Antibiotic resistance and β-lactam resistant genes among bacterial isolates from clinical, river water and poultry samples from Kathmandu, Nepal. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
105001.0000Antibiotic resistance and β-lactam resistant genes among bacterial isolates from clinical, river water and poultry samples from Kathmandu, Nepal. OBJECTIVE: To assess the antibiotic resistance and beta-lactam resistance genes among bacterial isolates from clinical, river water and poultry samples. METHODS: Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were isolated from clinical, poultry and river water samples collected during 2020-22. They were subjected to antimicrobial susceptibility tests following the CLSI guidelines. The bacteria were screened for β-lactam resistance genes bla (TEM), mcr-1, mecA and bla(NDM-1) . RESULTS: Among 2835 clinical samples, E. coli was the most frequently isolated bacterium (10.3%, 292), followed by S. aureus (6.0%, 169) and P. aeruginosa (4.0%, 143). Of the E. coli isolates, 64.4% exhibited multidrug resistance (MDR) and 43.8% were extended-spectrum β-lactamase (ESBL) producers, with 44.5% and 16.4% harbouring the blaTEM and mcr-1 genes, respectively. Among S. aureus isolates, 80.9% of methicillin-resistant strains (MRSA) carried the mecA gene, while 30.1% of metallo-β-lactamase (MBL)-producing P. aeruginosa were positive for the blaNDM-1 gene. In poultry samples, 30.4% of E. coli isolates harboured the blaTEM gene among 128 ESBL producers, and the prevalence of colistin-resistant isolates carrying mcr-1 was higher than in clinical samples. In contrast, the occurrence of ESBL-producing E. coli and MRSA, along with their associated resistance genes, was lower in water samples. CONCLUSIONS: This study demonstrated widespread multidrug resistance (MDR) and ESBL production among clinical, poultry and river water bacterial isolates in the Kathmandu valley. Colistin-resistant E. coli carrying the mcr-1 gene, methicillin-resistant S. aureus (MRSA) with mecA and metallo-β-lactamase (MBL)-producing P. aeruginosa harboring blaNDM-1 were detected across sources. These findings emphasize an urgent One Health approach to curb the growing threat of antimicrobial resistance in the region.202541113068
104810.9999Characterizing the co-existence of metallo-β-lactamase-producing and extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in community wastewater samples of Dhaka, Bangladesh. Escherichia coli and Klebsiella pneumoniae isolates with multiple antibiotic-resistance genes in wastewater pose serious public health risks, as they can potentially contaminate the food and water supply. The main aim of this study was to isolate and identify E. coli and K. pneumoniae from community wastewater samples, and determine their antibiotic-resistance profiles and their antibiotic-resistant genes. From the northern part of Dhaka, Bangladesh, 36 wastewater samples were collected across 11 different areas, which were then serially diluted, and cultured using selective media. Isolates were identified via polymerase chain reaction. Out of the 197 isolates identified, E. coli and K. pneumoniae accounted for 55.8% (n = 110) and 44.2% (n = 87), respectively. Antibiotic susceptibility tests revealed multidrug resistance (MDR) in 30% of E. coli and 35.56% of K. pneumoniae isolates. Among E. coli, the prevalence of antibiotic-resistance genes included bla(NDM-1) (8.9%), bla(SHV) (13.9%), and bla(CTX-M) (7.6%). In K. pneumoniae, the percentages were bla(NDM-1) (12.8%), bla(SHV) (4.3%), and bla(CTX-M) (5.0%). Co-existence of multiple antibiotic-resistance genes was observed in 4.54% of E. coli isolates (n = 5) and 5.74% of K. pneumoniae isolates (n = 5). This suggests the escalating issue of infectious species becoming increasingly resistant to antibiotics in wastewater systems.202540298266
105120.9999Multi-drug Resistance, β-Lactamases Production, and Coexistence of bla (NDM-1) and mcr-1 in Escherichia coli Clinical Isolates From a Referral Hospital in Kathmandu, Nepal. The ability of pathogenic Escherichia coli to produce carbapenemase enzymes is a characteristic that allows them to resist various antibiotics, including last-resort antibiotics like colistin and carbapenem. Our objectives were to identify rapidly developing antibiotic resistance (AR), assess β-lactamases production, and detect mcr-1 and bla (NDM-1) genes in the isolates. A prospective cross-sectional study was carried out in a referral hospital located in Kathmandu from November 2019 to December 2020 using standard laboratory and molecular protocols. Among 77 total E. coli isolates, 64 (83.1%) of them were categorized as MDR. Phenotypically 13 (20.3%) colistin-resistant, 30 (46.9%) ESBL and 8 (12.5%) AmpC producers, and 5 (7.8%) ESBL/AmpC co-producers were distributed among MDR-E. coli. Minimum inhibitory concentrations (MIC) against the majority of MDR isolates were exhibited at 1 g/L. Of these 77 E. coli isolates, 24 (31.2%) were carbapenem-resistant. Among these carbapenem-resistant bacteria, 11 (45.9%) isolates were reported to be colistin-resistant, while 15 (62.5%) and 2 (8.3%) were MBL and KPC producers, respectively. Out of 15 MBL producers, 6 (40%) harbored bla (NDM-1), and 8 (61.5%) out of 13 colistin-resistant pathogens possessed mcr-1. The resistance by colistin- and carbapenem were statistically associated (P < .001). However, only 2 (18.2%) of the co-resistant bacteria were found to have both genes. Our study revealed the highly prevalent MDR and the carbapenem-resistant E. coli and emphasized that the pathogens possess a wide range of capabilities to synthesize β-lactamases. These findings could assist to expand the understanding of AR in terms of enzyme production.202336741474
104930.9999Multiple Antibiotic-Resistant, Extended Spectrum-β-Lactamase (ESBL)-Producing Enterobacteria in Fresh Seafood. Members of the family Enterobacteriaceae include several human pathogens that can be acquired through contaminated food and water. In this study, the incidence of extended spectrum β-lactamase (ESBL)-producing enterobacteria was investigated in fresh seafood sold in retail markets. The ESBL-positive phenotype was detected in 169 (78.60%) isolates, with Escherichia coli being the predominant species (53), followed by Klebsiella oxytoca (27), and K. pneumoniae (23). More than 90% of the isolates were resistant to third generation cephalosporins, cefotaxime, ceftazidime, and cefpodoxime. Sixty-five percent of the isolates were resistant to the monobactam drug aztreonam, 40.82% to ertapenem, and 31.36% to meropenem. Resistance to at least five antibiotics was observed in 38.46% of the isolates. Polymerase Chain Reaction (PCR) analysis of ESBL-encoding genes detected bla(CTX), bla(SHV), and bla(TEM) genes in 76.92%, 63.3%, and 44.37% of the isolates, respectively. Multiple ESBL genes were detected in majority of the isolates. The recently discovered New Delhi metallo-β-lactamase gene (bla(NDM-1)) was detected in two ESBL⁺ isolates. Our study shows that secondary contamination of fresh seafood with enteric bacteria resistant to multiple antibiotics may implicate seafood as a potential carrier of antibiotic resistant bacteria and emphasizes an urgent need to prevent environmental contamination and dissemination of such bacteria.201728867789
104740.9999Biofilm formation and antibiotic resistance profiles of water-borne pathogens. Water sources (surface water, drinking water, rivers, and ponds) are significant reservoirs for transmitting antibiotic-resistant bacteria. In addition, these waters are an important public health problem because they are suitable environments for transferring antibiotic resistance genes between bacterial species. Our study aimed to assess the prevalence of Extended-spectrum beta-lactamase (ESBL) producing isolates in water samples, the susceptibility of the isolates to the specified antibiotics, the determination of biofilm ability, antibiotic resistance genes, and the molecular typing of the isolates. For this purpose, Polymerase chain reaction (PCR) and Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analyses were used. Out of 70 isolates, 15 (21%) were ESBL producing, and sent for the MALDI-TOF analysis, where Escherichia coli, Acinetobacter calcoaceticus, Enterobacter bugandensis, Acinetobacter pittii, Pseudomonas aeruginosa, Acinetobacter junii, Pseudomonas oleovorans, and Enterobacter ludwigigii were identified. Moreover, colistin resistance genes (mcr 1/2/6, mcr 4, mcr 5, mcr 3/7, and mcr 8), ESBL-encoding genes (bla(SHV), bla(TEM), and bla(CTX-M)) and carbapenemase genes (bla(NDM), bla(OXA-48), and bla(KPC)) using molecular analysis (PCR) were confirmed. The colistin resistance gene was detected at 80% (12/15) in the isolates obtained. The distribution of these isolates according to resistance genes was found as mcr 1/2/6 4 (20%), mcr 3/7 3 (13%), and mcr 5 (40%). Additionally, the isolates harbored bla(SHV)(6.6%) and bla(TEM) (6.6%) genes. However, bla(NDM), bla(OXA-48), bla(KPC), and bla(CTX-M) genes were not detected in any isolates. According to the Congo red agar method, seven (46.6%) isolates showed negative biofilm ability, and eight (53.3%) showed moderate biofilm ability. However, the microplate method detected weak biofilm in 53.3% of the isolates. In conclusion, this study provides evidence for the existence of multidrug-resistant bacteria that co-exist with mcr and ESBL genes in water sources. These bacteria can migrate to other environments and pose increasing threats to public health.202337004897
