Extended-spectrum β-lactamases producing multidrug resistance Escherichia coli, Salmonella and Klebsiella pneumoniae in pig population of Assam and Meghalaya, India. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
104601.0000Extended-spectrum β-lactamases producing multidrug resistance Escherichia coli, Salmonella and Klebsiella pneumoniae in pig population of Assam and Meghalaya, India. AIM: The present study was conducted to record the prevalence of extended spectrum β-lactamases (ESBLs) producing Escherichia coli, Salmonella spp., and Klebsiella pneumoniae from pig population of Assam and Meghalaya and to record the ability of the resistant bacteria to transfer the resistance genes horizontally. MATERIALS AND METHODS: Fecal samples (n=228), collected from pigs of Assam (n=99) and Meghalaya (n=129), were processed for isolation and identification of E. coli and Salmonella spp. All the isolates were tested for ESBLs production by double disc synergy test (DDST) followed by screening for ESBLs producing genes (bla(TEM), bla(SHV), bla(CTX-M), and bla(CMY)) by polymerase chain reaction (PCR). Possible transfer of resistance encoding genes between enteric bacterial species was carried out by in vitro and in vivo horizontal gene transfer (HGT) method. RESULTS: A total of 897 enteric bacteria (867 E. coli and 30 Salmonella) were isolated and identified. Altogether 25.41% isolates were confirmed as ESBL producers by DDST method. Majority of the isolates were E. coli followed by Salmonella. By PCR, 9.03% isolates were found positive for at least one of the target resistance genes. bla(SHV) was absent in all the isolates. bla(CMY) was the most prevalent gene. All the E. coli isolates from Assam were negative for bla(TEM). A total of 2.76% isolates were positive for bla(TEM) + bla(CMY). On the other hand, 0.67% isolates were positive for bla(CTX-M) + bla(CMY) genes. Only 0.33% isolates carried all the three genes. Altogether, 4.68% bacteria carried the resistance encoding genes in their plasmids. bla(TEM) gene could be successfully transferred from Salmonella (donor) to E. coli (recipient) by in vitro (5.5-5.7×10(-5)) and in vivo (6.5×10(-5) to 8.8×10(-4)) methods. In vivo method was more effective than in vitro in the transfer of resistance genes. CONCLUSION: The pig population of Assam and Meghalaya are carrying multidrug resistance and ESBLs producing E. coli and Salmonella. The isolates are also capable to transfer their resistance trait to other bacterial species by HGT. The present finding could be considered as a serious public health concern as similar trait can also be transmitted to the human commensal bacteria as well as pathogens.201830034183
104510.9999ESBL-Producing Enterobacter cloacae Complex and Klebsiella pneumoniae Harbouring bla(CTX-M-15) and bla(CTX-M-55) Potentially Risk the Worldwide Spread of ESBL-Producing Bacteria Through Contaminated Dried Fishery Products. The transmission of life-threatening bacteria with plasmid-mediated antibiotic resistance poses a significant challenge to public health. This study aimed to determine the presence of plasmid-mediated antibiotic resistance genes in Enterobacterales isolates obtained from dried fishery products. Eighty-one dried fishery products were purchased from Vietnamese markets. Enterobacterales were isolated using a CHROMagar Escherichia coli coliform agar containing cefotaxime or meropenem. The isolated strains were assessed for their susceptibility to 14 antibiotics using a disc diffusion assay. Extended-spectrum β-lactamase (ESBL) sub-group typing was performed based on multiplex PCR of isolated ESBL-producing strains. In addition, Enterobacter cloacae AD2-1, which showed multiple drug resistance, was subject to whole-genome sequence analysis. CTX-resistant bacteria were isolated from 22% and MEM-resistant bacteria from 27% of the Vietnamese samples. CTX-resistant bacteria were isolated from 17% and MEM-resistant bacteria from 4% of Japanese samples. Bacterial identification indicated that 98 strains were isolated, of which 29 strains of E. coli, 28 of Enterobacter cloacae complex, 19 of Staphylococcus spp., and 9 of Klebsiella pneumoniae were predominant in Vietnamese samples. Japanese samples were predominantly contaminated with E. cloacae complex. Multiplex PCR and sequencing was used to determine the presence of ESBL-related genes bla(CTX-M-15) and bla(CTX-M-55) in E. cloacae and K. pneumoniae isolates. E. cloacae AD2-1 isolated from the Vietnamese dried fish was resistant to 14 antibiotics, and approximately 300 kbp of the IncHI2 plasmid harboured multiple antibiotic resistance genes and formed an antibiotic resistance gene region. This E. cloacae is considered a risk for the spread of antibiotic resistance across countries.202541171320
