The detection of extensive-spectrum beta-lactamase (ESBL) producing genes in Escherichia coli strains, isolated from apparently healthy and enteric pet birds. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
102101.0000The detection of extensive-spectrum beta-lactamase (ESBL) producing genes in Escherichia coli strains, isolated from apparently healthy and enteric pet birds. In this study, totally, 295 cloacal swabs were collected from apparently healthy (195 swabs) and enteric (100 swabs) pet birds. After identification of Escherichia coli (E. coli) strains, to determining the E. coli producing extensive-spectrum beta-lactamase (ESBL) (EPE) strains, double disc synergy test was applied. TEM, CTX and SHV genes were detected in strains known as EPE phenotypically. The results showed that the detection rate of EPE strains in enteric birds is higher than apparently healthy birds (25.6 vs. 16.2%). The CTX gene was the highest ESBL gene. The SHV gene was not detected in any of E. coli strains. Furthermore, the ceftazidime and cefotaxime resistant E. coli strains were contained in the CTX gene. By considering the possibility of transmitting these genes along with other resistance genes to other bacteria, it can be stated that pet birds can be the source of transmission of resistance genes to human.202436966490
102010.9999Prevalence and characteristics of Escherichia coli strains producing extended-spectrum β -lactamases in slaughtered animals in the Czech Republic. Resistance of bacteria to antibiotics is a global medical problem requiring close cooperation between veterinary and human physicians. Raw materials and foods of animal origin may be not only a source of pathogenic bacteria causing alimentary tract infections but also a source of bacteria with a dangerous extent of resistance to antibiotics, potentially entering the human food chain. This article presents results of the first study in the Czech Republic detecting the presence of Enterobacteriaceae-producing extended-spectrum b -lactamases (ESBLs) in swabs collected in slaughterhouses from surfaces of healthy animal carcasses. In 2012, swabs taken from pig (n = 166) and cattle (n = 140) carcass surfaces were analyzed. In 17 % of 53 studied slaughterhouses, ESBL-producing Escherichia coli strains were isolated. ESBLs were found in 11 and 4 % of porcine and bovine samples, respectively. Swabs collected from pigs yielded 18 ESBL-producing E. coli strains. The bla genes were found to encode production of CTX-M-1 group enzymes in 16 strains, SHV in one case, and both CTX-M-1-like and TEM in another case. In swabs taken from cattle, five ESBL-producing E. coli strains were isolated. In three cases, the bla genes for CTX-M-1-like production were identified; in two cases, genes for both CTX-M-1-like and TEM production were found. The similarity/identity of ESBL-positive isolates was compared by pulsed-field gel electrophoresis. This is the first report and characterization of the presence and nature of ESBL-producing E. coli in swabs collected from surfaces of healthy pig and cattle carcasses in slaughterhouses in the Czech Republic.201324112579
101920.9999First Report of OXA-48 and IMP Genes Among Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolates from Diarrheic Calves in Tunisia. Antimicrobial resistance is one of the most serious threats to human and animal health. Evidence suggests that the overuse of antimicrobial agents in animal production has led to the emergence and dissemination of multidrug-resistant isolates. The objective of this study was to assess the rate of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in calf feces and to characterize their resistance genes for antibiotics like beta-lactams and colistin, but also to determine their virulence genes. Fecal samples were collected from 100 diarrheic calves in the region of Bizerte, Tunisia. After isolation, E. coli isolates were screened for antimicrobial resistance against 21 antibiotics by the disc diffusion method. Characterization of β-lactamase genes and determination of associated resistance genes were performed by polymerase chain reaction. Among 71 E. coli isolates, 26 (36.6%) strains were ESBL-producing. Most of these isolates were multidrug-resistant (92.3%) and