112250.9999Antibiotic resistance profiles of gram-negative bacteria in southern Tunisia: Focus on ESBL, carbapenem and colistin resistance. The main objective of this cross-sectional study was to investigate the prevalence of beta-lactam (cephalosporins or carbapenems) or colistin resistant bacteria. Those were isolated from urine samples in two private polyclinics located in the Sfax region, in southern Tunisia. From September 2021 to August 2022, 116 strains resistant to β-lactams or colistin were isolated, identified by MALDI-TOF, and their antibiotic susceptibility was assessed by disk diffusion method. Resistance genes were detected by real-time PCR, standard PCR, and sequencing. The results revealed that the 116 strains consisted predominantly of Enterobacteriaceae (92.2 %) and non-fermenting bacteria (7.8 %). Among these strains, 21 (18.1 %) were resistant to carbapenems, three (2.7 %) to colistin, including two strains of Klebsiella pneumoniae (1.7 %) exhibiting resistance to both carbapenems and colistin. In Enterobacteriaceae, bla(CTX-A), bla(SHV), and bla(TEM) were found in 79.5 %, 46.7 %, and 40.2 % of strains, respectively. For these strains, the minimum inhibitory concentrations (MICs) of imipenem and ertapenem ranged from >32 to 6 μg/mL and > 32 to 2 μg/mL, respectively, with bla(OXA-48) and bla(NDM) detected in 21.7 % and 19.6 % of isolates, respectively. Seven A. baumannii isolates resistant to imipenem and meropenem (MICs >32 μg/mL and 8 μg/mL, respectively) carried bla(OXA-23) (n = 5) and bla(OXA-24) (n = 2). In addition, mutations in the mgrB gene conferring colistin resistance were identified in two isolates. Two K. pneumoniae were colistin-resistant and carried the bla(OXA-48) gene. These results highlight the urgency of developing new strategies for the identification and surveillance of pathogenic strains in humans to effectively combat this growing public health threat in Tunisia.202540553790
144760.9999Molecular detection of β-lactamase and integron genes in clinical strains of Klebsiella pneumoniae by multiplex polymerase chain reaction. INTRODUCTION: Infections caused by β-lactamase-producing gram-negative bacteria, such as Klebsiella pneumoniae, are increasing globally with high morbidity and mortality. The aim of the current study was to determine antimicrobial susceptibility patterns and the prevalence of antibiotic resistance genes (β-lactamase and integron genes) using multiplex PCR. METHODS: One-hundred K. pneumoniae isolates were collected from different clinical samples. Antibiotic susceptibility testing was performed with thirteen different antibiotics. Multiplex-PCR was used to detect β-lactamase (bla TEM, bla CTX-M, bla SHV , bla VEB, bla PER, bla GES, bla VIM, bla IMP, bla OXA, and bla KPC) and integron genes (int I, int II, and int III). RESULTS: The highest and lowest rate of resistance was exhibited against amikacin (93%) and imipenem (8%), respectively. The frequency of β-lactamase-positive K. pneumoniae was 37%, and the prevalence of the bla TEM, bla CTX-M, bla SHV , bla VEB, bla PER, bla GES, bla VIM, bla IMP, bla OXA, and bla KPC genes was 38%, 24%, 19%, 12%, 6%, 11%, 33%, 0%, 28%, and 23%, respectively. Of the 100 isolates, eight (8%) were positive for class I integrons; however, class II and III integrons were not detected in any of the strains. CONCLUSIONS: These results indicate co-carriage of a number of β-lactamase genes and antibiotic resistance integrons on the same plasmids harboring multi-drug resistance genes. It seems that these properties help to decrease treatment complications due to resistant bacterial infections by rapid detection, infection-control programs and prevention of transmission of drug resistance.201728700049
218470.9999Antibiotic-Resistant Bacteria, Antimicrobial Resistance Genes, and Antibiotic Residue in Food from Animal Sources: One Health Food Safety Concern. Antibiotic-resistant bacteria causing foodborne serious illnesses can be found in contaminated food. Therefore, this study aimed to identify the pathogens, genes, and antimicrobial residues present in raw milk and meat. We collected 40 raw milk and 40 beef samples using the aseptic method from various parts of the Faisalabad metropolis, Pakistan. The samples were cultured on blood, MacConkey, and UTI chrome agar. The VITEK 2 compact system was used for microbial identification and determination of minimum inhibitory concentrations. Antimicrobial resistance genes for extended-spectrum β-lactamases, methicillin resistance in Staphylococcus aureus, and carbapenem resistance were identified using molecular techniques. ELISA was used to determine the tetracycline residue level in each sample. The beef samples showed polymicrobial contamination with 64 bacterial isolates, with Escherichia coli (29; 45.3%) and Klebsiella pneumoniae (11; 17.1%) predominating. The milk samples showed polymicrobial contamination with 73 bacterial isolates, with E. coli (22; 30%), K. pneumoniae (12; 16.4%), and S. aureus (10; 13.6%) forming the majority. Twenty-eight (43.7%) isolates from beef harbored tet genes, nineteen (29.6%) bla(CTX-M), and fourteen (21.8%) bla(NDM-1), and twenty-six (35.6%) isolates from milk harbored tet genes, nineteen (26%) bla(TEM) and bla(CTX-M), and three (4%) bla(NDM-1). Twenty-two (55%) each of the beef and milk samples exceeded the maximum residue limit for tetracycline. Polymicrobial contamination by bacteria possessing bla(CTX-M), bla(TEM), bla(NDM-1), bla(OXA), mecA, and tet genes was identified in food samples. The high tetracycline residue levels pose a serious health risk to consumers.202336677453