104920.9999Multiple Antibiotic-Resistant, Extended Spectrum-β-Lactamase (ESBL)-Producing Enterobacteria in Fresh Seafood. Members of the family Enterobacteriaceae include several human pathogens that can be acquired through contaminated food and water. In this study, the incidence of extended spectrum β-lactamase (ESBL)-producing enterobacteria was investigated in fresh seafood sold in retail markets. The ESBL-positive phenotype was detected in 169 (78.60%) isolates, with Escherichia coli being the predominant species (53), followed by Klebsiella oxytoca (27), and K. pneumoniae (23). More than 90% of the isolates were resistant to third generation cephalosporins, cefotaxime, ceftazidime, and cefpodoxime. Sixty-five percent of the isolates were resistant to the monobactam drug aztreonam, 40.82% to ertapenem, and 31.36% to meropenem. Resistance to at least five antibiotics was observed in 38.46% of the isolates. Polymerase Chain Reaction (PCR) analysis of ESBL-encoding genes detected bla(CTX), bla(SHV), and bla(TEM) genes in 76.92%, 63.3%, and 44.37% of the isolates, respectively. Multiple ESBL genes were detected in majority of the isolates. The recently discovered New Delhi metallo-β-lactamase gene (bla(NDM-1)) was detected in two ESBL⁺ isolates. Our study shows that secondary contamination of fresh seafood with enteric bacteria resistant to multiple antibiotics may implicate seafood as a potential carrier of antibiotic resistant bacteria and emphasizes an urgent need to prevent environmental contamination and dissemination of such bacteria.201728867789
102330.9999Common presence of plasmid encoding bla(CTX-M-55) in extended-spectrum β-lactamase-producing Salmonella enterica and Escherichia coli isolates from the same edible river fish. The transmission of potentially life-threatening plasmid-mediated antibiotic-resistant bacteria poses a major threat to public health. This study aimed to determine the presence of commonly observed plasmids encoding plasmid-mediated antibiotic-resistance genes in Salmonella and Escherichia coli isolates from fishery products. Eighty river fishes were purchased from retail stores and supermarkets in Vietnam. Only Salmonella-positive fishes were used for antibiotic-resistant E. coli isolation. Salmonella serotyping was performed using Salmonella antisera. Isolated bacterial DNA was extracted, and antibiotic susceptibility, resistance genes, and replicon typing were determined. Our results showed that Salmonella was isolated from 12.5% (10/80) of the river fishes. Cefotaxime-resistant Salmonella was isolated from 3.8% (3/80) of the fishes and colistin-resistant Salmonella from 1.3% (1/80) . Salmonella serotyping revealed Potsdam, Schwarzengrund, Bardo/Newport, Give, Infantis, Kentucky, and Typhimurium. Multiplex polymerase chain reaction revealed the presence of extended-spectrum β-lactamase-related genes bla(CTX-M-55) and bla(CTX-M-65) and the colistin resistance gene mcr-1. To date, no study has reported an antibiotic-resistance plasmid present in multiple bacteria collected from the same food. Thus, horizontal transmission of antibiotic-resistance plasmids may occur at the food level.202337394527
101640.9999Investigation of CTX-M Type Extended-Spectrum β-Lactamase, Carbapenem and Colistin Resistance in Enterobacterales Isolated From Dairy Cattle in Turkey. BACKGROUND: The increasing prevalence of antimicrobial resistance in animals, particularly the spread of multidrug-resistant Enterobacterales, poses a significant zoonotic and public health risk. OBJECTIVE: The aim of this study was to investigate extended-spectrum β-lactamase (ESBL), carbapenem and colistin resistance among Enterobacterales in faecal swabs of dairy cattle. METHODS: A total of 400 samples were cultured on Mac Conkey screening media for ESBL, carbapenem and colistin resistance. The grown Enterobacterales were identified by MALDI-TOF-MS, followed by ceftriaxone, cefotaxime and ceftazidime resistance and double disk synergy. ESBL resistance genes were identified by polymerase chain reaction (PCR) and Sanger sequencing. Bacteria grown on colistin screening media were investigated for colistin resistance by EUCAST microbroth dilution method. RESULTS: A total of 89 (22.25%) of the bacteria grown from 400 samples were identified as potential ESBL-producing Enterobacterales members. A number of 53 (59.5%) of them were identified as ESBL blaCTX-M as a result of PCR, and 10 of them were identified as blaCTX-M-15/28/36/66 as a result of sequencing. None of the samples cultured on carbapenem medium grew. A total of 18 samples grown in colistin medium were found to be colistin sensitive by broth microdilution. Genotypes were not included in the study. All isolated bacteria were identified as Escherichia coli. SOLUTION: In this study, blaCTX-M-15 and its derivatives, which are common in humans, were also found to be the predominant ESBL type in animals. Monitoring resistance in animals together with resistance in human infections may provide more important data on the spread of resistance.202540704983
