# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1033 | 0 | 1.0000 | Antimicrobial Resistance and β-Lactamase Production in Clinically Significant Gram-Negative Bacteria Isolated from Hospital and Municipal Wastewater. Hospital and municipal wastewater contribute to the spread of antibiotic-resistant bacteria and genes in the environment. This study aimed to examine the antibiotic resistance and β-lactamase production in clinically significant Gram-negative bacteria isolated from hospital and municipal wastewater. The susceptibility of bacteria to antibiotics was tested using the disk diffusion method, and the presence of extended-spectrum β-lactamases (ESBL) and carbapenemases was determined using an enzyme inhibitor and standard multiplex PCR. Analysis of antimicrobial resistance of total bacterial strains (n = 23) revealed that most of them were resistant to cefotaxime (69.56%), imipenem (43.47%), meropenem (47.82%) and amoxicillin-clavulanate (43.47%), gentamicin (39.13%), cefepime and ciprofloxacin (34.78%), trimethoprim-sulfamethoxazole (30.43%). A total of 8 of 11 phenotypically confirmed isolates were found to have ESBL genes. The bla(TEM) gene was present in 2 of the isolates, while the bla(SHV) gene was found in 2 of the isolates. Furthermore, the bla(CTX-M) gene was found in 3 of the isolates. In one isolate, both the bla(TEM) and bla(SHV) genes were identified. Furthermore, of the 9 isolates that have been phenotypically confirmed to have carbapenemase, 3 were confirmed by PCR. Specifically, 2 isolates have the bla(OXA-48) type gene and 1 have the bla(NDM-1) gene. In conclusion, our investigation shows that there is a significant rate of bacteria that produce ESBL and carbapenemase, which can promote the spread of bacterial resistance. Identifying ESBL and carbapenemase production genes in wastewater samples and their resistance patterns can provide valuable data and guide the development of pathogen management strategies that could potentially help reduce the occurrence of multidrug resistance. | 2023 | 37107015 |
| 1034 | 1 | 1.0000 | Detection of metallo-beta-lactamase-producing genes bla(SPM) and bla(NDM) in Pseudomonas aeruginosa isolated from wastewater in Southern Brazil. Pseudomonas aeruginosa is commonly associated with the ability to acquire antimicrobial resistance. The surveillance of resistance genes in various environmental matrices has gained prominence in recent years, being seen as a potential threat to public health. The objective of this study was to investigate genes encoding metallo-beta-lactamases (MBLs), which confer resistance to carbapenems, in wastewater. Fifteen isolates of P. aeruginosa were collected for five months from samples obtained from a municipal wastewater treatment plant in Rio Grande do Sul. These isolates were subjected to disk diffusion testing using 10 different antimicrobials. Phenotypic enzymatic tests for MBLs were conducted, and positive isolates underwent DNA extraction and gene detection using the polymerase chain reaction. The resistance rate to ceftazidime was 100%, cefepime 73.3%, piperacillin-tazobactam 66.67%, imipenem 53.30%, levofloxacin 46.67%, tobramycin 40%, and ciprofloxacin and amikacin 13.33%. Both meropenem and aztreonam resistances were rare accounting for 6.60% of the tested isolates. Among these isolates, 20% were classified as multidrug-resistant and were found to carry the bla(NDM) and bla(SPM) genes. The results suggest that evaluating resistance genes in bacteria from urban raw sewage can provide data that assist in surveillance, as this environment can stimulate increased bacterial resistance. | 2024 | 38678422 |
| 1032 | 2 | 1.0000 | Molecular investigation of antibiotic resistant bacterial strains isolated from wastewater streams in Pakistan. Antibiotic resistance is a global public health issue and it is even more daunting in developing countries. The main objective of present study was to investigate molecular responses of antibiotic-resistant bacteria. The 48 bacterial strains, which were previously isolated and identified were subjected to disc diffusion and MIC (minimum inhibitory concentration) determination, followed by investigating the production of the three beta-lactamases (ESBLs (Extended-spectrum Beta-lactamases), MBLs (Metallo Beta-lactamases), AmpCs) and exploring prevalence of the two antibiotic-resistant genes (ARGs); blaTEM and qnrS. Higher MIC values were observed for penicillin(s) than that for fluoroquinolones (ampicillin > amoxicillin > ofloxacin > ciprofloxacin > levofloxacin). Resistance rates were high (58-89%) for all of the tested beta-lactams. Among the tested strains, 5 were ESBL producers (4 Aeromonas spp. and 1 Escherichia sp.), 2 were MBL producers (1 Stenotrophomonas sp. and 1 Citrobacter sp.) and 3 were AmpC producers (2 Pseudomonas spp. and 1 Morganella sp.). The ARGs qnrS2 and blaTEM were detected in Aeromonas spp. and Escherichia sp. The results highlighted the role of Aeromonas as a vector. The study reports bacteria of multidrug resistance nature in the wastewater environment of Pakistan, which harbor ARGs of clinical relevance and could present a public health concern. | 2020 | 32802720 |