105280.9999Extended-spectrum beta-lactamase-producing Pseudomonas aeruginosa in camel in Egypt: potential human hazard. BACKGROUND: The rapid increase of extended-spectrum beta-lactamase (ESBL) producing bacteria are a potential health hazard. Development of antimicrobial resistance in animal pathogens has serious implications for human health, especially when such strains could be transmitted to human. In this study, the antimicrobial resistance due to ESBL producing Pseudomonas aeruginosa in the camel meat was investigated. METHODS: In this study meat samples from 200 healthy camels at two major abattoirs in Egypt (Cairo and Giza) were collected. Following culture on cetrimide agar, suspected P. aeruginosa colonies were confirmed with a Vitek 2 system (bioMe´rieux). P. aeruginosa isolates were phenotypically identified as ESBL by double disk synergy test. Additionally antimicrobial susceptibility testing of ESBL producing P. aeruginosa isolates were done against 11 antimicrobial drugs and carried out by disk diffusion method. The ESBL genotypes were determined by polymerase chain reaction according to the presence of the bla (PER-1), bla (CTX-M), bla (SHV), and bla (TEM). RESULTS: Pseudomonas aeruginosa was isolated from 45 camel meat sample (22.5%). The total percentage of ESBL producing P. aeruginosa was 45% (21/45) from camel meat isolates. Antibiogram results revealed the highest resistance was for c, ceftriaxone and rifampicin followed by cefepime and aztreonam. The prevalence rates of β-lactamase genes were recorded (bla (PER-1) 28.5%, bla (CTX-M) 38%, bla (SHV) 33.3% and bla (TEM) 23.8%). CONCLUSIONS: This study illustrates the presence of high rates of ESBL-P. aeruginosa in camels that represents an increasing alarming for the risk of transmission to human and opens the door for current and future antibiotics therapy failure. Livestock associated ESBL-P. aeruginosa is a growing disaster, therefore, attention has to be fully given to livestock associated ESBL-bacteria which try to find its way to human beings.201728359312
144690.9999One-Day Prevalence of Extended-Spectrum β-Lactamase (ESBL) and Carbapenemase-Producing Bacteria in Fecal Samples from Surgical Patients: A Concerning Trend of Antibiotic Resistance. PURPOSE: Extended-spectrum β-lactamase (ESBL) and carbapenemase producing bacteria are of increasing concern due to their multidrug resistance and infection potential. This study determines the one-day prevalence of faecal carriage of ESBL and carbapenemase producing Gram-negative bacilli. METHODS: Fecal samples were collected from 30 post-surgery patients (hospitalized for at least 48 hours) in each of the four hospitals involved in the study and were analyzed for antibiotic-resistant bacteria. Identification was done using Maldi Tof mass spectrometry, and antibiotic susceptibility was tested using disk diffusion and specialized tests for ESBL (double disk synergy technique) and carbapenem (NG-TEST CARBA 5) resistance detection. PCR was conducted on isolates to detect betalactam resistance genes, carbapenemase genes and quinolone resistance genes. FINDINGS: Out of the 120 patients enrolled, 38.33% (n = 46) and 49.16.33% (n = 59) were found to carry ESBL- and carbapenemase-producing bacteria, respectively, in their fecal samples. Among the isolates, 51.08% (n = 47) exhibited ESBL production, with Escherichia coli (44.56%) being the most common species. The identification of bacteria with resistance to carbapenems showed a predominance of the species Escherichia coli (44.45%) followed by the species Klebsiella pneumoniae (16.06%) and Acinetobacter baumanii (13.58%). The study of the association of variables shows a high degree of association (p < 0.05) for the factors independent walking and use of a wheelchair with ESBL production. The most frequently detected genes among ESBL producing bacteria were bla(CTXM-1) (91.49%), qnrB (70.21%) and qnrs (63.82%). bla(NDM) (54.68%) was the most detected carbapenemase genes among carbapenemase producing isolates. CONCLUSION: This study demonstrates, for the first time, a significant prevalence of ESBL and carbapenemase producing gram-negative bacteria among surgical patients in Benin, with multiple resistance genes detected. Findings should be interpreted in light of the cross-sectional design and >48-hour hospitalization criterion.202540635768