109450.9999Detection of plasmid-mediated quinolone resistance genes in β-lactamase-producing Escherichia coli isolates from layer hens. This study was conducted to investigate the presence of plasmid-mediated quinolone resistance (PMQR) genes in β-lactamase-producing Escherichia coli isolates from layer hens and to characterize their molecular background. Among 142 E. coli isolates, 86 (60.6%) showed multidrug resistance and 15 (10.6%) were found to be β-lactamase-producing E. coli. Extended-spectrum β-lactamase (ESBL) and plasmid-mediated AmpC (pAmpC) β-lactamase genes, blaCTX-M-14 and blaCMY-2, were identified in three and six E. coli isolates, respectively. The non-ESBL or pAmpC gene, blaTEM-1, was found in eight of the isolates. Two isolates had both genes, blaCTX-M-14 and blaTEM-1. Among the 15 β-lactamase-producing E. coli, six PMQR genes, qnrS1 (n = 3) and qnrB4 (n = 3), were identified. Among the six PMQR-positive E. coli isolates, four exhibited double amino acid exchanges at both gyrA and parC with ciprofloxacin and enrofloxacin minimum inhibitory concentrations of ≥32 and ≥16 μg/mL, respectively. Additionally, five transconjugants (33.3%) showed a transferability of β-lactamase and PMQR genes. Pulsed-field gel electrophoresis (PFGE) analysis was conducted to investigate the 15 β-lactamase-producing E. coli isolates. In PFGE, E. coli included three PFGE patterns showing the same farms and in accordance with both β-lactamase and PMQR genes and the antimicrobial resistance pattern. Layer hens may act as a reservoir of antibiotic-resistant bacteria, and the PMQR gene in β-lactamase-producing E. coli isolates from layer hens has the potential to enter the food chain. Therefore, our findings suggest that comprehensive surveillance of antimicrobial use in laying operation systems is necessary.201930496543
111860.9999Detection and characterization of extended-spectrum β-lactamases (blaCTX-M-1 and blaSHV ) producing Escherichia coli, Salmonella spp. and Klebsiella pneumoniae isolated from humans in Mizoram. AIM: The present study was conducted to isolate and characterize the extended spectrum β-lactamases (ESBLs) producing enteric bacteria in human beings in Mizoram, India. MATERIALS AND METHODS: Fecal samples were collected from human beings with or without the history of diarrhea from different hospitals of Mizoram. Samples were processed for isolation and identification of Escherichia coli, Salmonella and Klebsiella pneumoniae. All the isolates were subjected to antibiotic sensitivity assays. Phenotypically, ESBLs production ability was determined by double discs synergy test (DDST) method. ESBLs producing isolates were subjected to polymerase chain reaction (PCR) for detection of ESBLs genes. Plasmids were cured by acridine orange. Transfer of resistance from a donor to recipient strains was done by in vitro horizontal method. RESULTS: A total of 414 enteric bacteria were isolated from 180 fecal samples (113 were from diarrheic patients and 67 were from non-diarrheic patients), of which 333 (80.44%), 52 (12.56%), and 29 (7.00%) were E. coli, K. pneumoniae and Salmonella spp., respectively. Double discs synergy test (DDST) exhibited 72 (21.62%) E. coli, 12 (23.08%) K. pneumoniae and 4 (13.79%) Salmonella spp. were ESBLs producers. Altogether, 24 (13.04%) isolates were found to be positive for at least one resistance genes under this study. A total of 36 (8.70%) E. coli, 4 (0.97%) K. pneumoniae and 2 (0.48%) Salmonella spp. were found to be positive for blaCTX-M-1 gene by PCR. Similarly, 5 (1.21%) E. coli and 4 (0.97%) K. pneumoniae isolates were found to be positive for blaSHV gene. A total of 3 (0.72%) K. pneumoniae isolates were recorded as positive for both blaCTX-M-1 and blaSHV genes. All the isolates were carrying plasmids ranging between 0.9 kb and ~30 kb. The resistance plasmid could not be transferred to a recipient by in vitro horizontal gene transfer method. CONCLUSION: ESBLs producing enteric bacteria are circulating in human population in North Eastern Region of India. Indiscriminate use of antibiotics should be avoided to control the menace of multidrug resistance bacteria in the environment, animals, and human beings.201527047141