| 1005 | 3 | 0.9999 | Prevalence and Characterization of Beta-Lactam and Carbapenem-Resistant Bacteria Isolated from Organic Fresh Produce Retailed in Eastern Spain. Fresh fruits and vegetables are potential reservoirs for antimicrobial resistance determinants, but few studies have focused specifically on organic vegetables. The present study aimed to determine the presence of third-generation cephalosporin (3GC)- and carbapenem-resistant Gram-negative bacteria on fresh organic vegetables produced in the city of Valencia (Spain). Main expanded spectrum beta-lactamase (ESBL)- and carbapenemase-encoding genes were also detected in the isolates. One hundred and fifteen samples were analyzed using selective media supplemented with cefotaxime and meropenem. Resistance assays for twelve relevant antibiotics in medical use were performed using a disc diffusion test. A total of 161 isolates were tested. Overall, 33.5% presented multidrug resistance and 16.8% were resistant to all β-lactam antibiotics tested. Imipenem resistance was observed in 18% of isolates, and low resistance levels were found to ceftazidime and meropenem. Opportunistic pathogens such as Acinetobacter baumannii, Enterobacter spp., Raoultella sp., and Stenotrophomonas maltophilia were detected, all presenting high rates of resistance. PCR assays revealed bla(VIM) to be the most frequently isolated ESBL-encoding gene, followed by bla(TEM) and bla(OXA-48). These results confirm the potential of fresh vegetables to act as reservoirs for 3GC- and carbapenem-producing ARB. Further studies must be carried out to determine the impact of raw organic food on the spread of AMRs into the community. | 2023 | 36830297 |
| 980 | 4 | 0.9999 | Phenotypic and Molecular Characterization of Extended-Spectrum β-Lactamase, Plasmid-Mediated- AmpC, and Carbapenemase-Producing Enterobacteriaceae Isolated from Companion and Production Animals in Brazil. The crisis of bacterial resistance is an emerging One Health challenge, driven by the overuse of antimicrobials in medical and agricultural settings. This study aimed to investigate extended-spectrum β-lactamase (ESBL), Ampicillinase (AmpC), and carbapenemase production, and the presence of genes encoding these enzymes in Escherichia coli, Klebsiella spp., and Proteus spp., major contributors to infections and resistance isolates from animals. From 2016 to 2021, 130 multidrug-resistant (MDR) or extensively drug-resistant (XDR) isolates were recovered from the secretions, excretions, and organs of companion and production animals with active infections. Antibacterial sensitivity tests, along with phenotypic and genotypic detection of resistance enzymes, were performed. To the best of our knowledge, this is the first study in Brazil to estimate the prevalence of XDR Enterobacteriales isolated from companion and production animals, which accounted for 13.8% of the strains. Statistically significant differences (P < 0.05) in resistant bacteria between different classes and within the same class of antibacterial bacteria were found. The statistical probability between genotypic detection of ESBL (OR = 3.1) and phenotypic tests for AmpC (OR = 2.3) was also established. Approximately 32.3%, 17.6%, and 16.8% of the strains had positive phenotypic tests for ESBL, AmpC, and carbapenemases, respectively. Genetic analysis revealed the presence of bla(CTX-M) (60.0%), bla(AmpC) (9.18%), bla(KPC-2) (0.76%), and bla(NDM) (1.52%). AmpC genes were identified in 8.46% of the samples, with bla(CMY) being the most frequent (6.92%), followed by bla(DHA) (0.77%), and bla(FOX) (0.77%). The sequenced amplicons were deposited in NCBI. This study reveals critical data on Enterobacteriaceae with antibacterial resistance genes isolated from animals and may pose a significant threat to One health. | 2025 | 39903315 |