the most prevalent beta-lactamase genes detected were bla(CTX-M) (n = 26), bla(SHV) (n = 11), and bla(TEM) (n = 8), whereas only 1 isolate carried the bla(CMY) gene. In addition, resistance to carbapenems was detected in two isolates; one of them harbored both bla(OXA-48) and bla(IMP) genes and the other isolate carried only the bla(IMP) gene. Several resistance genes were identified for the first time in Tunisia from cases of diarrheic calves. Furthermore, to the best of our knowledge, this is the first report of detection and identification of carbapenem resistance genes and virulence genes from calves in North Africa. A high occurrence of antimicrobial resistance of E. coli recovered from fecal samples of calves with diarrhea was observed, highlighting the need for prudent use of antimicrobial agents in veterinary medicine to decrease the incidence of multidrug-resistant bacteria for both animals and humans.202336695709
102330.9999Common presence of plasmid encoding bla(CTX-M-55) in extended-spectrum β-lactamase-producing Salmonella enterica and Escherichia coli isolates from the same edible river fish. The transmission of potentially life-threatening plasmid-mediated antibiotic-resistant bacteria poses a major threat to public health. This study aimed to determine the presence of commonly observed plasmids encoding plasmid-mediated antibiotic-resistance genes in Salmonella and Escherichia coli isolates from fishery products. Eighty river fishes were purchased from retail stores and supermarkets in Vietnam. Only Salmonella-positive fishes were used for antibiotic-resistant E. coli isolation. Salmonella serotyping was performed using Salmonella antisera. Isolated bacterial DNA was extracted, and antibiotic susceptibility, resistance genes, and replicon typing were determined. Our results showed that Salmonella was isolated from 12.5% (10/80) of the river fishes. Cefotaxime-resistant Salmonella was isolated from 3.8% (3/80) of the fishes and colistin-resistant Salmonella from 1.3% (1/80) . Salmonella serotyping revealed Potsdam, Schwarzengrund, Bardo/Newport, Give, Infantis, Kentucky, and Typhimurium. Multiplex polymerase chain reaction revealed the presence of extended-spectrum β-lactamase-related genes bla(CTX-M-55) and bla(CTX-M-65) and the colistin resistance gene mcr-1. To date, no study has reported an antibiotic-resistance plasmid present in multiple bacteria collected from the same food. Thus, horizontal transmission of antibiotic-resistance plasmids may occur at the food level.202337394527
101540.9999Antimicrobial-resistant and extended-spectrum β-lactamase-producing Escherichia coli in raw cow's milk. The occurrence of antimicrobial-resistant bacteria is an important public health issue. The aim of this study was the monitoring of resistant Escherichia coli in raw cow's milk with a focus on the detection of extended-spectrum β-lactamase (ESBL)-producing strains. In total, 263 samples of raw milk from 40 farms were collected and investigated in 2010 to 2013 in the Czech Republic. Detection of E. coli was performed and evaluated according to ISO 16649-2, and antibiotic resistance was screened by the disk diffusion method. The presence of E. coli was detected in 243 (92.4%) samples. In total, 270 isolates were obtained. Resistance to β-lactam (31.8%) and tetracycline (13.0%) antibiotics was detected most often and also multiresistant strains (5.5%) were observed. E. coli isolates found to be resistant to β-lactam, tetracycline, and quinolone antibiotics were assayed by PCR to detect selected genes encoding those resistance mechanisms. In isolates in which any bla genes were detected, a double-disk synergy test was performed. ESBL production was confirmed in 2 (0.7%) isolates. The genetic analysis identified the presence of the blaCTX-M gene and other resistance genes (tet(B) and qnrB). Both ESBL-positive isolates originated from the same farm and had an identical pulsed-field gel electrophoresis profile. The findings of our study indicate that milk can be a reservoir of bacteria carrying resistance genes with a potential for spreading through the food chain.201525581180