101770.9999Evaluation of canine raw food products for the presence of extended-spectrum beta-lactamase- and carbapenemase-producing bacteria of the order Enterobacterales. OBJECTIVE: To assess the potential contamination of commercial raw dog food products with bacteria of the Enterobacterales order that produce extended spectrum beta-lactamase (ESBL) and carbapenemase enzymes, determine risk factors for contamination, and understand isolate genetic diversity. SAMPLES: A total of 200 canine raw food products. METHODS: Products were cultured on selective chromogenic agar following enrichment steps. Whole-genome sequencing was performed for isolates that were confirmed to produce an ESBL. Isolates were characterized by antimicrobial resistance genes, and multilocus sequences typing, and compared to other isolates in the NCBI database for clonality. Preservation method and protein sources were assessed as potential risk factors for contamination with ESBL and carbapenemase-producing bacteria of the Enterobacterales order. RESULTS: No carbapenemase-producing Enterobacterales (CPE) were identified, but ESBL-producing Enterobacterales bacteria were isolated from 20/200 products (10.0%; 95% CI, 7.3 to 16.5%), all of which were frozen. Pork-derived protein source products were 8.1 times (P = .001; 95% CI, 2.53 to 26.2) more likely to carry ESBL-producing Enterobacterales bacteria than other protein sources. WGS analysis confirmed the presence of ESBL genes in a total of 25 distinct isolates (19 Escherichia coli, 5 Klebsiella pneumoniae, and 1 Citrobacter braakii). Genes encoding CTX-M type ESBL enzymes were the most common (24/25 isolates, 96.0%) with blaCTX-M-27 being the most common allele (8/25, 32.0%). CLINICAL RELEVANCE: Frozen, raw food products may serve as a route of transmission of ESBL-producing Enterobacterales bacteria to companion animals. Veterinarians should advise owners about the risks of raw food diets, including potential exposure to antimicrobial-resistant bacteria.202235895774
98980.9999Development of a Method for the Fast Detection of Extended-Spectrum β-Lactamase- and Plasmid-Mediated AmpC β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae from Dogs and Cats in the USA. Antibiotic resistance, such as resistance to beta-lactams and the development of resistance mechanisms, is associated with multifactorial phenomena and not only with the use of third-generation cephalosporins. Many methods have been recommended for the detection of ESBL and pAmpC β-lactamase production but they are very subjective and the appropriate facilities are not available in most laboratories, especially not in clinics. Therefore, for fast clinical antimicrobial selection, we need to rapidly detect ESBL- and pAmpC β-lactamase-producing bacteria using a simple method with samples containing large amounts of bacteria. For the detection of ESBL- and pAmpC phenotypes and genes, the disk diffusion test, DDST and multiplex PCR were conducted. Of the 109 samples, 99 (90.8%) samples were grown in MacConkey broth containing cephalothin, and 71 samples were grown on MacConkey agar containing ceftiofur. Of the 71 samples grown on MacConkey agar containing ceftiofur, 58 Escherichia coli and 19 Klebsiella pneumoniae isolates, in particular, harbored β-lactamase genes. Of the 38 samples that did not grow in MacConkey broth containing cephalothin or on MacConkey agar containing ceftiofur, 32 isolates were identified as E. coli, and 10 isolates were identified as K. pneumoniae; β-lactamase genes were not detected in these E. coli and K. pneumoniae isolates. Of the 78 ESBL- and pAmpC β-lactamase-producing E. coli and K. pneumoniae, 55 (70.5%) isolates carried one or more ESBL genes and 56 (71.8%) isolates carried one or more pAmpC β-lactamase genes. Our method is a fast, and low-cost tool for the screening of frequently encountered ESBL- and pAmpC β-lactamase-producing bacteria and it would assist in diagnosis and improve therapeutic treatment in animal hospitals.202336830436
105490.9999Molecular detection of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates of chicken origin from East Java, Indonesia. BACKGROUND AND AIM: Klebsiella pneumoniae is one of the respiratory disease agents in human and chicken. This bacterium is treated by antibiotic, but this treatment may trigger antibiotic resistance. Resistance gene in K. pneumoniae may be transferred to other bacteria. One of the known resistance genes is extended-spectrum β-lactamase (ESBL). This research aimed to study K. pneumoniae isolated from chicken farms in East Java, Indonesia, by observing the antibiotic resistance pattern and detect the presence of ESBL coding gene within the isolates. MATERIALS AND METHODS: A total of 11 K. pneumoniae isolates were collected from 141 chicken cloacal swabs from two regencies in East Java. All isolates were identified using the polymerase chain reaction method. Antimicrobial