| 1035 | 5 | 0.9999 | Multidrug resistance and transferability of blaCTX-M among extended-spectrum β-lactamase-producing enteric bacteria in biofilm. This study aimed to investigate the occurrence of biofilm-forming extended-spectrum β-lactamase (ESBL)-producing enteric bacteria in hospital wastewater and to evaluate their antibiotic resistance behaviour and transferability of the plasmid-encoded blaCTX-M gene in biofilm. ESBL production was confirmed using the combined disc test and Etest. Amplification of blaCTX-M was performed by PCR. Antibiotic susceptibility was evaluated using the disc diffusion assay and broth dilution method. Transfer of blaCTX-M in planktonic and biofilm state was performed by broth mating and filter mating experiments, respectively. Among 110 enteric bacteria, 24 (21.8%) isolates belonging to Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae were found to produce ESBL and formed varying levels of biofilm in vitro. Presence of blaCTX-M was detected in 18 (75%) ESBL-producing isolates. A many fold increase in resistance to antibiotics was observed in biofilm. Among ESBL-producers, seven isolates could transfer the blaCTX-M gene by conjugation, with transfer frequencies ranging from 2.22×10(-4) to 7.14×10(-2) transconjugants/recipient cell in the planktonic state and from 3.04×10(-3) to 9.15×10(-1) in biofilm. The transfer frequency of blaCTX-M was significantly higher in biofilm compared with the planktonic state, and co-transfer of ciprofloxacin resistance was also detected in five isolates. This study demonstrates that biofilm-forming ESBL-producing enteric bacteria with a greater transfer frequency of resistance genes will lead to frequent dissemination of β-lactam and fluoroquinolone resistance genes in environmental settings. The emergence and spread of such multidrug resistance is a serious threat to animal and public health. | 2016 | 27530857 |
| 1012 | 6 | 0.9999 | Antimicrobial resistance profile and prevalence of extended-spectrum beta-lactamases (ESBL), AmpC beta-lactamases and colistin resistance (mcr) genes in Escherichia coli from swine between 1999 and 2018. The frequent usage of antibiotics in livestock has led to the spread of resistant bacteria within animals and their products, with a global warning in public health and veterinarians to monitor such resistances. This study aimed to determine antibiotic resistance patterns and genes in pig farms from Spain during the last twenty years. Susceptibility to six antibiotics commonly used in pig production was tested by qualitative (disk diffusion) and quantitative (minimum inhibitory concentration, MIC) methods in 200 strains of Escherichia coli which had been isolated between 1999 and 2018 from clinical cases of diarrhoea in neonatal and post-weaned piglets. Results showed resistance around 100% for amoxicillin and tetracycline since 1999, and a progressive increase in ceftiofur resistance throughout the studied period. For colistin, it was detected a resistance peak (17.5% of the strains) in the 2011-2014 period. Concerning gentamicin, 11 of 30 strains with intermediate susceptibility by the disk diffusion method were resistant by MIC. Besides, the most frequent antimicrobial resistance genes were the extended-spectrum beta-lactamase (ESBL) bla (CTX-M) (13.5% of strains, being CTX-M-14, CTX-M-1 and CTX-M-32 the most prevalent genomes, followed by CTX-M-27, CTX-M-9 and CTX-M-3), AmpC-type beta-lactamase (AmpC) bla (CMY-2) (3%) and colistin resistance genes mcr-4 (13%), mcr-1 (7%) and in less proportion mcr-5 (3%). Interestingly, these mcr genes were already detected in strains isolated in 2000, more than a decade before their first description. However, poor concordance between the genotypic mcr profile and the phenotypical testing by MIC was found in this study. These results indicate that although being a current concern, resistance genes and therefore antimicrobial resistant phenotypes were already present in pig farms at the beginning of the century. | 2020 | 32266079 |
| 1057 | 7 | 0.9999 | Emergence of ciprofloxacin-resistant extended-spectrum β-lactamase-producing enteric bacteria in hospital wastewater and clinical sources. This study aimed to evaluate the incidence of ciprofloxacin-resistant extended-spectrum β-lactamase (ESBL)-producing enteric bacteria in hospital wastewater and clinical sources. Enteric bacteria, mainly Escherichia coli, were isolated from clinical sources (urinary tract and gastrointestinal tract infections; 80 isolates) and hospital wastewater (103 isolates). The antibiotic resistance profile and ESBL production of the isolates were investigated by disc diffusion assay and combined disc diffusion test, respectively. Plasmid profiling was performed by agarose gel electrophoresis, and elimination of resistance markers was performed by a plasmid curing experiment. Antibiotic susceptibility testing revealed a high incidence of β-lactam resistance, being highest to ampicillin (88.0%) followed by amoxicillin, ceftriaxone, cefpodoxime, cefotaxime, aztreonam, cefepime