101850.9999Antimicrobial Resistance and Prevalence of Extended Spectrum β-Lactamase-Producing Escherichia coli from Dogs and Cats in Northeastern China from 2012 to 2021. (1) Background: there has been a growing concern about pet-spread bacterial zoonosis in recent years. This study aimed to investigate the trend in drug-resistance of canine Escherichia coli isolates in northeast China between 2012-2021 and the differences in drug-resistance of E. coli of different origins in 2021. (2) Methods: E. coli were isolated from feces or anal swab samples from dogs and cats, and their antibiotic susceptibility profiles and phylogenetic grouping were identified. PCR was applied on the extended spectrum β-lactamase (ESBL) E. coli for antibiotic resistance genes. (3) Results: five hundred and fifty-four E. coli isolates were detected in 869 samples (63.75%). The multidrug resistance (MDR) rates of E. coli in pet dogs showed a decreasing trend, but working dogs showed the opposite trend. Resistance genes bla(CTX-M) and bla(CTX-M+TEM) were dominant among the ESBL producers (n = 219). The consistency between the resistance phenotypes and genes was high except for fluoroquinolone-resistant ESBL E. coli. All ESBL E. coli-carrying bla(NDM) were isolated from working dogs, and one of the strains carried mcr-1 and bla(NDM-4). Phylogroup B2 was the dominant group in pet cats, and more than half of the isolates from companion cats were ESBL E. coli. (4) Conclusions: the measures taken to reduce resistance in China were beginning to bear fruit. Companion cats may be more susceptible to colonization by ESBL E. coli. The problem of resistant bacteria in working dogs and pet cats warrants concern.202236358160
101460.9998Contamination of retail market meat with extended-spectrum beta-lactamase genes in Vietnam. The contamination of retail meat with antibiotic-resistant bacteria poses a substantial public health risk because of the potential spread of these bacteria within communities. The contamination of retail meat with extended-spectrum beta-lactamase (ESBL)-producing bacteria was investigated in four cities in Vietnam using real-time PCR, employing ESBL marker genes. This method provides a more comprehensive assessment of ESBL-producing bacterial contamination in meat samples than culture-based methods because it directly detects resistance genes from the extracted sample DNA. Retail meats in Vietnam were substantially contaminated with ESBL genes [54 % (n = 46) and 48 % (n = 49) of chicken and pork samples, respectively]. No significant differences in ESBL gene detection rates were observed between chicken and pork. The most frequently detected ESBL gene was blaTEM, followed by blaSHV, whereas blaCTX-M was found in only 4-8 % of the samples. Ho Chi Minh City showed significantly higher contamination rates for both chicken and pork than those in other cities. ESBL-producing Escherichia coli strains were isolated from contaminated meat samples and genomically analyzed. All isolated strains carried blaCTX-M, with some harboring blaTEM, whereas blaSHV was not detected. Although IncFIB plasmids were prevalent among the ESBL-producing E. coli strains, the variability in resistance gene profiles suggested that the endemic spread of specific resistance gene-carrying plasmids was unlikely. Overall, these findings highlight the effectiveness of the ESBL gene detection method and the high levels of ESBL-producing E. coli in retail meat.202539827751
104670.9998Extended-spectrum β-lactamases producing multidrug resistance Escherichia coli, Salmonella and Klebsiella pneumoniae in pig population of Assam and Meghalaya, India. AIM: The present study was conducted to record the prevalence of extended spectrum β-lactamases (ESBLs) producing Escherichia coli, Salmonella spp., and Klebsiella pneumoniae from pig population of Assam and Meghalaya and to record the ability of the resistant bacteria to transfer the resistance genes horizontally. MATERIALS AND METHODS: Fecal samples (n=228), collected from pigs of Assam (n=99) and Meghalaya (n=129), were processed for isolation and identification of E. coli and Salmonella spp. All the isolates were tested for ESBLs production by double disc synergy test (DDST) followed by screening for ESBLs producing genes (bla(TEM), bla(SHV), bla(CTX-M), and bla(CMY)) by polymerase chain reaction (PCR). Possible