susceptibility was determined by agar dilution method on identified isolates, which then processed for molecular characterization to detect ESBL coding gene within the K. pneumoniae isolates found. RESULTS: The result of antibiotic sensitivity test in 11 isolates showed highest antibiotic resistance level toward ampicillin, amoxicillin, and oxytetracycline (100%, 100%, and 90.9%) and still sensitive to gentamicin. Resistance against colistin, doxycycline, ciprofloxacin, and enrofloxacin is varied by 90.9%, 54.5%, 27.3%, and 18.2%, respectively. All isolates of K. pneumoniae were classified as multidrug resistance (MDR) bacteria. Resistance gene analysis revealed the isolates harbored as bla (SHV) (9.1%), bla (TEM) (100%), and bla (CTX-M) (90.9%). CONCLUSION: All the bacterial isolates were classified as MDR bacteria and harbored two of the transmissible ESBL genes. The presence of antibiotic resistance genes in bacteria has the potential to spread its resistance properties.201931190714
1098100.9999Extended spectrum beta-lactamase and fluoroquinolone resistance genes among Escherichia coli and Salmonella isolates from children with diarrhea, Burkina Faso. BACKGROUND: The emergence and spread of multidrug-resistant gram-negative bacteria (MDR) has become a major public health concern worldwide. This resistance is caused by enzymes-mediated genes (i.e., extended spectrum beta-lactamases) that are common in certain Enterobacterioceae species. However, the distribution of these genes is poorly documented in Burkina Faso. This study aims to determine the prevalence and distribution of the resistant genes coding for broad spectrum beta-lactamases and quinolones in rural Burkina Faso. METHODS: Multiplex PCR assays were carried out to detect ESBL-encoding genes, including bla(OXA), bla(TEM), bla(CTX-M), bla(SHV). The assays also assessed the presence of quinolone resistance gene namely qnrA, qnrB and qnrS in the quinolone-resistance DEC and Salmonella strains. RESULTS: The Extended-Spectrum Beta-Lactamases (ESBL) resistance phenotype was reported in all the E. coli isolates (5/5). Cross-resistance phenotype to quinolones (CRQ) was shown by one Salmonella strain (1/9) and three E. coli (3/5). Cross-resistance phenotypes to fluoroquinolones (CRFQ) were harboured by one Salmonella (1/9) and carbapenemase phenotypes were detected in two E. coli strains (2/5). Whilst the bla(OXA) genes were detected in 100% (5/5) of E. coli isolates and in 33.33% (3/9) Salmonella isolates. One strain of E. coli (1/5) harbored the bla(CTX-M) gene and the qnrB gene simultaneously. CONCLUSIONS: This study identified β-lactam (bla) and quinolone resistance (qnr) genes in multidrug-resistant E. coli and Salmonella spp. in rural Burkina Faso. Our finding which highlighted the enterobacteriaceae strains resistance to β-lactams and quinolones are of high interest for adequate management of antimicrobial resistant genes outbreak in Burkina Faso.202033010801
1018110.9999Antimicrobial Resistance and Prevalence of Extended Spectrum β-Lactamase-Producing Escherichia coli from Dogs and Cats in Northeastern China from 2012 to 2021. (1) Background: there has been a growing concern about pet-spread bacterial zoonosis in recent years. This study aimed to investigate the trend in drug-resistance of canine Escherichia coli isolates in northeast China between 2012-2021 and the differences in drug-resistance of E. coli of different origins in 2021. (2) Methods: E. coli were isolated from feces or anal swab samples from dogs and cats, and their antibiotic susceptibility profiles and phylogenetic grouping were identified. PCR was applied on the extended spectrum β-lactamase (ESBL) E. coli for antibiotic resistance genes. (3) Results: five hundred and fifty-four E. coli isolates were detected in 869 samples (63.75%). The multidrug resistance (MDR) rates of E. coli in pet dogs showed a decreasing trend, but working dogs showed the opposite trend. Resistance genes bla(CTX-M) and bla(CTX-M+TEM) were dominant among the ESBL producers (n = 219). The consistency between the resistance phenotypes and genes was high except for fluoroquinolone-resistant ESBL E. coli. All ESBL E. coli-carrying bla(NDM) were isolated from working dogs, and one of the strains carried mcr-1 and bla(NDM-4). Phylogroup B2 was the dominant group in pet cats, and more than half of the isolates from companion cats were ESBL E. coli. (4) Conclusions: the measures taken to reduce resistance in China were beginning to bear fruit. Companion cats may be more susceptible to colonization by ESBL E. coli. The problem of resistant bacteria in working dogs and pet cats warrants concern.202236358160