946100.9999Identification and Characterization of Multidrug-Resistant Extended-Spectrum Beta-Lactamase-Producing Bacteria from Healthy and Diseased Dogs and Cats Admitted to a Veterinary Hospital in Brazil. The objective of this study was to identify the main extended-spectrum beta-lactamase (ESBL)-producing bacteria and to detect the frequency of the major genes responsible to trigger this resistance in hospitalized animals. We collected 106 rectal swabs from cats (n = 25) and dogs (n = 81) to detect ESBL-producing isolates. ESBL-positive samples were submitted to the antimicrobial susceptibility test, and polymerase chain reaction was performed to detect TEM, SHV, and CTX-M genes from different groups. We observed that 44.34% of these samples (11 cats and 36 dogs) were positive for ESBL-producing bacteria. Thirteen animals (27.66%-seven cats and six dogs) were hospitalized for elective castration (healthy animals). Only a single animal was positive for ESBL-producing bacteria at hospital admission (the animal also showed an ESBL-positive isolate after leaving the hospital), whereas 11 were positive only at the hospital discharge. Of the 73 ESBL-producing isolates, 13 were isolated from cats (8 sick and 7 healthy) and 60 from dogs (53 sick and 7 healthy). Escherichia coli was the major ESBL-producing bacterium isolated (53.42%), followed by Pseudomonas aeruginosa (15.07%), Salmonella sp., and Proteus mirabilis (5.48% each one). Antimicrobial resistance profile of ESBL-producing isolates showed that 67 isolates (91.78%) were resistant to 3 or more antibiotic classes, while 13 of them (17.81%-2 healthy cats and 11 sick dogs) were resistant to all tested antimicrobial classes. The bla(TEM) gene exhibited the highest frequency in ESBL-producing isolates, followed by the bla(CTX-M) group 8/25, bla(CTX-M) group 1 and bla(CTX-M) group 9 genes. These results are useful to assess the predominance of ESBL-producing isolates recovered from dogs and in cats in Brazil. Consequently, we draw attention to these animals, as they can act as reservoirs for these microorganisms, which are the major pathogens of nosocomial infections worldwide.202133185513
1445110.9999Rapid Detection of Beta-Lactamases Genes among Enterobacterales in Urine Samples by Using Real-Time PCR. The objective of this study was to develop and evaluate newly improved, rapid, and reliable strategies based on real-time PCR to detect the most frequent beta-lactamase genes recorded in clinical Enterobacterales strains, particularly in Tunisia (bla(SHV12) , bla(TEM) , bla(CTX-M-15) , bla(CTX-M-9) , bla(CMY-2) , bla(OXA-48) , bla(NDM-1) , and bla(IMP) ) directly from the urine. Following the design of primers for a specific gene pool and their validation, a series of real-time PCR reactions were performed to detect these genes in 78 urine samples showing high antibiotic resistance after culture and susceptibility testing. Assays were applied to DNA extracted from cultured bacteria and collected urine. qPCR results were compared for phenotypic sensitivity. qPCR results were similar regardless of whether cultures or urine were collected, with 100% sensitivity and specificity. Out of 78 multiresistant uropathogenic, strains of Enterobacterales (44 E. coli and 34 K. pneumoniae strains) show the presence of the genes of the bla group. In all, 44% E. coli and 36 of K. pneumoniae clinical strains harbored the bla group genes with 36.4%, 52.3%, 70.5%, 68.2%, 18.2%, and 4.5% of E. coli having bla(SHV-12) , bla(TEM) , bla(CTX-M 15) , bla(CTX-M-9) , bla(CMY-2) , and bla(OXA-48) group genes, respectively, whereas 52.9%, 67.6%, 76.5%, 35.5%, 61.8, 14.7, and 1.28% of K. pneumoniae had bla(SHV-12) , bla(TEM) , bla(CTX-M 15) , bla(CTX-M-9) , bla(CMY-2) , bla(OXA-48) , and bla(NDM-1) group genes, respectively. The time required to have a result was 3 hours by real-time PCR and 2 to 3 days by the conventional method. Resistance genes of Gram-negative bacteria in urine, as well as cultured bacteria, were rapidly detected using qPCR techniques. These techniques will be used as rapid and cost-effective methods in the laboratory. Therefore, this test could be a good candidate to create real-time PCR kits for the detection of resistance genes directly from urine in clinical or epidemiological settings.202235978630
945120.9999Extended Spectrum Beta Lactamase (ESBL), bla(TEM),bla(SHV) and bla(CTX-M), Resistance Genes in Community and Healthcare Associated Gram Negative Bacteria from Osun State, Nigeria. BACKGROUND: Extended Spectrum Beta Lactamase (ESBL) production in gram negative bacteria confers multiple antibiotic resistance, adversely affecting antimicrobial therapy in infected individuals. ESBLs result from mutations in β-lactamases encoded mainly by the bla(TEM),bla(SHV) and bla(CTX-M) genes. The prevalence of ESBL producing bacteria has been on the increase globally, especially its upsurge among isolates from community-acquired infections has been observed. AIM: To determine ESBL prevalence and identify ESBL genes among clinical isolates in Osun State, Nigeria. MATERIAL AND METHODS: A cross-sectional study was carried out from August 2016 - July 2017 in Osun State, Nigeria. Three hundred and sixty Gram-negative bacteria recovered from clinical samples obtained from both community and