-antigen from the cell surface. Determination of the residual complement resistance and infant mouse colonization potential of each mutant suggested that production of O-antigen is of much greater significance than the presence of capsular material for both of these properties. Two different in vitro assays of complement resistance were compared and the results of one shown to closely reflect the comparative recoveries of bacteria from the colonization experiments. Preliminary complementation studies implicated two rfb region genes, wzz and wbfP, as being essential for the biosynthesis of capsule but not O-antigen. | 2001 | 11312617 |
| 9417 | 8 | 0.9972 | General aspects of virus drug resistance with special reference to herpes simplex virus. The features of virus drug resistance are reviewed with examples from studies of herpes simplex virus drug-resistant mutants. Virus drug resistance, compared with drug resistance of bacteria or eukaryotes, is distinguished by its ability to provide information on drug selectivity. Identification of genes in which mutations arise to confer drug resistance defines gene products which contribute to antiviral selectivity. The gene products can then be dissected functionally with the aid of these mutations. Laboratory studies of the frequency of mutation to drug resistance and the features of drug-resistant mutants may have predictive value for the clinic. | 1986 | 3025148 |
| 8939 | 9 | 0.9971 | YmdB-mediated down-regulation of sucA inhibits biofilm formation and induces apramycin susceptibility in Escherichia coli. Antibiotic resistance associated with biofilm formation is a major concern when treating bacterial infections with drugs. The genes and pathways involved in biofilm formation have been extensively studied and are also involved in antibiotic resistance. Recent studies show that overexpression of Escherichia coli (E. coli) YmdB protein alters gene expression profiles and inhibits biofilm formation. Therefore, it is expected that YmdB and its regulated genes play a key role in development of biofilm and antibiotic resistance phenotypes. The present study screened antibiotics to identify those whose susceptibility profiles were regulated by YmdB levels. This protocol identified apramycin. Additional screening for genes negatively regulated by inactivation of RNase III activity via YmdB overexpression revealed that a gene associated with the tricarboxylic acid cycle gene, sucA, was necessary for the YmdB-like phenotype. Taken together, these data suggest that regulation of RNase III activity by trans-acting factors may be the key to identifying genes or pathways connecting biofilm and antibiotic resistance phenotypes. This information could be used to reduce the emergence of biofilm-associated multidrug-resistant bacteria. | 2017 | 28034758 |
| 9365 | 10 | 0.9971 | Hypermutability and compensatory adaptation in antibiotic-resistant bacteria. Hypermutable (mutator) bacteria have been associated with the emergence of antibiotic resistance. A simple yet untested prediction is that mutator bacteria are able to compensate more quickly for pleiotropic fitness costs often associated with resistance, resulting in the maintenance of resistance in the absence of antibiotic selection. By using experimental populations of a wild-type and a mutator genotype of the pathogenic bacterium Pseudomonas aeruginosa, we show that mutator bacteria can evolve resistance to antibiotics more rapidly than wild-type bacteria and, crucially, that mutators are better able to compensate for the fitness cost of resistance, to the extent that all costs of resistance were entirely compensated for in mutators. When competed against immigrant antibiotic-susceptible bacteria in the absence of antibiotics, antibiotic resistance remained at a high level in mutator populations but disappeared in wild-type populations. These results suggest that selection for mutations that offset the fitness cost associated with antibiotic resistance may help to explain the high frequency of mutator bacteria and antibiotic resistance observed in chronic infections. | 2010 | 20624092 |