980120.9998Phenotypic and Molecular Characterization of Extended-Spectrum β-Lactamase, Plasmid-Mediated- AmpC, and Carbapenemase-Producing Enterobacteriaceae Isolated from Companion and Production Animals in Brazil. The crisis of bacterial resistance is an emerging One Health challenge, driven by the overuse of antimicrobials in medical and agricultural settings. This study aimed to investigate extended-spectrum β-lactamase (ESBL), Ampicillinase (AmpC), and carbapenemase production, and the presence of genes encoding these enzymes in Escherichia coli, Klebsiella spp., and Proteus spp., major contributors to infections and resistance isolates from animals. From 2016 to 2021, 130 multidrug-resistant (MDR) or extensively drug-resistant (XDR) isolates were recovered from the secretions, excretions, and organs of companion and production animals with active infections. Antibacterial sensitivity tests, along with phenotypic and genotypic detection of resistance enzymes, were performed. To the best of our knowledge, this is the first study in Brazil to estimate the prevalence of XDR Enterobacteriales isolated from companion and production animals, which accounted for 13.8% of the strains. Statistically significant differences (P < 0.05) in resistant bacteria between different classes and within the same class of antibacterial bacteria were found. The statistical probability between genotypic detection of ESBL (OR = 3.1) and phenotypic tests for AmpC (OR = 2.3) was also established. Approximately 32.3%, 17.6%, and 16.8% of the strains had positive phenotypic tests for ESBL, AmpC, and carbapenemases, respectively. Genetic analysis revealed the presence of bla(CTX-M) (60.0%), bla(AmpC) (9.18%), bla(KPC-2) (0.76%), and bla(NDM) (1.52%). AmpC genes were identified in 8.46% of the samples, with bla(CMY) being the most frequent (6.92%), followed by bla(DHA) (0.77%), and bla(FOX) (0.77%). The sequenced amplicons were deposited in NCBI. This study reveals critical data on Enterobacteriaceae with antibacterial resistance genes isolated from animals and may pose a significant threat to One health.202539903315
1051130.9998Multi-drug Resistance, β-Lactamases Production, and Coexistence of bla (NDM-1) and mcr-1 in Escherichia coli Clinical Isolates From a Referral Hospital in Kathmandu, Nepal. The ability of pathogenic Escherichia coli to produce carbapenemase enzymes is a characteristic that allows them to resist various antibiotics, including last-resort antibiotics like colistin and carbapenem. Our objectives were to identify rapidly developing antibiotic resistance (AR), assess β-lactamases production, and detect mcr-1 and bla (NDM-1) genes in the isolates. A prospective cross-sectional study was carried out in a referral hospital located in Kathmandu from November 2019 to December 2020 using standard laboratory and molecular protocols. Among 77 total E. coli isolates, 64 (83.1%) of them were categorized as MDR. Phenotypically 13 (20.3%) colistin-resistant, 30 (46.9%) ESBL and 8 (12.5%) AmpC producers, and 5 (7.8%) ESBL/AmpC co-producers were distributed among MDR-E. coli. Minimum inhibitory concentrations (MIC) against the majority of MDR isolates were exhibited at 1 g/L. Of these 77 E. coli isolates, 24 (31.2%) were carbapenem-resistant. Among these carbapenem-resistant bacteria, 11 (45.9%) isolates were reported to be colistin-resistant, while 15 (62.5%) and 2 (8.3%) were MBL and KPC producers, respectively. Out of 15 MBL producers, 6 (40%) harbored bla (NDM-1), and 8 (61.5%) out of 13 colistin-resistant pathogens possessed mcr-1. The resistance by colistin- and carbapenem were statistically associated (P < .001). However, only 2 (18.2%) of the co-resistant bacteria were found to have both genes. Our study revealed the highly prevalent MDR and the carbapenem-resistant E. coli and emphasized that the pathogens possess a wide range of capabilities to synthesize β-lactamases. These findings could assist to expand the understanding of AR in terms of enzyme production.202336741474
1048140.9998Characterizing the co-existence of metallo-β-lactamase-producing and extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in community wastewater samples of Dhaka, Bangladesh. Escherichia coli and Klebsiella pneumoniae isolates with multiple antibiotic-resistance genes in wastewater pose serious public health risks, as they can potentially contaminate the food and water supply. The main aim of this study was to isolate and identify E. coli and K. pneumoniae from community wastewater samples, and determine their antibiotic-resistance profiles and their antibiotic-resistant genes. From the northern part of Dhaka, Bangladesh, 36 wastewater samples were collected across 11 different areas, which were then serially diluted, and cultured using selective media. Isolates were identified via