# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1028 | 0 | 1.0000 | Antibiotic resistance and extended-spectrum β-lactamases in isolated bacteria from seawater of Algiers beaches (Algeria). The aim of the study was to evaluate bacterial antibiotic resistance in seawater from four beaches in Algiers. The most significant resistance rates were observed for amoxicillin and ticarcillin, whereas they were relatively low for ceftazidime, cefotaxime and imipenem. According to sampling sites, the highest resistance rates were recorded for 2 sites subjected to chemical and microbiological inputs (amoxicillin, 43% and 52%; ticarcillin, 19.6% and 47.7%), and for 2 sites relatively preserved from anthropogenic influence, resistance rates were lowest (amoxicillin, 1.5% and 16%; ticarcillin, 0.8% and 2.6%). Thirty-four bacteria resistant to imipenem (n=14) or cefotaxime (n=20) were identified as Pseudomonas aeruginosa (n=15), Pseudomonas fluorescens (7), Stenotrophomonas maltophilia (4), Burkholderia cepacia (2), Bordetella sp. (1), Pantoea sp. (1), Acinetobacter baumannii (1), Chryseomonas luteola (1), Ochrobactrum anthropi (1) and Escherichia coli (1). Screening for extended spectrum β-lactamase showed the presence of CTX-M-15 β-lactamase in the E. coli isolate, and the encoding gene was transferable in association with the IncI1 plasmid of about 50 kbp. Insertion sequence ISEcp1B was located upstream of the CTX-M-15 gene. This work showed a significant level of resistance to antibiotics, mainly among environmental saprophytic bacteria. Transmissible CTX-M-15 was detected in E. coli; this may mean that contamination of the environment by resistant bacteria may cause the spread of resistance genes. | 2012 | 22095134 |
| 1057 | 1 | 0.9999 | Emergence of ciprofloxacin-resistant extended-spectrum β-lactamase-producing enteric bacteria in hospital wastewater and clinical sources. This study aimed to evaluate the incidence of ciprofloxacin-resistant extended-spectrum β-lactamase (ESBL)-producing enteric bacteria in hospital wastewater and clinical sources. Enteric bacteria, mainly Escherichia coli, were isolated from clinical sources (urinary tract and gastrointestinal tract infections; 80 isolates) and hospital wastewater (103 isolates). The antibiotic resistance profile and ESBL production of the isolates were investigated by disc diffusion assay and combined disc diffusion test, respectively. Plasmid profiling was performed by agarose gel electrophoresis, and elimination of resistance markers was performed by a plasmid curing experiment. Antibiotic susceptibility testing revealed a high incidence of β-lactam resistance, being highest to ampicillin (88.0%) followed by amoxicillin, ceftriaxone, cefpodoxime, cefotaxime, aztreonam, cefepime and ceftazidime. Among the non-β-lactam antibiotics, the highest resistance was recorded to nalidixic acid (85.7%). Moreover, 50.8% of enteric bacteria showed resistance to ciprofloxacin. Among 183 total enteric bacteria, 150 (82.0%) exhibited multidrug resistance. ESBL production was detected in 78 isolates (42.6%). A significantly higher incidence of ciprofloxacin resistance was observed among ESBL-producing enteric bacteria both in clinical (P=0.0015) and environmental isolates (P=0.012), clearly demonstrating a close association between ESBL production and ciprofloxacin resistance. Plasmid profiling of selected ESBL-positive strains indicated the presence of one or more plasmids of varying sizes. Plasmid curing resulted in loss of ciprofloxacin and cefotaxime resistance markers simultaneously from selected ESBL-positive isolates, indicating the close relationship of these markers. This study revealed a common occurrence of ciprofloxacin-resistant ESBL-producing enteric bacteria both in hospital wastewater and clinical sources, indicating a potential public health threat. | 2016 | 27436461 |
| 1031 | 2 | 0.9998 | Beta-lactams resistance and presence of class 1 integron in Pseudomonas spp. isolated from untreated hospital effluents in Brazil. The aim of the present study was to investigate the resistance profile, to detect the presence of beta-lactam resistance genes, phenotypic expression of efflux pump systems and class 1 integrons in Pseudomonas spp. strains obtained from untreated hospital effluents. Effluent samples were collected from four hospitals in Porto Alegre, RS, Brazil. Pseudomonas were isolated on MacConkey agar plates and the identification was confirmed by 16S rRNA PCR and biochemical tests. Susceptibility testing was determined by disk-diffusion method using 11 different beta-lactams and