transfer of resistance encoding genes between enteric bacterial species was carried out by in vitro and in vivo horizontal gene transfer (HGT) method. RESULTS: A total of 897 enteric bacteria (867 E. coli and 30 Salmonella) were isolated and identified. Altogether 25.41% isolates were confirmed as ESBL producers by DDST method. Majority of the isolates were E. coli followed by Salmonella. By PCR, 9.03% isolates were found positive for at least one of the target resistance genes. bla(SHV) was absent in all the isolates. bla(CMY) was the most prevalent gene. All the E. coli isolates from Assam were negative for bla(TEM). A total of 2.76% isolates were positive for bla(TEM) + bla(CMY). On the other hand, 0.67% isolates were positive for bla(CTX-M) + bla(CMY) genes. Only 0.33% isolates carried all the three genes. Altogether, 4.68% bacteria carried the resistance encoding genes in their plasmids. bla(TEM) gene could be successfully transferred from Salmonella (donor) to E. coli (recipient) by in vitro (5.5-5.7×10(-5)) and in vivo (6.5×10(-5) to 8.8×10(-4)) methods. In vivo method was more effective than in vitro in the transfer of resistance genes. CONCLUSION: The pig population of Assam and Meghalaya are carrying multidrug resistance and ESBLs producing E. coli and Salmonella. The isolates are also capable to transfer their resistance trait to other bacterial species by HGT. The present finding could be considered as a serious public health concern as similar trait can also be transmitted to the human commensal bacteria as well as pathogens.201830034183
161180.9998Molecular Typing of Enterobacteriaceae from Pig Holdings in North-Western Germany Reveals Extended- Spectrum and AmpC β-Lactamases Producing but no Carbapenem Resistant Ones. The increase of extended- spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) in humans and in food-producing animals is of public health concern. The latter could contribute to spreading of these bacteria or their resistance genes to humans. Several studies have reported the isolation of third generation cephalosporin resistant bacteria in livestock animals. However, the number of samples and the methodology used differ considerably between studies limiting comparability and prevalence assessment. In the present study, a total of 564 manure and dust samples were collected from 47 pig farms in Northern Germany and analysed to determine the prevalence of ESBL-E. Molecular typing and characterization of resistance genes was performed for all ESBL-E isolates. ESBL-E isolates were found in 55.3% of the farms. ESBL-Escherichia coli was found in 18.8% of the samples, ESBL-Klebsiella pneumoniae in 0.35%. The most prevalent ESBL genes among E. coli were CTX-M-1 like (68.9%), CTX-M-15 like (16%) and CTX-M-9 group (14.2%). In 20% of the latter two, also the OXA-1 like gene was found resulting in a combination of genes typical for isolates from humans. Genetic relation was found between isolates not only from the same, but also from different farms, with multilocus sequence type (ST) 10 being predominant among the E. coli isolates. In conclusion, we showed possible spread of ESBL-E between farms and the presence of resistance genes and STs previously shown to be associated with human isolates. Follow-up studies are required to monitor the extent and pathways of ESBL-E transmission between farms, animals and humans.201526225428
102290.9998Characterization of Beta-lactamases in Faecal Enterobacteriaceae Recovered from Healthy Humans in Spain: Focusing on AmpC Polymorphisms. The intestinal tract is a huge reservoir of Enterobacteriaceae, some of which are opportunist pathogens. Several genera of these bacteria harbour intrinsic antibiotic resistance genes, such as ampC genes in species of Citrobacter, Enterobacter or Escherichia genera. In this work, beta-lactamases and other resistance mechanisms have been characterized in Enterobacteriaceae isolates recovered from healthy human faecal samples, focusing on the ampC beta-lactamase genes. Fifty human faecal samples were obtained, and 70 Enterobacteriaceae bacteria were isolated: 44 Escherichia coli, 4 Citrobacter braakii, 9 Citrobacter freundii, 8 Enterobacter cloacae, 1 Proteus mirabilis, 1 Proteus vulgaris, 1 Klebsiella oxytoca, 