polymerase chain reaction. Out of the 197 isolates identified, E. coli and K. pneumoniae accounted for 55.8% (n = 110) and 44.2% (n = 87), respectively. Antibiotic susceptibility tests revealed multidrug resistance (MDR) in 30% of E. coli and 35.56% of K. pneumoniae isolates. Among E. coli, the prevalence of antibiotic-resistance genes included bla(NDM-1) (8.9%), bla(SHV) (13.9%), and bla(CTX-M) (7.6%). In K. pneumoniae, the percentages were bla(NDM-1) (12.8%), bla(SHV) (4.3%), and bla(CTX-M) (5.0%). Co-existence of multiple antibiotic-resistance genes was observed in 4.54% of E. coli isolates (n = 5) and 5.74% of K. pneumoniae isolates (n = 5). This suggests the escalating issue of infectious species becoming increasingly resistant to antibiotics in wastewater systems.202540298266
1020150.9998Prevalence and characteristics of Escherichia coli strains producing extended-spectrum β -lactamases in slaughtered animals in the Czech Republic. Resistance of bacteria to antibiotics is a global medical problem requiring close cooperation between veterinary and human physicians. Raw materials and foods of animal origin may be not only a source of pathogenic bacteria causing alimentary tract infections but also a source of bacteria with a dangerous extent of resistance to antibiotics, potentially entering the human food chain. This article presents results of the first study in the Czech Republic detecting the presence of Enterobacteriaceae-producing extended-spectrum b -lactamases (ESBLs) in swabs collected in slaughterhouses from surfaces of healthy animal carcasses. In 2012, swabs taken from pig (n = 166) and cattle (n = 140) carcass surfaces were analyzed. In 17 % of 53 studied slaughterhouses, ESBL-producing Escherichia coli strains were isolated. ESBLs were found in 11 and 4 % of porcine and bovine samples, respectively. Swabs collected from pigs yielded 18 ESBL-producing E. coli strains. The bla genes were found to encode production of CTX-M-1 group enzymes in 16 strains, SHV in one case, and both CTX-M-1-like and TEM in another case. In swabs taken from cattle, five ESBL-producing E. coli strains were isolated. In three cases, the bla genes for CTX-M-1-like production were identified; in two cases, genes for both CTX-M-1-like and TEM production were found. The similarity/identity of ESBL-positive isolates was compared by pulsed-field gel electrophoresis. This is the first report and characterization of the presence and nature of ESBL-producing E. coli in swabs collected from surfaces of healthy pig and cattle carcasses in slaughterhouses in the Czech Republic.201324112579
990160.9998Resistance phenotype-genotype correlation and molecular epidemiology of Citrobacter, Enterobacter, Proteus, Providencia, Salmonella and Serratia that carry extended-spectrum β-lactamases with or without plasmid-mediated AmpC β-lactamase genes in Thailand. Extended-spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC β-lactamases (pAmpCs) have been increasingly reported among less commonly encountered genera of Enterobacteriaceae. However, little is known regarding the genetic characteristics of resistance genes and epidemiology of these genera. Lack of accurate ESBL and pAmpC detection may adversely affect therapeutic outcomes. This study investigated resistance phenotype-genotype correlation and molecular epidemiology among six genera of Enterobacteriaceae (Citrobacter, Enterobacter, Proteus, Providencia, Salmonella and Serratia) that carried ESBL with or without pAmpC genes at a university hospital in Thailand. From a total of 562 isolates, 105 isolates (18.7%) had ESBL-positive phenotype whilst 140 isolates (24.9%) harboured one or more ESBL genes. CTX-M and TEM were common ESBL-related bla genes among these isolates. The sensitivity and specificity of ESBL phenotypic detection as opposed to ESBL gene detection were 70.7% and 98.6%, respectively. pAmpC genes were detected in 96 ESBL gene-carrying isolates (68.6%) and significantly caused false negative detection of ESBL. Molecular typing based on pulsed-field gel electrophoresis revealed several clones that may be endemic in this hospital. This study indicated a high prevalence of ESBLs and pAmpCs among less common members of the family Enterobacteriaceae in Thailand and these resistant bacteria need to be monitored.201120880563