MIC assays were performed on isolates resistant to imipenem and ceftazidime. The beta-lactamase genes bla (IMP), bla (VIM), bla (SPM-1), bla (OXA-23-like), bla (OXA-24-like), bla (OXA-51-like) and the intl1 gene from class 1 integron were analysed by PCR. One hundred and twenty-four isolates were recovered and the most common species was Pseudomonas pseudoalcaligenes. The resistance found among the isolates was considered high, 62 (50%) isolates were multiresistant. No isolate carrying the beta-lactamase genes tested was found among the strains. Seven isolates showed reduction of MIC for imipenem and ceftazidime in the presence of cyanide m-chlorophenylhydrazone, indicating the hyper expression of efflux pumps. From the 124 isolates, 52 (41.9%) were identified as carrying the class 1 integron gene, intI1. Untreated hospital effluents could be a source of environmental contamination due to discharge of antimicrobial resistant bacteria which can carry integron class 1 and act as a reservoir of resistance genes and have efflux pump systems. | 2012 | 22382676 |
| 1025 | 3 | 0.9998 | Detection of Extended Spectrum Beta-Lactamases Resistance Genes among Bacteria Isolated from Selected Drinking Water Distribution Channels in Southwestern Nigeria. Extended Spectrum Beta-Lactamases (ESBL) provide high level resistance to beta-lactam antibiotics among bacteria. In this study, previously described multidrug resistant bacteria from raw, treated, and municipal taps of DWDS from selected dams in southwestern Nigeria were assessed for the presence of ESBL resistance genes which include bla TEM, bla SHV, and bla CTX by PCR amplification. A total of 164 bacteria spread across treated (33), raw (66), and municipal taps (68), belonging to α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Flavobacteriia, Bacilli, and Actinobacteria group, were selected for this study. Among these bacteria, the most commonly observed resistance was for ampicillin and amoxicillin/clavulanic acid (61 isolates). Sixty-one isolates carried at least one of the targeted ESBL genes with bla TEM being the most abundant (50/61) and bla CTX being detected least (3/61). Klebsiella was the most frequently identified genus (18.03%) to harbour ESBL gene followed by Proteus (14.75%). Moreover, combinations of two ESBL genes, bla SHV + bla TEM or bla CTX + bla TEM, were observed in 11 and 1 isolate, respectively. In conclusion, classic bla TEM ESBL gene was present in multiple bacterial strains that were isolated from DWDS sources in Nigeria. These environments may serve as foci exchange of genetic traits in a diversity of Gram-negative bacteria. | 2016 | 27563674 |
| 1029 | 4 | 0.9998 | Phylogenetic relationships, virulence and antimicrobial resistance properties of Klebsiella sp. isolated from pet turtles in Korea. Klebsiella sp. are responsible for a multitude of infectious diseases in both humans and animals. In this study, phylogenetic relationships, virulence and antimicrobial resistance gene properties of 16 Klebsiella sp. isolated from 49 pet turtles were investigated. The isolates including Klebsiella oxytoca (n = 13) and Klebsiella pneumoniae (n = 3) were identified using 16S rRNA gene sequencing and each species formed distinct clusters in the neighbour-joining phylogenetic tree. The prevalence of virulence genes including ureC (100%) and kfu (68·75%) was observed among the isolates using Polymerase chain reaction (PCR) assay. The fimH, mrkD and rmpA genes were detected in all K. pneumoniae while these were absent in every K. oxytoca isolate. In antimicrobial susceptibility testing, high resistance rates were observed against ampicillin (100%) and cephalothin (62·50%). The resistance rates against imipenem, tetracycline, trimethoprim/sulfamethoxazole, nalidixic acid and ciprofloxacin were 12·50, 12·50, 12·50, 6·25 and 6·25% respectively. The presence of antimicrobial resistance genes such as plasmid-mediated quinolone resistance (PMQR) [qnrB (37·50%), qnrA (31·25%), qnrS (12·50%) and aac(6')-Ib-cr (12·50%)], extended-spectrum β-lactamase (ESBL) [bla(CTX-M) (18·75%)], β-lactamase [bla(SHV-1) (18·75%)] and tetracycline resistance [tetE (12·50%)] was observed. The results revealed that pet turtle-borne Klebsiella sp. may carry different types of virulence and antimicrobial resistance genes which represents a potential threat to public health. SIGNIFICANCE AND IMPACT OF THE STUDY: Klebsiella sp. are nonmotile Gram-negative bacteria that are found in different environments. The virulence and antimicrobial resistance properties of pet turtle-borne Klebsiella sp. have not been studied before. Phylogenetic relationships, virulence traits and antimicrobial resistance profiles of pet turtle-borne Klebsiella sp. were characterized for the first time in Korea. Multiple virulence and antimicrobial resistance genes were observed among the isolates. The occurrence of virulence and antimicrobial resistance determinants in Klebsiella sp. may represent a potential threat to public health. | 2020 | 31671218 |