| 386 | 11 | 0.9971 | A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. The neo (neomycin-resistance) gene of transposon Tn5 encodes the enzyme neomycin phosphotransferase II (EC 2.7.1.95), which confers resistance to various aminoglycoside antibiotics, including kanamycin and G418. The gene is widely used as a selectable marker in the transformation of organisms as diverse as bacteria, yeast, plants, and animals. We found a mutation that involves a glutamic to aspartic acid conversion at residue 182 in the protein encoded by the chimeric neomycin phosphotransferase II genes of several commonly used transformation vectors. The mutation substantially reduces phosphotransferase activity but does not appear to affect the stability of the neomycin phosphotransferase II mRNA or protein. Plants and bacteria transformed with the mutant gene are less resistant to antibiotics than those transformed with the normal gene. A simple restriction endonuclease digestion distinguishes between the mutant and the normal gene. | 1990 | 2159150 |
| 4437 | 12 | 0.9971 | The activity of glycopeptide antibiotics against resistant bacteria correlates with their ability to induce the resistance system. Glycopeptide antibiotics containing a hydrophobic substituent display the best activity against vancomycin-resistant enterococci, and they have been assumed to be poor inducers of the resistance system. Using a panel of 26 glycopeptide derivatives and the model resistance system in Streptomyces coelicolor, we confirmed this hypothesis at the level of transcription. Identification of the structural glycopeptide features associated with inducing the expression of resistance genes has important implications in the search for more effective antibiotic structures. | 2014 | 25092694 |
| 296 | 13 | 0.9971 | An indigenous posttranscriptional modification in the ribosomal peptidyl transferase center confers resistance to an array of protein synthesis inhibitors. A number of nucleotide residues in ribosomal RNA (rRNA) undergo specific posttranscriptional modifications. The roles of most modifications are unclear, but their clustering in functionally important regions of rRNA suggests that they might either directly affect the activity of the ribosome or modulate its interactions with ligands. Of the 25 modified nucleotides in Escherichia coli 23S rRNA, 14 are located in the peptidyl transferase center, the main antibiotic target in the large ribosomal subunit. Since nucleotide modifications have been closely associated with both antibiotic sensitivity and antibiotic resistance, loss of some of these posttranscriptional modifications may affect the susceptibility of bacteria to antibiotics. We investigated the antibiotic sensitivity of E. coli cells in which the genes of 8 rRNA-modifying enzymes targeting the peptidyl transferase center were individually inactivated. The lack of pseudouridine at position 2504 of 23S rRNA was found to significantly increase the susceptibility of bacteria to peptidyl transferase inhibitors. Therefore, this indigenous posttranscriptional modification may have evolved as an intrinsic resistance mechanism protecting bacteria against natural antibiotics. | 2008 | 18554609 |
| 9412 | 14 | 0.9971 | Persistence: a copacetic and parsimonious hypothesis for the existence of non-inherited resistance to antibiotics. We postulate that phenotypic resistance to antibiotics, persistence, is not an evolved (selected-for) character but rather like mutation, an inadvertent product of different kinds of errors and glitches. The rate of generation of these errors is augmented by exposure to these drugs. The genes that have been identified as contributing to the production of persisters are analogous to the so-called mutator genes; they modulate the rate at which these errors occur and/or are corrected. In theory, these phenotypically resistant bacteria can retard the rate of microbiological cure by antibiotic treatment. | 2014 | 25090240 |
| 318 | 15 | 0.9971 | Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants. Selectable markers of bacterial origin such as the neomycin phosphotransferase type II gene, which can confer kanamycin resistance to transgenic plants, represent an invaluable tool for plant engineering. However, since all currently used antibiotic-resistance genes are of bacterial origin, there have been concerns about horizontal gene transfer from transgenic plants back to bacteria, which may result in antibiotic resistance. Here we characterize a plant gene, Atwbc19, the gene that encodes an Arabidopsis thaliana ATP binding cassette (ABC) transporter and confers antibiotic resistance to transgenic plants. The mechanism of resistance is novel, and the levels of resistance achieved are comparable to those attained through expression of bacterial antibiotic-resistance genes in transgenic tobacco using the CaMV 35S promoter. Because ABC transporters are endogenous to plants, the use of Atwbc19 as a selectable marker in transgenic plants may provide a practical alternative to current bacterial marker genes in terms of the risk for horizontal transfer of resistance genes. | 2005 | 16116418 |