1 Serratia sp. and 1 Cronobacter sp. A high percentage of resistance to ampicillin was detected (57%), observing the AmpC phenotype in 22 isolates (31%) and the ESBL phenotype in 3 isolates. AmpC molecular characterization showed high diversity into bla CMY and bla ACT genes from Citrobacter and Enterobacter species, respectively, and the pulsed-field gel electrophoresis (PFGE) analysis demonstrated low clonality among them. The prevalence of people colonized by strains carrying plasmid-mediated ampC genes obtained in this study was 2%. The unique plasmid-mediated bla AmpC identified in this study was the bla CMY-2 gene, detected in an E. coli isolate ascribed to the sequence type ST405 which belonged to phylogenetic group D. The hybridization and conjugation experiments demonstrated that the ISEcp1-bla CMY-2-blc structure was carried by a ~78-kb self-transferable IncK plasmid. This study shows a high polymorphism among beta-lactamase genes in Enterobacteriaceae from healthy people microbiota. Extensive AmpC-carrier studies would provide important information and could allow the anticipation of future global health problems.201525501887
1097100.9998CTX-M-producing Escherichia coli Isolated from urban pigeons (Columba livia domestica) in Brazil. INTRODUCTION: Worldwide urban pigeons (Columba livia domestica) are an important reservoir of pathogenic and multidrug-resistant bacteria (MDR). Plasmids are key genetic elements in the dissemination of antimicrobial drug resistance in bacteria, including beta-lactams and quinolones, which are the most important classes of drugs for treatment of Enterobacteriaceae infections in human and veterinary medicine. The aim of this study was to determine the presence of Escherichia coli (E. coli) harboring plasmids containing extend-spectrum (ESBL) and pAmpC beta-lactamases, also plasmid-mediated quinolone resistance (PMQR) genes in urban pigeons from São Paulo State, Brazil. METHODOLOGY: A collection of 107 isolates of E. coli from urban pigeons from four cities was screened by antimicrobial resistance phenotypic and PCR for genes encoding ESBL, pAmpC and PMQR genes. Clonality was evaluated by ERIC-PCR. RESULTS: We found three strains positive for blaCTX-M genes. In two clonally related CTX-M-8-producing strains, the gene was associated with IncI1 plasmids. An MDR strain harboring blaCTX-M-2, the plasmid could not be transferred. No strain was positive for PMQR genes. CONCLUSION: These results indicate that CTX-M-2 and CTX-M-8-producing E. coli are present in urban pigeons, which could serve as a reservoir for ESBL-producing E. coli in Brazil.201932087078
1011110.9998Mechanisms of cephalosporin resistance in indicator Escherichia coli isolated from food animals. Resistance to β-lactams is considered one of the major global problems and recently it became the most frequently studied topic in the area of antimicrobial resistance. The study was focused on phenotypic and genetic characterisation of commensal Escherichia coli (E. coli), including those producing cephalosporinases, isolated from gut flora of healthy slaughter animals. E. coli were cultured simultaneously on MacConkey agar (MCA) and cefotaxime supplemented MCA. The isolates were confirmed with ONPG and indol tube tests as well as PCR targeting uspA gene. Microbroth dilution method was applied for determination of Minimal Inhibitory Concentrations and interpreted according to EUCAST epidemiological cut-off values. Cephalosporin resistance phenotypes were defined by E-tests (BioMerieux) and relevant gene amplicons from selected strains were sequenced. A total of 298 E. coli isolates with cephalosporin resistance (ESC) found in 99 ones, were obtained from 318 cloacal or rectal swabs deriving from broilers, layers, turkeys, pigs and cattle. Both extended spectrum β-lactamase (ESBL) and ampC-cephalosporinase resistance phenotypes were noted in all tested animal species but cattle. At least one of the analysed genes was identified in 90 out of 99 cephalosporin-resistant isolates: bla(TEM) (n=44), bla(CMY) (n=38), bla(CTX-M) (n=33) and bla(SHV) (n=12). None of the phenotypes was identified in nine isolates. Sequencing of PCR products showed occurrence of ESBL-genes: bla(CTX-M-1/-61), bla(SHV-12), bla(TEM-1,-52/-92,-135) and