and ceftazidime. Among the non-β-lactam antibiotics, the highest resistance was recorded to nalidixic acid (85.7%). Moreover, 50.8% of enteric bacteria showed resistance to ciprofloxacin. Among 183 total enteric bacteria, 150 (82.0%) exhibited multidrug resistance. ESBL production was detected in 78 isolates (42.6%). A significantly higher incidence of ciprofloxacin resistance was observed among ESBL-producing enteric bacteria both in clinical (P=0.0015) and environmental isolates (P=0.012), clearly demonstrating a close association between ESBL production and ciprofloxacin resistance. Plasmid profiling of selected ESBL-positive strains indicated the presence of one or more plasmids of varying sizes. Plasmid curing resulted in loss of ciprofloxacin and cefotaxime resistance markers simultaneously from selected ESBL-positive isolates, indicating the close relationship of these markers. This study revealed a common occurrence of ciprofloxacin-resistant ESBL-producing enteric bacteria both in hospital wastewater and clinical sources, indicating a potential public health threat. | 2016 | 27436461 |
| 1058 | 8 | 0.9999 | First Detection of FOX-1 AmpC β-lactamase Gene Expression Among Escherichia coli Isolated from Abattoir Samples in Abakaliki, Nigeria. OBJECTIVES: Gram-negative bacteria represent the most relevant reservoir of resistance to antibiotics in the environment. The natural selection of resistant clones of bacteria in the environment by antimicrobial selective pressure is a relevant mechanism for spreading antibiotic resistance traits in both the community and hospital environment. This is in scenarios where antimicrobials are used irrationally, and even in the propagation of livestock, poultry birds, and for other veterinary purposes. This study sought to detect the prevalence of FOX-1 AmpC β-lactamase genes from abattoir samples. METHODS: The isolation of Escherichia coli, antimicrobial susceptibility testing, and β-lactamase characterization was carried out using standard microbiology techniques. The production of AmpC β-lactamase was phenotypically carried out using the cefoxitin-cloxacillin double-disk synergy test (CC-DDST), and FOX-1 AmpC genes was detected in the E. coli isolates using multiplex polymerase chain reaction. RESULTS: Forty-eight E. coli isolates were recovered from the anal swabs of cows and 35 (72.9%) isolates were positive for the production of β-lactamase. Notably, high percentages of resistance to cefoxitin (91.7%), ceftriaxone (83.3%), imipenem (85.4%), ceftazidime (87.5%), ofloxacin (81.3%), and gentamicin (85.4%) were found. FOX-1 genes were detected in three (6.3%) of the 48 E. coli isolates phenotypically screened for AmpC enzyme production. CONCLUSIONS: Abattoirs could represent a major reservoir of resistance genes especially AmpC β-lactamase, and this could serve as a route for the dissemination of multidrug-resistant bacteria in the community. Thus, the molecular identification of drug-resistant genes is vital for a reliable epidemiological investigation and the forestalling of the emergence and spread of these organisms through the food chain in this region. | 2018 | 29896333 |
| 1038 | 9 | 0.9999 | Isolation of Extended Spectrum β-lactamase (ESBL) Producing Bacteria from Urban Surface Waters in Malaysia. BACKGROUND: This was a preliminary study to test for the presence of multiple antibiotic-resistant extended spectrum β-lactamase (ESBL) producing bacteria in Malaysian urban surface waters. Although the literature review revealed several published papers on clinical ESBL isolates in Malaysia, none were found on ESBL isolates obtained from local surface waters. METHODS: Isolated bacterial species were tested for resistance to cefotaxime, amoxicillin/clavulanate and aztreonam, and susceptibility to imipenem and meropenem using antibiotic susceptibility testing (AST) by disc diffusion. This served as a screening step to detect bacteria that could be potential ESBL species. 16S ribose ribonucleic acid (rRNA) polymerase chain reaction (PCR) testing with two clusters of bla (β-lactamase) gene primers was used to test for the bla genes CTX-M (Groups 1, 2, 9), OXA-1, SHV and TEM. RESULTS: A total of 19 isolates were found, possessing at least one of the bla genes tested for. There was a relatively high occurrence of CTX-M genes (84.2%) among these, followed by TEM genes (47.4%). The isolates were identified as Enterobacteriaceae (89.5%), predominantly Escherichia coli and Klebsiella pneumoniae. CONCLUSION: There appears to be a high occurrence of ESBL-bacteria in local surface waters, among these being opportunistic pathogens. The persistence and spread of these species in the environment poses a threat to exposed human populations. | 2013 | 23966820 |