| 1033 | 5 | 0.9998 | Antimicrobial Resistance and β-Lactamase Production in Clinically Significant Gram-Negative Bacteria Isolated from Hospital and Municipal Wastewater. Hospital and municipal wastewater contribute to the spread of antibiotic-resistant bacteria and genes in the environment. This study aimed to examine the antibiotic resistance and β-lactamase production in clinically significant Gram-negative bacteria isolated from hospital and municipal wastewater. The susceptibility of bacteria to antibiotics was tested using the disk diffusion method, and the presence of extended-spectrum β-lactamases (ESBL) and carbapenemases was determined using an enzyme inhibitor and standard multiplex PCR. Analysis of antimicrobial resistance of total bacterial strains (n = 23) revealed that most of them were resistant to cefotaxime (69.56%), imipenem (43.47%), meropenem (47.82%) and amoxicillin-clavulanate (43.47%), gentamicin (39.13%), cefepime and ciprofloxacin (34.78%), trimethoprim-sulfamethoxazole (30.43%). A total of 8 of 11 phenotypically confirmed isolates were found to have ESBL genes. The bla(TEM) gene was present in 2 of the isolates, while the bla(SHV) gene was found in 2 of the isolates. Furthermore, the bla(CTX-M) gene was found in 3 of the isolates. In one isolate, both the bla(TEM) and bla(SHV) genes were identified. Furthermore, of the 9 isolates that have been phenotypically confirmed to have carbapenemase, 3 were confirmed by PCR. Specifically, 2 isolates have the bla(OXA-48) type gene and 1 have the bla(NDM-1) gene. In conclusion, our investigation shows that there is a significant rate of bacteria that produce ESBL and carbapenemase, which can promote the spread of bacterial resistance. Identifying ESBL and carbapenemase production genes in wastewater samples and their resistance patterns can provide valuable data and guide the development of pathogen management strategies that could potentially help reduce the occurrence of multidrug resistance. | 2023 | 37107015 |
| 1032 | 6 | 0.9998 | Molecular investigation of antibiotic resistant bacterial strains isolated from wastewater streams in Pakistan. Antibiotic resistance is a global public health issue and it is even more daunting in developing countries. The main objective of present study was to investigate molecular responses of antibiotic-resistant bacteria. The 48 bacterial strains, which were previously isolated and identified were subjected to disc diffusion and MIC (minimum inhibitory concentration) determination, followed by investigating the production of the three beta-lactamases (ESBLs (Extended-spectrum Beta-lactamases), MBLs (Metallo Beta-lactamases), AmpCs) and exploring prevalence of the two antibiotic-resistant genes (ARGs); blaTEM and qnrS. Higher MIC values were observed for penicillin(s) than that for fluoroquinolones (ampicillin > amoxicillin > ofloxacin > ciprofloxacin > levofloxacin). Resistance rates were high (58-89%) for all of the tested beta-lactams. Among the tested strains, 5 were ESBL producers (4 Aeromonas spp. and 1 Escherichia sp.), 2 were MBL producers (1 Stenotrophomonas sp. and 1 Citrobacter sp.) and 3 were AmpC producers (2 Pseudomonas spp. and 1 Morganella sp.). The ARGs qnrS2 and blaTEM were detected in Aeromonas spp. and Escherichia sp. The results highlighted the role of Aeromonas as a vector. The study reports bacteria of multidrug resistance nature in the wastewater environment of Pakistan, which harbor ARGs of clinical relevance and could present a public health concern. | 2020 | 32802720 |