healthcare-associated infections were tested. They included 147 Escherichia coli (40.8%), 116 Klebsiella spp (32.2%), 44 Pseudomonas aeruginosa (12.2%) and 23 Proteus vulgaris (6.4%) isolates. Others were Acinetobacter baumannii, Serratia rubidae, Citrobacter spp, Enterobacter spp and Salmonella typhi. Disk diffusion antibiotic susceptibility testing was carried out, isolates were screened for ESBL production and confirmed using standard laboratory procedures. ESBLs resistance genes were identified by Polymerase Chain Reaction (PCR). RESULTS: All isolates demonstrated multiple antibiotic resistance. Resistance to ampicillin, amoxicillin with clavulanate and erythromycin was 100%, whereas resistance to Imipenem was very low (5.0%). The overall prevalence of ESBL producers was 41.4% with Klebsiella spp as the highest ESBL producing Enterobacteriacaea. ESBL producers were more prevalent among the hospital pathogens than community pathogens, 58% vs. 29.5% (p=0.003). ESBL genes were detected in all ESBL producers with the bla(CTX-M) gene predominating (47.0%) followed by bla(TEM) (30.9%) and bla(SHV) gene was the least, 22.1%. The bla(CTX-M) gene was also the most prevalent in the healthcare pathogens (62%) but it accounted for only 25% in those of community origin. CONCLUSION: A high prevalence of ESBL producing gram-negative organisms occurs both in healthcare and in the community in our environment with the CTX-M variant predominating. Efforts to control the spread of these pathogens should be addressed.202132729432
980130.9999Phenotypic and Molecular Characterization of Extended-Spectrum β-Lactamase, Plasmid-Mediated- AmpC, and Carbapenemase-Producing Enterobacteriaceae Isolated from Companion and Production Animals in Brazil. The crisis of bacterial resistance is an emerging One Health challenge, driven by the overuse of antimicrobials in medical and agricultural settings. This study aimed to investigate extended-spectrum β-lactamase (ESBL), Ampicillinase (AmpC), and carbapenemase production, and the presence of genes encoding these enzymes in Escherichia coli, Klebsiella spp., and Proteus spp., major contributors to infections and resistance isolates from animals. From 2016 to 2021, 130 multidrug-resistant (MDR) or extensively drug-resistant (XDR) isolates were recovered from the secretions, excretions, and organs of companion and production animals with active infections. Antibacterial sensitivity tests, along with phenotypic and genotypic detection of resistance enzymes, were performed. To the best of our knowledge, this is the first study in Brazil to estimate the prevalence of XDR Enterobacteriales isolated from companion and production animals, which accounted for 13.8% of the strains. Statistically significant differences (P < 0.05) in resistant bacteria between different classes and within the same class of antibacterial bacteria were found. The statistical probability between genotypic detection of ESBL (OR = 3.1) and phenotypic tests for AmpC (OR = 2.3) was also established. Approximately 32.3%, 17.6%, and 16.8% of the strains had positive phenotypic tests for ESBL, AmpC, and carbapenemases, respectively. Genetic analysis revealed the presence of bla(CTX-M) (60.0%), bla(AmpC) (9.18%), bla(KPC-2) (0.76%), and bla(NDM) (1.52%). AmpC genes were identified in 8.46% of the samples, with bla(CMY) being the most frequent (6.92%), followed by bla(DHA) (0.77%), and bla(FOX) (0.77%). The sequenced amplicons were deposited in NCBI. This study reveals critical data on Enterobacteriaceae with antibacterial resistance genes isolated from animals and may pose a significant threat to One health.202539903315
2111140.9999Antimicrobial Resistance and Resistance Determinant Insights into Multi-Drug Resistant Gram-Negative Bacteria Isolates from Paediatric Patients in China. INTRODUCTION: The emergence of multi-drug-resistant Gram-negative bacteria (GNB) is a concern in China and globally. This study investigated antimicrobial resistance traits and resistance determinant detection in GNB isolates from paediatric patients in China. METHODS: In the present study, a total of 170 isolates of GNB including the most prevalent Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii were collected from Shenzhen Children's Hospital, China. ESBLs production was confirmed by using the combination disc diffusion method, and carbapenemase production was confirmed by using a carbapenem inactivation method followed by antimicrobial susceptibility. In addition, β-lactamase-encoding genes and co-existence of plasmid-borne colistin resistance mcr-1 gene were determined by PCR and sequencing. RESULTS: Overall, 170 etiological agents (GNB) were recovered from 158 paediatric patients. The most prevalent species was E. coli 40% (n=68), followed by K. pneumoniae 17.64% (n=30), and Enterobacter cloacae 14.11% (n=24). Of 170 GNB, 71.76% (n=122) were multi-drug-resistant, 12.35% (n=21) extreme-drug resistant, and 7.64% (n=13) single-drug-resistant, while 8.23% (n=14) were sensitive to all of the studied antibiotics. The prevalence of ESBLs and carbapenemase producers were 60% and 17%, respectively. bla (CTX-M) was the most prevalent resistance gene (59.42%), followed by bla (TEM) (41.17%), bla (SHV) (34.270%), bla (KPC) (34.11%), bla (OXA-48) (18.82%) and bla (NDM-1) (17.64%). CONCLUSION: The present study provides insights into the linkage between the resistance patterns of GNB to commonly used antibiotics and their uses in China. The findings are useful for understanding the genetics of resistance traits and difficulty in tackling of GNB in paediatric patients.201931819545