1019170.9998First Report of OXA-48 and IMP Genes Among Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolates from Diarrheic Calves in Tunisia. Antimicrobial resistance is one of the most serious threats to human and animal health. Evidence suggests that the overuse of antimicrobial agents in animal production has led to the emergence and dissemination of multidrug-resistant isolates. The objective of this study was to assess the rate of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in calf feces and to characterize their resistance genes for antibiotics like beta-lactams and colistin, but also to determine their virulence genes. Fecal samples were collected from 100 diarrheic calves in the region of Bizerte, Tunisia. After isolation, E. coli isolates were screened for antimicrobial resistance against 21 antibiotics by the disc diffusion method. Characterization of β-lactamase genes and determination of associated resistance genes were performed by polymerase chain reaction. Among 71 E. coli isolates, 26 (36.6%) strains were ESBL-producing. Most of these isolates were multidrug-resistant (92.3%) and the most prevalent beta-lactamase genes detected were bla(CTX-M) (n = 26), bla(SHV) (n = 11), and bla(TEM) (n = 8), whereas only 1 isolate carried the bla(CMY) gene. In addition, resistance to carbapenems was detected in two isolates; one of them harbored both bla(OXA-48) and bla(IMP) genes and the other isolate carried only the bla(IMP) gene. Several resistance genes were identified for the first time in Tunisia from cases of diarrheic calves. Furthermore, to the best of our knowledge, this is the first report of detection and identification of carbapenem resistance genes and virulence genes from calves in North Africa. A high occurrence of antimicrobial resistance of E. coli recovered from fecal samples of calves with diarrhea was observed, highlighting the need for prudent use of antimicrobial agents in veterinary medicine to decrease the incidence of multidrug-resistant bacteria for both animals and humans.202336695709
1056180.9998Multi-drug resistance and extended spectrum beta lactamase producing Gram negative bacteria from chicken meat in Bharatpur Metropolitan, Nepal. OBJECTIVE: Multidrug resistance (MDR) and extended spectrum beta lactamase (ESBL) producer Gram negative bacteria are considered as a major health problem, globally. ESBL enzyme hydrolyses the beta lactam ring of third generation cephalosporins, which alters the structure of the antibiotic. Due to the modification in structure of the antibiotic, bacteria show resistance to these antibiotics. Resistant bacterial strains are transmitted to humans from animals through consumption of uncooked meat, through contact with uncooked meat and meat surfaces. This study aims to assess bacteriological profile and analyze the situation of antibiotic resistance, multidrug resistance, and ESBL producing Gram negative bacteria in chicken meat. RESULTS: A total of 38 chicken meat samples were studied in which 103 Gram negative bacteria were isolated. Species of Gram negative bacteria were identified as Citrobacter spp. (44.7%), Salmonella spp. (26.2%), Proteus spp. (18.4%), Escherichia coli (4.8%), Shigella spp. (3.9%), Pseudomonas spp. (1.9%), and Klebsiella spp. (1.0%). The prevalence of MDR isolates was found to be 79.6%. Total ESBL producer was 36.9% and ESBL producer among MDR was 34.9%. This concludes wide range of antibiotic resistance bacteria is prevalent in raw chicken meat.201729116010
1053190.9998Antimicrobial Resistance and Extended-Spectrum Beta-Lactamase Genes in Enterobacterales, Pseudomonas and Acinetobacter Isolates from the Uterus of Healthy Mares. Antibiotic-resistant bacteria are a growing concern for human and animal health. The objective of this study was to determine the antimicrobial resistance and extended-spectrum beta-lactamase genes in Enterobacterales, Pseudomonas spp. and Acinetobacter spp. isolates from the uterus of healthy mares. For this purpose, 21 mares were swabbed for samples, which were later seeded on blood agar and MacConkey agar. The isolates were identified using MALDI-TOF and the antimicrobial susceptibility test was performed using the Kirby-Bauer technique. To characterize the resistance genes, a polymerase chain reaction (PCR) scheme was performed. Of the isolates identified as Gram-negative, 68.8% were Enterobacterales, represented by E. coli, Enterobacter cloacae, Citrobacter spp., and Klebsiella pneumoniae; 28.1% belonged to the genus Acinetobacter spp.; and 3.1% to Pseudomonas aeruginosa. A 9.3% of the isolates were multidrug-resistant (MDR), presenting resistance to antibiotics from three different classes, while 18.8% presented resistance to two or more classes of different antibiotics. The diversity of three genes that code for ESBL (bla(TEM), bla(CTX-M) and bla(SHV)) was detected in 12.5% of the strains. The most frequent was bla(SHV), while bla(TEM) and bla(CTX-M) were present in Citrobacter spp. and Klebsiella pneumoniae. These results are an alarm call for veterinarians and their environment and suggest taking measures to prevent the spread of these microorganisms.202337764953