| 1059 | 10 | 0.9999 | Dissemination and phenotypic characterization of ESBL-producing Escherichia coli in Indonesia. BACKGROUND: The alarming rise in infections caused by extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in animals and humans poses a serious threat due to its escalating antibiotic resistance. Unveiling this problematic bacteria's prevalence and resistance patterns in animals is crucial for formulating effective control strategies and safeguarding public health. AIM: The purpose of this study was to analyze the expression of three main genes: blaCTX-M, blaSHV, and blaTEM, in ESBL-producing E. coli isolates from The Research Center for Veterinary Science and the National Research and Innovation Agency. Moreover, their resistance profiles against various antibiotics should be systematically evaluated. METHODS: Ninety-seven E. coli isolates from the bacteriology laboratory of The Research Center for Veterinary Science were identified on MacConkey medium supplemented with cefotaxime. The isolates were verified for the existence of the blaCTX-M, blaSHV, and blaTEM genes using PCR. Antimicrobial susceptibility testing was conducted using antibiotic discs following the CLSI standards. RESULTS: The prevalence of ESBL-producing E. coli in chicken ceca, eggs, and fish intestines was 16.5% (16/97). The specific genes detected were blaCTX-M gene at 93.75% (15/16), followed by the blaTEM gene, at 81.25% (13/16), and blaSHV at 25% (4/16). The antimicrobial sensitivity test results revealed that all ESBL-producing E. coli isolates had multidrug resistance 81.25% to 1-5 antibiotics and 18.75% to 6-7 antibiotics. The isolate exhibited 100% resistance to ampicillin and sulfamethoxazole, with exclusive sensitivity to chloramphenicol. CONCLUSION: The dominant gene in the ESBL-producing isolates was blaCTX-M. This bacterium is completely resistant to ampicillin and sulfamethoxazole, whereas it displays multidrug resistance to 1-7 different types of antibiotics. | 2025 | 40276175 |
| 1036 | 11 | 0.9999 | Detection of carbapenem resistance genes and cephalosporin, and quinolone resistance genes along with oqxAB gene in Escherichia coli in hospital wastewater: a matter of concern. AIMS: This study was performed to detect the presence of Escherichia coli resistant to cephalosporins, carbapenems and quinolones in hospital wastewater. METHODS AND RESULTS: Wastewaters from a rural (H1) and an urban (H2) hospital were tested for E. coli resistant to cephalosporins, carbapenem and quinolones. Genes coding for chromosomal and plasmid-mediated resistance and phylogenetic grouping was detected by multiplex polymerase chain reaction (PCR) and for genetic relatedness by rep-PCR. Of 190 (H1 = 94; H2 = 96) E. coli examined, 44% were resistant to both cephalosporins and quinolones and 3% to imipenem. ESBLs were detected phenotypically in 96% of the isolates, the gene blaCTX-M coding for 87% and blaTEM for 63%. Quinolone resistance was due to mutations in gyrA and parC genes in 97% and plasmid-coded aac-(6')-Ib-cr in 89% of isolates. Only in one carbapenem-resistant E. coli, NDM-1 was detected. Nearly 67% of the isolates belonged to phylogenetic group B2. There was no genetic relatedness among the isolates. CONCLUSIONS: Hospital wastewater contains genetically diverse multidrug-resistant E. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: This study stresses the need for efficient water treatment plants in healthcare settings as a public health measure to minimize spread of multidrug-resistant bacteria into the environment. | 2014 | 24975198 |
| 1039 | 12 | 0.9999 | Genetic Investigation of Beta-Lactam Associated Antibiotic Resistance Among Escherichia Coli Strains Isolated from Water Sources. BACKGROUND: Antimicrobial resistance is an important factor threatening human health. It is widely accepted that antibiotic resistant bacteria such as Escherichia coli (E. coli) released from humans and animals into the water sources, can introduce their resistance genes into the natural bacterial community. OBJECTIVE: The aim of this study was to investigate the prevalence of bla(TEM), bla(CTX), bla(SHV), bla(OXA) and bla(VEB) associated-antibiotic resistance among E. coli bacteria isolated from different water resources in Iran. METHODS: The study contained all E. coli strains segregated from different surface water sources. The Kirby-Bauer method and combined discs method was determined in this study for testing antimicrobial susceptibility and strains that produced Extended-Spectrum Beta Lactamases (ESBL), respectively. DNA extraction kit was applied