1069150.9999High Prevalence of Antimicrobial Resistance in Gram-Negative Bacteria Isolated from Clinical Settings in Egypt: Recalling for Judicious Use of Conventional Antimicrobials in Developing Nations. This study was designed to investigate, at the molecular level, the antimicrobial resistance mechanisms of different antimicrobial resistance genes, including, extended-spectrum β-lactamases, AmpC β-lactamases, class 1 and 2 integrons, and plasmid-mediated quinolone resistance genes of Gram-negative bacteria isolated from clinical settings in Egypt. A total of 126 nonduplicate Gram-negative isolates were recovered from different clinical samples taken from hospitalized patients in Egypt in 2014. Antimicrobial susceptibility testing showed that, 93.6% (118/126) of the isolates had a multidrug-resistant phenotype. Interestingly, we reported a high level of antimicrobial resistance nearly for all tested antibiotics; to our knowledge, this is the first report from Egypt indicating very high level of antibiotic resistance in Egypt. Polymerase chain reaction screening and DNA sequencing revealed that, 75.4% (95/126) of the isolates harbored at least one extended-spectrum β-lactamase-encoding gene, with bla(CTX-M) being the most prevalent (65.9%), followed by bla(SHV) (46.8%). The AmpC β-lactamase, bla(CMY), was detected in 7.1% (9/126) of bacterial isolates, with bla(CMY-42) being the most prevalent. Class 1 integrons were detected in 50.8% (64/126) of the isolates, and class 2 integrons were detected in 2.4% (3/126) of the isolates. The plasmid-mediated quinolone resistance gene, qnr, was detected in 58.7% (74/126) of the tested isolates, with qnrS being the most prevalent. Several antimicrobial resistance determinants were identified in Egypt for the first time, such as SHV-27, SHV-28, SHV-33, SHV-63, SHV-71, SHV-82, SHV-142, CMY-42, CMY-6, and the new CMY-72 like. This study highlights the importance of the conscious use of conventional antimicrobials to overcome the multidrug resistance problem.201930681401
1018160.9998Antimicrobial Resistance and Prevalence of Extended Spectrum β-Lactamase-Producing Escherichia coli from Dogs and Cats in Northeastern China from 2012 to 2021. (1) Background: there has been a growing concern about pet-spread bacterial zoonosis in recent years. This study aimed to investigate the trend in drug-resistance of canine Escherichia coli isolates in northeast China between 2012-2021 and the differences in drug-resistance of E. coli of different origins in 2021. (2) Methods: E. coli were isolated from feces or anal swab samples from dogs and cats, and their antibiotic susceptibility profiles and phylogenetic grouping were identified. PCR was applied on the extended spectrum β-lactamase (ESBL) E. coli for antibiotic resistance genes. (3) Results: five hundred and fifty-four E. coli isolates were detected in 869 samples (63.75%). The multidrug resistance (MDR) rates of E. coli in pet dogs showed a decreasing trend, but working dogs showed the opposite trend. Resistance genes bla(CTX-M) and bla(CTX-M+TEM) were dominant among the ESBL producers (n = 219). The consistency between the resistance phenotypes and genes was high except for fluoroquinolone-resistant ESBL E. coli. All ESBL E. coli-carrying bla(NDM) were isolated from working dogs, and one of the strains carried mcr-1 and bla(NDM-4). Phylogroup B2 was the dominant group in pet cats, and more than half of the isolates from companion cats were ESBL E. coli. (4) Conclusions: the measures taken to reduce resistance in China were beginning to bear fruit. Companion cats may be more susceptible to colonization by ESBL E. coli. The problem of resistant bacteria in working dogs and pet cats warrants concern.202236358160