| 447 | 16 | 0.9970 | The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. The Mi locus of tomato confers resistance to root knot nematodes. Tomato DNA spanning the locus was isolated as bacterial artificial chromosome clones, and 52 kb of contiguous DNA was sequenced. Three open reading frames were identified with similarity to cloned plant disease resistance genes. Two of them, Mi-1.1 and Mi-1.2, appear to be intact genes; the third is a pseudogene. A 4-kb mRNA hybridizing with these genes is present in tomato roots. Complementation studies using cloned copies of Mi-1.1 and Mi-1.2 indicated that Mi-1.2, but not Mi-1.1, is sufficient to confer resistance to a susceptible tomato line with the progeny of transformants segregating for resistance. The cloned gene most similar to Mi-1.2 is Prf, a tomato gene required for resistance to Pseudomonas syringae. Prf and Mi-1.2 share several structural motifs, including a nucleotide binding site and a leucine-rich repeat region, that are characteristic of a family of plant proteins, including several that are required for resistance against viruses, bacteria, fungi, and now, nematodes. | 1998 | 9707531 |
| 9418 | 17 | 0.9970 | Vibrio cholerae infection, novel drug targets and phage therapy. Vibrio cholerae is the causative agent of the diarrheal disease cholera. Although antibiotic therapy shortens the duration of diarrhea, excessive use has contributed to the emergence of antibiotic resistance in V. cholerae. Mobile genetic elements have been shown to be largely responsible for the shift of drug resistance genes in bacteria, including some V. cholerae strains. Quorum sensing communication systems are used for interaction among bacteria and for sensing environmental signals. Sequence analysis of the ctxB gene of toxigenic V. cholerae strains demonstrated its presence in multiple cholera toxin genotypes. Moreover, bacteriophage that lyse the bacterium have been reported to modulate epidemics by decreasing the required infectious dose of the bacterium. In this article, we will briefly discuss the disease, its clinical manifestation, antimicrobial resistance and the novel approaches to locate drug targets to treat cholera. | 2011 | 22004038 |
| 6322 | 18 | 0.9970 | A soxRS-constitutive mutation contributing to antibiotic resistance in a clinical isolate of Salmonella enterica (Serovar typhimurium). The soxRS regulon is activated by redox-cycling drugs such as paraquat and by nitric oxide. The >15 genes of this system provide resistance to both oxidants and multiple antibiotics. An association between clinical quinolone resistance and elevated expression of the soxRS regulon has been observed in Escherichia coli, but this association has not been explored for other enteropathogenic bacteria. Here we describe a soxRS-constitutive mutation in a clinical strain of Salmonella enterica (serovar Typhimurium) that arose with the development of resistance to quinolones during treatment. The elevated quinolone resistance in this strain derived from a point mutation in the soxR gene and could be suppressed in trans by multicopy wild-type soxRS. Multiple-antibiotic resistance was also transferred to a laboratory strain of S. enterica by introducing the cloned mutant soxR gene from the clinical strain. The results show that constitutive expression of soxRS can contribute to antibiotic resistance in clinically relevant S. enterica. | 2001 | 11120941 |
| 6222 | 19 | 0.9970 | A Sco homologue plays a role in defence against oxidative stress in pathogenic Neisseria. Sco proteins are found in mitochondria and in a variety of oxidase positive bacteria. Although Sco is required for the formation of the Cu(A) centre in a cytochrome oxidase of the aa(3) type, it was observed that oxidases with a Cu(A) centre are not present in many bacteria that contain a Sco homologue. Two bacteria of this type are the pathogens Neisseria meningitidis and Neisseria gonorrhoeae. The sco genes of N. gonorrhoeae strain 1291 and N. meningitidis strain MC58 were cloned, inactivated by inserting a kanamycin resistance cassette and used to make knockout mutants by allelic exchange. Both N. gonorrhoeae and N. meningitidis sco mutants were highly sensitive to oxidative killing by paraquat, indicating that Sco is involved in protection against oxidative stress in these bacteria. | 2003 | 12832079 |