| 1150 | 7 | 0.9998 | Occurrence of multidrug resistance associated with extended-spectrum β‑lactamase and the biofilm forming ability of Escherichia coli in environmental swine husbandry. Extended-spectrum beta-lactamase (ESBL) production and biofilm formation are mechanisms employed by Escherichia coli to resist beta-lactam antibiotics. Thus, we aimed to examine antibiotic resistance associated with ESBL production and biofilm formation in E. coli isolates from swine farms in Southern Thailand. In total, 159 E. coli isolates were obtained, with 44 isolates identified as ESBL producers, originating from feces (18.87 %) and wastewater (8.80 %) samples. All ESBL-producing strains exhibited resistance to ampicillin (100 %), followed by the cephalosporin group (97.73 %) and tetracycline (84.09 %). Multidrug resistance was observed in 17 isolates (38.63 %). Among the isolates from feces samples, the bla(GES) gene was the most prevalent, detected in 90 % of the samples, followed by bla(CTX-M9) (86.67 %) and bla(CTX-M1) (66.67 %), respectively. In the bacteria isolated from wastewater, both bla(GES) and bla(CTX-M9) genes were the predominant resistance genes, detected in 100 % of the isolates, followed by bla(CTX-M1) (64.29 %) and bla(TEM) (50 %), respectively. Strong biofilm formation was observed in 11 isolates (36.67 %) from feces and 4 isolates (25.57 %) from wastewater samples. Notably, nearly 100 % of ESBL-producing strains isolated from feces tested positive for both pgaA and pgaC genes, which play a role in intracellular adhesion and biofilm production. These findings contribute to the understanding and potential control of ESBL-producing E. coli, and the dissemination of antibiotic resistance and biofilm-related genes in swine farms. | 2023 | 37976973 |
| 1027 | 8 | 0.9998 | Identification of CTX-M-15 and CTX-M-27 in Antibiotic-Resistant Gram-Negative Bacteria Isolated from Three Rivers Running in Central Italy. The main goal of this study was to identify Gram-negative bacteria resistant to antibiotics, in particular β-lactams, in stream waters and effluents from urban wastewater treatment plants draining into Fino, Tavo, and Saline rivers of the Abruzzo region, Italy. Eight sampling sites were selected because they were the most contaminated by coliforms during previous sampling campaign. One sample for each site was collected for the detection of total and fecal coliforms, Escherichia coli and Enterococcus species by Colilert-18 and Enterolert-E Quanti-Tray/2000. Antibiotic-resistant bacteria, selected on ampicillin and cefotaxime-supplemented agar plates, were identified by EnteroPluri test systems and then confirmed by MALDI-TOF. The resistant determinants were identified and characterized by PCR and sequencing. The microbiological analysis allowed to detect E. coli, total coliforms, fecal coliforms, and enterococci with a coefficient of variation of 215.7%, 212.8%, 242.5%, and 188.5%, respectively. Several Gram-negative bacteria were identified: Serratia liquefaciens, E. coli, Enterobacter cloacae, Citrobacter freundii, Raoultella ornithinolytica, Acinetobacter johnsonii, Aeromonas veronii, Aeromonas hydrophila, and Pseudomonas koreensis. All strains possessed class 1 integrons, insertion sequences, and genes encoding for serin- and metallo-β-lactamases. Extended-spectrum β-lactamases, such as CTX-M-15 and CTX-M-27, were found in Enterobacteriaceae, whereas CphA metallo-β-lactamase was found in A. veronii and A. hydrophila. The main resistance's mechanism to β-lactams observed among the analyzed strains is represented by the production of serin β-lactamases (CTX-M-15, CTX-M-27, and SHV-1) and metallo β-lactamase (CphA). | 2019 | 30994417 |
| 1015 | 9 | 0.9998 | Antimicrobial-resistant and extended-spectrum β-lactamase-producing Escherichia coli in raw cow's milk. The occurrence of antimicrobial-resistant bacteria is an important public health issue. The aim of this study was the monitoring of resistant Escherichia coli in raw cow's milk with a focus on the detection of extended-spectrum β-lactamase (ESBL)-producing strains. In total, 263 samples of raw milk from 40 farms were collected and investigated in 2010 to 2013 in the Czech Republic. Detection of E. coli was performed and evaluated according to ISO 16649-2, and antibiotic resistance was screened by the disk diffusion method. The presence of E. coli was detected in 243 (92.4%) samples. In total, 270 isolates were obtained. Resistance to β-lactam (31.8%) and tetracycline (13.0%) antibiotics was detected most often and also multiresistant strains (5.5%) were observed. E. coli isolates found to be resistant to β-lactam, tetracycline, and quinolone antibiotics were assayed by PCR to detect selected genes encoding those resistance mechanisms. In isolates in which any bla genes were detected, a double-disk synergy test was performed. ESBL production was confirmed in 2 (0.7%) isolates. The genetic analysis identified the presence of the blaCTX-M gene and other resistance genes (tet(B) and qnrB). Both ESBL-positive isolates originated from the same farm and had an identical pulsed-field gel electrophoresis profile. The findings of our study indicate that milk can be a reservoir of bacteria carrying resistance genes with a potential for spreading through the food chain. | 2015 | 25581180 |