1150170.9998Occurrence of multidrug resistance associated with extended-spectrum β‑lactamase and the biofilm forming ability of Escherichia coli in environmental swine husbandry. Extended-spectrum beta-lactamase (ESBL) production and biofilm formation are mechanisms employed by Escherichia coli to resist beta-lactam antibiotics. Thus, we aimed to examine antibiotic resistance associated with ESBL production and biofilm formation in E. coli isolates from swine farms in Southern Thailand. In total, 159 E. coli isolates were obtained, with 44 isolates identified as ESBL producers, originating from feces (18.87 %) and wastewater (8.80 %) samples. All ESBL-producing strains exhibited resistance to ampicillin (100 %), followed by the cephalosporin group (97.73 %) and tetracycline (84.09 %). Multidrug resistance was observed in 17 isolates (38.63 %). Among the isolates from feces samples, the bla(GES) gene was the most prevalent, detected in 90 % of the samples, followed by bla(CTX-M9) (86.67 %) and bla(CTX-M1) (66.67 %), respectively. In the bacteria isolated from wastewater, both bla(GES) and bla(CTX-M9) genes were the predominant resistance genes, detected in 100 % of the isolates, followed by bla(CTX-M1) (64.29 %) and bla(TEM) (50 %), respectively. Strong biofilm formation was observed in 11 isolates (36.67 %) from feces and 4 isolates (25.57 %) from wastewater samples. Notably, nearly 100 % of ESBL-producing strains isolated from feces tested positive for both pgaA and pgaC genes, which play a role in intracellular adhesion and biofilm production. These findings contribute to the understanding and potential control of ESBL-producing E. coli, and the dissemination of antibiotic resistance and biofilm-related genes in swine farms.202337976973
955180.9998Occurrence and characteristics of extended-spectrum β-lactamase- and carbapenemase- producing bacteria from hospital effluents in Singapore. One of the most important resistance mechanisms in Gram-negative bacteria today is the production of enzymes causing resistance to cephalosporin and carbapenem antibiotics. The spread of extended-spectrum β-lactamases (ESBL)- and carbapenemase- producing Gram-negative bacteria is an emerging global public health problem. The aim of the present study was to (i) assess the prevalence of carbapenem-resistant bacteria (CRB) and ESBL-producing strains in sewage effluents from two major hospitals in Singapore, (ii) characterize the isolated strains and (iii) identify some of the ESBL and carbapenemase genes responsible for the resistance. CHROMagar ESBL and KPC plates were used to rapidly screen for ESBL-producing bacteria and those expressing reduced susceptibility to carbapenems, respectively. The abundance of ESBL-producers and CRB in hospital wastewater ranged between 10(3) and 10(6)CFU/mL. Out of the 66 isolates picked from ESBL and KPC plates, 95%, 82%, 82% and 76% were resistant to ceftriaxone, ceftazidime (3rd generation cephalosporin family), ertapenem and meropenem (carbapenem family), respectively. Among the resistant isolates, the most predominant taxa identified were Pseudomonas spp. (28.2%), Klebsiella spp. (28.2%), Enterobacter spp. (18.3%) and Citrobacter spp. (11.3%). PCR and sequencing analysis showed that the predominant β-lactamase genes were bla(SHV) (41.1%) followed by bla(NDM-1) (35.6%), bla(CTX) (35.6%) and bla(KPC) (28.8%). The results of this study show a high prevalence of bacteria resistant to modern extended-spectrum cephalosporins and carbapenems and the presence of ESBL- and carbapenemase producers in hospital effluents. These findings support the need to improve management of hospital wastewater in order to minimize the spread of antimicrobial resistant microorganisms from this source.201829751417
1121190.9998Occurrence of the genes encoding carbapenemases, ESBLs and class 1 integron-integrase among fermenting and non-fermenting bacteria from retail goat meat. The present study was planned to detect the genes encoding carbapenemases, ESBLs and class 1 integron-integrase among bacteria obtained from retail goat meat. Fermenting and non-fermenting bacterial isolates (n = 57), recovered from 61 goat meat samples, were identified by 16S rRNA gene sequencing. Antimicrobial susceptibility of isolates was tested by the broth dilution method using ceftazidime, cefotaxime, meropenem and imipenem. Plasmids were isolated and tested for their physical characters. Plasmids were subjected to screening of carbapenemase, ESBL and intI1 gene. Conjugation assay was performed using bla(NDM) -positive isolates as the donor, and Escherichia coli HB101 as the recipient. Isolates showed the high rates of resistance to ceftazidime (77·2%), cefotaxime (70·2%), meropenem (22·8%) and imipenem (17·5%). They showed variability in number and size (~1 to >20 kb) of plasmids. Among all, 1, 4, 13 and 31 isolates showed the bla(KPC) , bla(NDM) , bla(SHV) and bla(TEM) genes, respectively. The bla(KPC-2) gene was observed in one E. coli isolate. The bla(NDM-1) gene was detected in Stenotrophomonas maltophilia (n = 2), Acinetobacter baumannii (n = 1) and Ochrobactrum anthropi (n = 1) isolates. These isolates co-harboured the bla(TEM) and bla(SHV) genes. The intI1 gene was detected in 22 (38·6%) isolates, and 16 of these isolates showed the carbapenemase and/or ESBL genes. The conjugative movement of bla(NDM) gene could not be proved after three repetitive mating experiments. The presence of genes encoding carbapenemases and ESBLs in bacteria from goat meat poses public health risks.202032767781