ampC-gene bla(CMY-2). They were located on numerous and diverse plasmids and resistance transferability was proved by electroporation of bla(SHV-12) and bla(CTX-M-1/-61) located on X1 plasmids. Detection of cephalosporin resistant E. coli confirms the existence of resistance genes reservoir in farm animals and their possible spread (i.e. via IncX1 plasmids) to other bacteria including human and animal pathogens. The identified genetic background indicates on ecological aspects of selection and dissemination of cephalosporin resistance in E. coli isolated from food-producing animals rather than its potential role for public health threats.201626869096
1039120.9998Genetic Investigation of Beta-Lactam Associated Antibiotic Resistance Among Escherichia Coli Strains Isolated from Water Sources. BACKGROUND: Antimicrobial resistance is an important factor threatening human health. It is widely accepted that antibiotic resistant bacteria such as Escherichia coli (E. coli) released from humans and animals into the water sources, can introduce their resistance genes into the natural bacterial community. OBJECTIVE: The aim of this study was to investigate the prevalence of bla(TEM), bla(CTX), bla(SHV), bla(OXA) and bla(VEB) associated-antibiotic resistance among E. coli bacteria isolated from different water resources in Iran. METHODS: The study contained all E. coli strains segregated from different surface water sources. The Kirby-Bauer method and combined discs method was determined in this study for testing antimicrobial susceptibility and strains that produced Extended-Spectrum Beta Lactamases (ESBL), respectively. DNA extraction kit was applied for genomic and plasmid DNA derivation. Finally the frequency of resistant genes including bla(TEM), bla(CTX), bla(SHV), bla(OXA) and bla(VEB) in ESBL producing isolates were studied by PCR. RESULTS: One hundred E. coli strains were isolated and entered in the study. The highest antibiotic resistance was observed on clindamycin (96%). Moreover, 38.5% isolates were ESBL producers. The frequency of different ESBLs genes were 37%, 27%, 27%, and 25% for bla(TEM), bla(CTX), bla(SHV), and bla(OXA) , respectively. The bla(VEB) wasn't found in any isolates. CONCLUSION: The study revealed a high prevalence of CTX-M, TEM, SHV and OXA genes among E. coli strains in surface water resources. In conclusion, these results raised a concern regarding the presence and distribution of these threatening factors in surface water sources and its subsequent outcomes.201729151997
1012130.9998Antimicrobial resistance profile and prevalence of extended-spectrum beta-lactamases (ESBL), AmpC beta-lactamases and colistin resistance (mcr) genes in Escherichia coli from swine between 1999 and 2018. The frequent usage of antibiotics in livestock has led to the spread of resistant bacteria within animals and their products, with a global warning in public health and veterinarians to monitor such resistances. This study aimed to determine antibiotic resistance patterns and genes in pig farms from Spain during the last twenty years. Susceptibility to six antibiotics commonly used in pig production was tested by qualitative (disk diffusion) and quantitative (minimum inhibitory concentration, MIC) methods in 200 strains of Escherichia coli which had been isolated between 1999 and 2018 from clinical cases of diarrhoea in neonatal and post-weaned piglets. Results showed resistance around 100% for amoxicillin and tetracycline since 1999, and a progressive increase in ceftiofur resistance throughout the studied period. For colistin, it was detected a resistance peak (17.5% of the strains) in the 2011-2014 period. Concerning gentamicin, 11 of 30 strains with intermediate susceptibility by the disk diffusion method were resistant by MIC. Besides, the most frequent antimicrobial resistance genes were the extended-spectrum beta-lactamase (ESBL) bla (CTX-M) (13.5% of strains, being CTX-M-14, CTX-M-1 and CTX-M-32 the most prevalent genomes, followed by CTX-M-27, CTX-M-9 and CTX-M-3), AmpC-type beta-lactamase (AmpC) bla (CMY-2) (3%) and colistin resistance genes mcr-4 (13%), mcr-1 (7%) and in less proportion mcr-5 (3%). Interestingly, these mcr genes were already detected in strains isolated in 2000, more than a decade before their first description. However, poor concordance between the genotypic mcr profile and the phenotypical testing by MIC was found in this study. These results indicate that although being a current concern, resistance genes and therefore antimicrobial resistant phenotypes were already present in pig farms at the beginning of the century.202032266079