| 1034 | 10 | 0.9998 | Detection of metallo-beta-lactamase-producing genes bla(SPM) and bla(NDM) in Pseudomonas aeruginosa isolated from wastewater in Southern Brazil. Pseudomonas aeruginosa is commonly associated with the ability to acquire antimicrobial resistance. The surveillance of resistance genes in various environmental matrices has gained prominence in recent years, being seen as a potential threat to public health. The objective of this study was to investigate genes encoding metallo-beta-lactamases (MBLs), which confer resistance to carbapenems, in wastewater. Fifteen isolates of P. aeruginosa were collected for five months from samples obtained from a municipal wastewater treatment plant in Rio Grande do Sul. These isolates were subjected to disk diffusion testing using 10 different antimicrobials. Phenotypic enzymatic tests for MBLs were conducted, and positive isolates underwent DNA extraction and gene detection using the polymerase chain reaction. The resistance rate to ceftazidime was 100%, cefepime 73.3%, piperacillin-tazobactam 66.67%, imipenem 53.30%, levofloxacin 46.67%, tobramycin 40%, and ciprofloxacin and amikacin 13.33%. Both meropenem and aztreonam resistances were rare accounting for 6.60% of the tested isolates. Among these isolates, 20% were classified as multidrug-resistant and were found to carry the bla(NDM) and bla(SPM) genes. The results suggest that evaluating resistance genes in bacteria from urban raw sewage can provide data that assist in surveillance, as this environment can stimulate increased bacterial resistance. | 2024 | 38678422 |
| 1038 | 11 | 0.9998 | Isolation of Extended Spectrum β-lactamase (ESBL) Producing Bacteria from Urban Surface Waters in Malaysia. BACKGROUND: This was a preliminary study to test for the presence of multiple antibiotic-resistant extended spectrum β-lactamase (ESBL) producing bacteria in Malaysian urban surface waters. Although the literature review revealed several published papers on clinical ESBL isolates in Malaysia, none were found on ESBL isolates obtained from local surface waters. METHODS: Isolated bacterial species were tested for resistance to cefotaxime, amoxicillin/clavulanate and aztreonam, and susceptibility to imipenem and meropenem using antibiotic susceptibility testing (AST) by disc diffusion. This served as a screening step to detect bacteria that could be potential ESBL species. 16S ribose ribonucleic acid (rRNA) polymerase chain reaction (PCR) testing with two clusters of bla (β-lactamase) gene primers was used to test for the bla genes CTX-M (Groups 1, 2, 9), OXA-1, SHV and TEM. RESULTS: A total of 19 isolates were found, possessing at least one of the bla genes tested for. There was a relatively high occurrence of CTX-M genes (84.2%) among these, followed by TEM genes (47.4%). The isolates were identified as Enterobacteriaceae (89.5%), predominantly Escherichia coli and Klebsiella pneumoniae. CONCLUSION: There appears to be a high occurrence of ESBL-bacteria in local surface waters, among these being opportunistic pathogens. The persistence and spread of these species in the environment poses a threat to exposed human populations. | 2013 | 23966820 |
| 2774 | 12 | 0.9998 | Resistome in Lake Bolonha, Brazilian Amazon: Identification of Genes Related to Resistance to Broad-Spectrum Antibiotics. Resistance to antibiotics is one of the most relevant public health concerns in the world. Aquatic environments play an important role because they are reservoirs for antibiotic resistance genes and antibiotic-resistant strains, contributing to the spread of resistance. The present study investigated the resistome in Lake Bolonha (three sampling sites) in the Amazon region using a metagenomics approach and culture-dependent methods. Whole-metagenome-based results showed that the most abundant phyla were Protobacteria, Actinobacteria, Firmicutes, Bacteroidetes and Cyanobacteria. The composition of the resistome demonstrated that the genes that confer resistance to β-lactams were prevalent at all sampling sites, followed by genes conferring resistance to aminoglycosides and tetracycline. Acquired genes encoding extended-spectrum β-lactamases (e.g., bla (CTX-M)) and resistance to carbapenems (e.g., bla (IMP) and bla (VIM)) were detected through metagenome analysis. Bacteria were isolated from culture medium supplemented with cefotaxime or imipenem, and isolates were identified and analyzed for their antibiotic susceptibility profiles and resistance