for genomic and plasmid DNA derivation. Finally the frequency of resistant genes including bla(TEM), bla(CTX), bla(SHV), bla(OXA) and bla(VEB) in ESBL producing isolates were studied by PCR. RESULTS: One hundred E. coli strains were isolated and entered in the study. The highest antibiotic resistance was observed on clindamycin (96%). Moreover, 38.5% isolates were ESBL producers. The frequency of different ESBLs genes were 37%, 27%, 27%, and 25% for bla(TEM), bla(CTX), bla(SHV), and bla(OXA) , respectively. The bla(VEB) wasn't found in any isolates. CONCLUSION: The study revealed a high prevalence of CTX-M, TEM, SHV and OXA genes among E. coli strains in surface water resources. In conclusion, these results raised a concern regarding the presence and distribution of these threatening factors in surface water sources and its subsequent outcomes. | 2017 | 29151997 |
| 897 | 13 | 0.9999 | Prevalence of class 1 integrons and plasmid-mediated qnr-genes among Enterobacter isolates obtained from hospitalized patients in Ahvaz, Iran. Quinolones are frequently used classes of antimicrobials in hospitals, crucial for the treatment of infections caused by Gram-negative bacteria. The inappropriate use of quinolones and other antimicrobial agents for the treatment of bacterial infections leads to a significant increase of resistant isolates. The acquisition of antimicrobial resistance may be related to achievement of resistance determinant genes mediated by plasmids, transposons and gene cassettes in integrons. The objective of this cross-sectional study, conducted from December 2015 to July 2016 at two teaching hospitals in Ahvaz, southern Iran, was to screen for the presence of class 1 integrons and quinolone resistance genes in clinical isolates of Enterobacter spp. In all, 152 non-duplicated Enterobacter isolates were collected from clinical specimens and identified as Enterobacter spp. using standard microbiological methods. Antimicrobial susceptibility test was determined using the disc diffusion method according to the CLSI recommendation. Determination of class 1 integrons and PMQR genes was assessed by PCR. Analysis of antibiotic susceptibility tests showed that the highest antibiotic resistance was toward ciprofloxacin (55.3%), while the lowest level was observed against meropenem (34.9%). Moreover, 47.4% (72/152) and 29% (44/152) of isolates were positive for class 1 integron and quinolone resistance genes, respectively. The relative frequencies of antibiotic resistance were significantly higher among class 1 integron-positive isolates. In summary, our results highlight the importance of PMQR genes in the emergence of quinolone-resistant Enterobacter isolates. Moreover, it seems that class 1 integrons have a widespread distribution among Enterobacter isolates and have clinical relevance to multiple-drug-resistant isolates. | 2017 | 29286015 |
| 1015 | 14 | 0.9999 | Antimicrobial-resistant and extended-spectrum β-lactamase-producing Escherichia coli in raw cow's milk. The occurrence of antimicrobial-resistant bacteria is an important public health issue. The aim of this study was the monitoring of resistant Escherichia coli in raw cow's milk with a focus on the detection of extended-spectrum β-lactamase (ESBL)-producing strains. In total, 263 samples of raw milk from 40 farms were collected and investigated in 2010 to 2013 in the Czech Republic. Detection of E. coli was performed and evaluated according to ISO 16649-2, and antibiotic resistance was screened by the disk diffusion method. The presence of E. coli was detected in 243 (92.4%) samples. In total, 270 isolates were obtained. Resistance to β-lactam (31.8%) and tetracycline (13.0%) antibiotics was detected most often and also multiresistant strains (5.5%) were observed. E. coli isolates found to be resistant to β-lactam, tetracycline, and quinolone antibiotics were assayed by PCR to detect selected genes encoding those resistance mechanisms. In isolates in which any bla genes were detected, a double-disk synergy test was performed. ESBL production was confirmed in 2 (0.7%) isolates. The genetic analysis identified the presence of the blaCTX-M gene and other resistance genes (tet(B) and qnrB). Both ESBL-positive isolates originated from the same farm and had an identical pulsed-field gel electrophoresis profile. The findings of our study indicate that milk can be a reservoir of bacteria carrying resistance genes with a potential for spreading through the food chain. | 2015 | 25581180 |