genes. In total, 98 bacterial isolates belonging to the genera Pseudomonas (37), Acinetobacter (32), Klebsiella (13), Enterobacter (9), Pantoe (3), Stenotrophomonas (3), and Methylobacterium (1) were obtained. Among isolates, the most abundant genes were bla (CTX-M) (28.3%), bla (SHV) (22.6%) and bla (TEM) (18.8%) in isolates from cefotaxime-supplemented medium and bla (VIM) (28.8%) and bla (IMP) (22.2%) in isolates recovered from imipenem-supplemented medium. The genes intl1 and intl2 were detected in 19.3% and 7.1% of isolates. Antibiograms showed that 94.9% (from cefotaxime-supplemented medium) and 85.7% (from imipenem-supplemented medium) of the isolates were multidrug resistant. Besides cefotaxime and imipenem, isolates were mostly resistant to aztreonam (91.8%), amoxicillin (98.8%), ampicillin (82.6%), and nalidixic acid (77.5%). Hence, the present study demonstrates that Lake Bolonha is a reservoir of bacteria resistant to antibiotics and resistance genes, some of which are of critical importance to human health. | 2020 | 32117110 |
| 2776 | 13 | 0.9998 | Isolation and genotypic characterization of extended-spectrum beta-lactamase-producing Escherichia coli O157:H7 and Aeromonas hydrophila from selected freshwater sources in Southwest Nigeria. The proliferation of antibiotic-resistant bacteria and antimicrobial resistance is a pressing public health challenge because of their possible transfer to humans via contact with polluted water sources. In this study, three freshwater resources were assessed for important physicochemical characteristics as well as heterotrophic and coliform bacteria and as potential reservoirs for extended-spectrum beta-lactamase (ESBL) strains. The physicochemical characteristics ranged from 7.0 to 8.3; 25 to 30 °C, 0.4 to 93 mg/L, 0.53 to 8.80 mg/L and 53 to 240 mg/L for pH, temperature, dissolved oxygen (DO), biological oxygen demand (BOD(5)) and total dissolved solids, respectively. The physicochemical characteristics mostly align with guidelines except for the DO and BOD(5) in some instances. Seventy-six (76) Aeromonas hydrophila and 65 Escherichia coli O157: H7 isolates were identified by preliminary biochemical analysis and PCR from the three sites. Among these, A. hydrophila displayed higher frequencies of antimicrobial resistance, with all 76 (100%) isolates completely resistant to cefuroxime and cefotaxime and with MARI ≥ 0.61. The test isolates showed more than 80% resistance against five of the ten test antimicrobials, with resistance against cefixime, a cephalosporin antibiotic being the highest at 95% (134/141). The frequency of the detection of the resistance genes in the A. hydrophila isolates generally ranged between 0% (bla(SHV)) and 26.3% (bla(CTX-M)), while the frequency of detection among the E. coli O157:H7 isolates ranged between 4.6% (bla(CTX-M)) and 58.4% (bla(TEM)). Our findings indicate that the distribution of antibiotic-resistant bacteria with diverse ESBL-producing capabilities and virulence genes in freshwater sources potentially threatens public health and the environment. | 2023 | 37400612 |
| 1026 | 14 | 0.9998 | Analysis of Wastewater Reveals the Spread of Diverse Extended-Spectrum β-Lactamase-Producing E. coli Strains in uMgungundlovu District, South Africa. Wastewater treatment plants (WWTPs) are major reservoirs of antibiotic-resistant bacteria (ARB), favouring antibiotic resistance genes (ARGs) interchange among bacteria and they can provide valuable information on ARB circulating in a community. This study characterised extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli from the influent and effluent of four WWTPs in uMgungundlovu District, KwaZulu-Natal, South Africa. E. coli was enumerated using the membrane filtration method and confirmed using the API 20E test and real-time polymerase chain reaction. ESBL-producers were phenotypically identified by their susceptibility to the third-generation cephalosporins using the disc diffusion and the double-disc synergy methods against cefotaxime (30 µg) with and without 10 µg clavulanic acid. Genotypic verification was by PCR of the TEM, SHV, and CTX-M genes. The clonality of isolates was assessed by ERIC-PCR. The highest E. coli count ranged between 1.1 × 10(5) (influent) and 4.3 × 10(3) CFU/mL (effluent). Eighty pure isolates were randomly selected, ten from the influent and effluent of each of the four WWTP. ESBLs were phenotypically confirmed in 49% (n = 39) of the isolates, of which 77% (n = 30) were genotypically confirmed. Seventy-three percent of the total isolates were multidrug-resistant (MDR). Only two isolates were susceptible to all antibiotics. Overall, resistance to first and second-generation cephalosporins was higher than to third and fourth generation cephalosporins. Also, 15% of the isolates were resistant to carbapenems. The CTX-M-type ESBL (67%; n = 20) was the most common ESBL antibiotic resistance gene (ARG) followed by TEM (57%; n = 17) and SHV-types (27%; n = 8). Also, a substantial number of isolates simultaneously carried all three ESBL genes. ERIC-PCR revealed a high diversity of isolates. The diversity of the isolates observed in the influent samples suggest the potential circulation of different ESBL-producing strains within the studied district, requiring a more comprehensive epidemiological study to prevent the spread of ESBL-producing bacteria within impoverished communities. | 2021 | 34356780 |
| 1121 | 15 | 0.9998 | Occurrence of the genes encoding carbapenemases, ESBLs and class 1 integron-integrase among fermenting and non-fermenting bacteria from retail goat meat. The present study was planned to detect the genes encoding carbapenemases, ESBLs and class 1 integron-integrase among bacteria obtained from retail goat meat. Fermenting and non-fermenting bacterial isolates (n = 57), recovered from 61 goat meat samples, were identified by 16S rRNA gene sequencing. Antimicrobial susceptibility of isolates was tested by the broth dilution method using ceftazidime, cefotaxime, meropenem and imipenem. Plasmids were isolated and tested for their physical characters. Plasmids were subjected to screening of carbapenemase, ESBL and intI1 gene. Conjugation assay was performed using bla(NDM) -positive isolates as the donor, and Escherichia coli HB101 as the recipient. Isolates showed the high rates of resistance to ceftazidime (77·2%), cefotaxime (70·2%), meropenem (22·8%) and imipenem (17·5%). They showed variability in number and size (~1 to >20 kb) of plasmids. Among all, 1, 4, 13 and 31 isolates showed the bla(KPC) , bla(NDM) , bla(SHV) and bla(TEM) genes, respectively. The bla(KPC-2) gene was observed in one E. coli isolate. The bla(NDM-1) gene was detected in Stenotrophomonas maltophilia (n = 2), Acinetobacter baumannii (n = 1) and Ochrobactrum anthropi (n = 1) isolates. These isolates co-harboured the bla(TEM) and bla(SHV) genes. The intI1 gene was detected in 22 (38·6%) isolates, and 16 of these isolates showed the carbapenemase and/or ESBL genes. The conjugative movement of bla(NDM) gene could not be proved after three repetitive mating experiments. The presence of genes encoding carbapenemases and ESBLs in bacteria from goat meat poses public health risks. | 2020 | 32767781 |
| 2772 | 16 | 0.9998 | Antibiotic Resistance in Pseudomonas spp. Through the Urban Water Cycle. Selection and dissemination of resistant bacteria and antibiotic resistance genes (ARGs) require a deeper understanding since antibiotics are permanently released to the environment. The objective of this paper was to evaluate the phenotypic resistance of 499 isolates of Pseudomonas spp. from urban water sources, and the prevalence of 20 ARGs within those isolates. Resistance to penicillins, cephalosporins, carbapenems, quinolones, macrolides, and tetracyclines was mainly observed in the hospital effluent, municipal wastewater and river water downstream the city. Resistant strains were frequently identified as P. aeruginosa and P. putida. P. aeruginosa isolates were mostly resistant to cefepime, ceftazidime, imipenem, and gentamycin, while P. putida strains were especially resistant to piperacillin-tazobactam. ARGs such as bla(TEM-1), bla(SHV-1), bla(PER-1), bla(AmpC), bla(VIM-1), PstS, qnrA, qnrB, ermB, tetA, tetB and tetC have been detected. The bla(AmpC) gene was found in P. aeruginosa, while bla(TEM-1) and bla(PER-1) genes were found in P. putida. Class 1 integron integrase gene was found in 6.81% of the Pseudomonas isolates. | 2021 | 33625570 |
| 1048 | 17 | 0.9998 | Characterizing the co-existence of metallo-β-lactamase-producing and extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in community wastewater samples of Dhaka, Bangladesh. Escherichia coli and Klebsiella pneumoniae isolates with multiple antibiotic-resistance genes in wastewater pose serious public health risks, as they can potentially contaminate the food and water supply. The main aim of this study was to isolate and identify E. coli and K. pneumoniae from community wastewater samples, and determine their antibiotic-resistance profiles and their antibiotic-resistant genes. From the northern part of Dhaka, Bangladesh, 36 wastewater samples were collected across 11 