| 1037 | 15 | 0.9999 | Genetic Background of β-Lactamases in Enterobacteriaceae Isolates from Environmental Samples. The prevalence of β-lactamase-producing Enterobacteriaceae has increased worldwide. Although antibiotic-resistant bacteria are usually associated with hospitals, there are a growing number of reports of resistant bacteria in other environments. Concern about resistant microorganisms outside the hospital setting highlights the need to investigate mechanisms of antibiotic resistance in isolates collected from the environment. The present study evaluated the resistance mechanism to β-lactam antibiotics in 40 isolates from hospital sewage and surface water from the Dilúvio Stream, Porto Alegre City, Southern Brazil. The multiplex PCR technique was used to detect several resistance genes of β-lactamases: extended-spectrum β-lactamases (ESBLs), carbapenemases, and β-lactamase AmpC. After genes, detection amplicons were sequenced to confirm their identification. The clonal relationship was established by DNA macrorestriction using the XbaI enzyme, followed by pulsed-field gel electrophoresis (PFGE). The results indicated that resistance genes were present in 85% of the isolates. The most prevalent genes encoded narrow-spectrum β-lactamase, such as TEM-1 and SHV-1 with 70% of the strains, followed by carbapenemase KPC and GES (45%), ESBL types SHV-5 and CTX-M-8 (27.5%), and AmpC (ACT-1/MIR-1) (2.5%). Twelve isolates contained only one resistance gene, 14 contained two, and eight isolates had three resistance genes. PFGE indicated a clonal relationship among K. pneumoniae isolates. It was not possible to establish a clonal relationship between Enterobacter sp. isolates. The results highlight the potential of these resistance genes to spread in the polluted environment and to present a health risk to communities. This report is the first description of these resistance genes present in environmental samples other than a hospital in the city of Porto Alegre/RS. | 2017 | 28378066 |
| 1004 | 16 | 0.9999 | Hospital Wastes as Potential Sources for Multi-Drug-Resistant ESBL-Producing Bacteria at a Tertiary Hospital in Ethiopia. The hospital environment is increasingly becoming an important reservoir for multi-drug-resistant (MDR) Gram-negative bacteria, posing serious challenges to efforts to combat antimicrobial resistance (AMR). This study aimed to investigate the role of hospital waste as a potential source of MDR ESBL-producing bacteria. Samples were collected from multiple sources within a hospital and its vicinity, including surface swabs, houseflies, and sewage samples. The samples were subsequently processed in a microbiology laboratory to identify potential pathogenic bacteria and confirmed using MALDI-TOF MS. Bacteria were isolated from 87% of samples, with the predominant isolates being E. coli (30.5%), Klebsiella spp. (12.4%), Providencia spp. (12.4%), and Proteus spp. (11.9%). According to the double disc synergy test (DDST) analysis, nearly half (49.2%) of the bacteria were identified as ESBL producers. However, despite exhibiting complete resistance to beta-lactam antibiotics, 11.8% of them did not test positive for ESBL production. The characterization of E. coli revealed that 30.6% and 5.6% of them carried blaCTX-M group 1 type-15 and blaNDM genes, respectively. This finding emphasizes the importance of proper hospital sanitation and waste management practices to mitigate the spread of AMR within the healthcare setting and safeguard the health of both patients and the wider community. | 2024 | 38667050 |
| 2142 | 17 | 0.9999 | Resistance to β-lactams and distribution of β-lactam resistance genes in subgingival microbiota from Spanish patients with periodontitis. OBJECTIVES: The aim of this study was to analyze the distribution of β-lactamase genes and the multidrug resistance profiles in β-lactam-resistant subgingival bacteria from patients with periodontitis. MATERIALS AND METHODS: Subgingival samples were obtained from 130 Spanish patients with generalized periodontitis stage III or IV. Samples were grown on agar plates with amoxicillin or cefotaxime and incubated in anaerobic and microaerophilic conditions. Isolates were identified to the species level by the sequencing of their 16S rRNA gene. A screening for the following β-lactamase genes was performed by the polymerase chain reaction (PCR) technique: bla(TEM), bla(SHV), bla(CTX-M), bla(CfxA), bla(CepA), bla(CblA), and bla(ampC). Additionally, multidrug resistance to tetracycline, chloramphenicol, streptomycin, erythromycin, and kanamycin was assessed, growing the isolates on agar plates with breakpoint concentrations of each antimicrobial. RESULTS: β-lactam-resistant isolates were found in 83% of the patients. Seven hundred and thirty-seven isolates from 35 different genera were obtained, with Prevotella and Streptococcus being