different areas, which were then serially diluted, and cultured using selective media. Isolates were identified via polymerase chain reaction. Out of the 197 isolates identified, E. coli and K. pneumoniae accounted for 55.8% (n = 110) and 44.2% (n = 87), respectively. Antibiotic susceptibility tests revealed multidrug resistance (MDR) in 30% of E. coli and 35.56% of K. pneumoniae isolates. Among E. coli, the prevalence of antibiotic-resistance genes included bla(NDM-1) (8.9%), bla(SHV) (13.9%), and bla(CTX-M) (7.6%). In K. pneumoniae, the percentages were bla(NDM-1) (12.8%), bla(SHV) (4.3%), and bla(CTX-M) (5.0%). Co-existence of multiple antibiotic-resistance genes was observed in 4.54% of E. coli isolates (n = 5) and 5.74% of K. pneumoniae isolates (n = 5). This suggests the escalating issue of infectious species becoming increasingly resistant to antibiotics in wastewater systems. | 2025 | 40298266 |
| 1177 | 18 | 0.9998 | High carriage of plasmid-mediated quinolone resistance (PMQR) genes by cefotaxime-resistant Escherichia coli recovered from surface-leaking sanitary sewers. There is a rapid rise in the incidence of quinolone resistant bacteria in Nigeria. Most studies in Nigeria have focused on isolates from the clinical settings, with few focusing on isolates of environmental origin. This study aimed to investigate the antibiogram and carriage of plasmid-mediated quinolone resistance (PMQR) genes by quinolone-resistant isolates obtained from a pool of cefotaxime-resistant Escherichia coli (E. coli) recovered from sewage leaking out of some surface-leaking sanitary sewers in a University community in Nigeria. Isolation of E. coli from the sewage samples was done on CHROMagar E. coli, after enrichment of the samples was done in Brain Heart Infusion broth amended with 6 µg/mL of cefotaxime. Identification of presumptive E. coli was done using molecular methods (detection of uidA gene), while susceptibility to antibiotics was carried out using the disc diffusion method. Detection of PMQR genes (qnrA, qnrB, qnrS, aac(6')-lb-cr, qepA and oqxAB) was carried out using primer-specific PCR. A total of 32 non-repetitive cefotaxime-resistant E. coli were obtained from the sewage, with 21 being quinolone-resistant. The quinolone-resistant isolates showed varying level of resistance to the tested antibiotics, with imipenem being the only exception with 0% resistance. The PMQR genes: aac(6')-lb-cr, qnrA, qnrB, qnrS and qepA and oqxAB were detected in 90.5%, 61.9%, 47.6%, 38.1%, 4.8% and 0% respectively of the isolates. The findings of this study showed a high level of resistance to antibiotics and carriage of PMQR genes by quinolone-resistant E. coli obtained from the leaking sanitary sewers, suggesting a potential environmental and public health concern. | 2022 | 35000007 |
| 1178 | 19 | 0.9998 | Molecular Characterization of Plasmid-Mediated Quinolone Resistance Genes in Multidrug-Resistant Escherichia coli Isolated From Wastewater Generated From the Hospital Environment. AIM: This study investigated the carriage of Plasmid-Mediated Quinolone Resistance (PMQR) genes in fluoroquinolone-resistant Escherichia coli recovered from wastewater generated by healthcare institutions. MATERIALS AND METHODS: Isolation of fluoroquinolone-resistant Escherichia coli was done on medium supplemented with 1 µg/mL of ciprofloxacin (a fluoroquinolone). Presumptive isolates were identified via the detection of uidA gene. Susceptibility of the isolates to a panel of antibiotics was done using disc diffusion method. Detection of PMQR genes in the isolates was done using primer-specific PCR. RESULTS: Thirty fluoroquinolone-resistant Escherichia coli were obtained from the wastewater over a period of 6 months. The resistance to each of the antibiotic tested was: ampicillin (100%), ceftriaxone (100%), nalidixic acid (100%), tetracycline (96.7%), cefotaxime (96.7%), amoxicillin-clavulanate (80%), gentamicin (60%), cefoxitin (30%), and imipenem (3.3%). The Multiple Antibiotic Resistance Index (MARI) ranged from 0.6 to 0.9. The detection of PMQR genes in the 30 isolates was: qnrA (76.7%), qnrB (53.3%), qnrS (63.3%), aac(6')-lb-cr (43.3%), and qepA (43.3%). All the fluoroquinolone-resistant Escherichia coli carried at least one PMQR determinant. CONCLUSION: This study revealed that untreated hospital wastewaters are significant hub of multidrug-resistant and fluoroquinolone-resistant Escherichia coli, showing high carriage of PMQR genes, and may be a major contributor to the resistome of fluoroquinolone-resistant bacteria in the Nigerian environment. | 2025 | 40552214 |