the most identified genera. bla(CfxA) was the gene most detected, being observed in 24.8% of the isolates, followed by bla(TEM) (12.9%). Most of the isolates (81.3%) were multidrug-resistant. CONCLUSIONS: This study shows that β-lactam resistance is widespread among Spanish patients with periodontitis. Furthermore, it suggests that the subgingival commensal microbiota might be a reservoir of multidrug resistance and β-lactamase genes. CLINICAL RELEVANCE: Most of the samples yielded β-lactam-resistant isolates, and 4 different groups of bla genes were detected among the isolates. Most of the isolates were also multidrug-resistant. The results show that, although β-lactams may still be effective, their future might be hindered by the presence of β-lactam-resistant bacteria and the presence of transferable bla genes. | 2020 | 32495224 |
| 1019 | 18 | 0.9999 | First Report of OXA-48 and IMP Genes Among Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolates from Diarrheic Calves in Tunisia. Antimicrobial resistance is one of the most serious threats to human and animal health. Evidence suggests that the overuse of antimicrobial agents in animal production has led to the emergence and dissemination of multidrug-resistant isolates. The objective of this study was to assess the rate of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in calf feces and to characterize their resistance genes for antibiotics like beta-lactams and colistin, but also to determine their virulence genes. Fecal samples were collected from 100 diarrheic calves in the region of Bizerte, Tunisia. After isolation, E. coli isolates were screened for antimicrobial resistance against 21 antibiotics by the disc diffusion method. Characterization of β-lactamase genes and determination of associated resistance genes were performed by polymerase chain reaction. Among 71 E. coli isolates, 26 (36.6%) strains were ESBL-producing. Most of these isolates were multidrug-resistant (92.3%) and the most prevalent beta-lactamase genes detected were bla(CTX-M) (n = 26), bla(SHV) (n = 11), and bla(TEM) (n = 8), whereas only 1 isolate carried the bla(CMY) gene. In addition, resistance to carbapenems was detected in two isolates; one of them harbored both bla(OXA-48) and bla(IMP) genes and the other isolate carried only the bla(IMP) gene. Several resistance genes were identified for the first time in Tunisia from cases of diarrheic calves. Furthermore, to the best of our knowledge, this is the first report of detection and identification of carbapenem resistance genes and virulence genes from calves in North Africa. A high occurrence of antimicrobial resistance of E. coli recovered from fecal samples of calves with diarrhea was observed, highlighting the need for prudent use of antimicrobial agents in veterinary medicine to decrease the incidence of multidrug-resistant bacteria for both animals and humans. | 2023 | 36695709 |
| 2150 | 19 | 0.9999 | Analysis of drug resistance genes of integrons in clinical isolates of Escherichia coli from elderly bloodstream infections. This experiment was carried out to provide a basis for the treatment of clinical bloodstream infections by analyzing the drug resistance characteristics and integrated gene distribution of Escherichia coli in bloodstream infections in elderly patients. For this aim, E. coli were collected for bacterial identification and drug sensitivity testing from bloodstream infections in elderly patients in the hospital from January 2016 to December 2019. ESBLs positive strains were assayed for genotypes and their integron carriage rates by PCR amplification. The characteristics and differences of various genotype rates were compared and analyzed. Results showed that a total of 230 E. coli strains were isolated. The detection rate of ESBLs-producing bacteria was 37.39 %. ESBLs-producing E. coli showed a high rate of resistance to cefepime, levofloxacin, cotrimoxazole, and ticarcillin/clavulanic acid (>40%). The resistance rate of 230 strains of E. coli to meropenem, minocycline, amikacin, gentamicin and cefoxitin was less than 20%. Among the ESBLs-producing E. coli in bloodstream infections in elderly patients, CTX-M-9 accounted for 27.91%, CTX-M-2 for 17.44%, and SHV for 13.95%. The detection rate of type I integrated genes was 41.30%, and type II and III integrated genes were not detected. ESBLs-producing genotyping-positive bacteria were detected with more than 50% of type I integrated genes. It was concluded that type I integrated genes in ESBLs-producing E. coli isolated from elderly patients carried resistance genes such as CTX-M-9 and CTX-M-2 aggravating multi-drug resistance in bacteria. | 2022 | 36227675 |