1009140.9998The resistance patterns and molecular characteristics of ESBL/AmpC-producing Escherichia coli from captive panda ecosystem in China. Escherichia coli (E. coli) plays an important ecological role, and is a useful bioindicator to recognize the evolution of resistance in human, animal and environment. Recently, extended-spectrum β-lactamases (ESBL) producing E.coli has posed a threat to public health. Generally, captive healthy giant pandas are not exposed to antibiotics; however, they still acquire antimicrobial resistant bacteria. In order to understand whether there is an exchange of resistance genes within the ecosystems of captive giant pandas, this study explored resistance characteristics of 330 commensal E. coli isolates from feces of giant pandas, the surroundings, and breeders. Isolates from different sources showed similar resistance phenotype, and ESBL/AmpC-producing isolates showed more profound resistance to antibiotics than non-ESBL/AmpC-producing isolates (P<0.05). Furthermore, the occurrence of broad-spectrum β-lactamase related resistance genes and colistin resistance genes was detected, and isolates phylogenetic typing and multilocus sequence typing (MLST) were applied in this study. Seven different β-lactamase resistance genes (bla(CTX-M-55), bla(CTX-M-15), bla(CTX-M-27), bla(CTX-M-65), bla(TEM-1), bla(OXA-1) and bla(CMY)) and mcr-1 were found in 68 ESBL/AmpC-producing isolates. bla(CTX-M-55) (48.53 %) was found the most predominant resistance genes, followed by bla(TEM-1) (19.12 %) and bla(CTX-M-27) (16.18 %). Nonetheless, bla(CTX-M-55) was commonly detected in the isolates from giant pandas (63.16 %), the surroundings (43.48 %), and breeders (33.33 %). However, there were no carbapenemase genes detected in this study. mcr-1 was harbored in only one isolate from giant panda. Forty-five tansconjugants were successfully obtained in the conjugation experiments. The presence of antimicrobial resistance and related resistance genes tested were observed in the transconjugants. The results indicated that 52.63 % of the isolates from giant panda 73.91 % of the isolates from surroundings, and 100 % of the isolates from breeders were phylogroup A. Total of 27 sequence types (ST) were recognized from the isolate by MLST and found that ST48 (19/68; 27.94 %) was the predominant ST type, especially in the isolates from giant pandas and the surroundings. In conclusion, commensal ESBL/AmpC-producing E. coli becomes a reservoir of ESBL resistance genes, which is a potential threaten to health of giant pandas. The interaction between giant pandas, surroundings and breeders contribute to development of resistant phenotypes and genotypes which might transfer across species or the surroundings easily; hence, strict monitoring based on a "One Health" approach is recommended.202438728939
1151150.9998Genomic Analysis of Third Generation Cephalosporin Resistant Escherichia coli from Dairy Cow Manure. The production of extended-spectrum β-lactamases (ESBLs) conferring resistance to new derivatives of β-lactams is a major public health threat if present in pathogenic Gram-negative bacteria. The objective of this study was to characterize ceftiofur (TIO)- or cefotaxime (FOX)-resistant Escherichia coli isolated from dairy cow manure. Twenty-four manure samples were collected from four farms and incubated under anaerobic conditions for 20 weeks at 4 °C or at 25 °C. A total of 37 TIO- or FOX-resistant E. coli were isolated from two of the four farms to determine their susceptibility to 14 antibiotics. Among the 37 resistant E. coli, 10 different serotypes were identified, with O8:H1 being the predominant serotype (n = 17). Five isolates belonged to each of serotypes O9:NM and O153:H42, respectively. All 37 cephalosporin resistant isolates were multi-resistant with the most prevalent resistance spectrum being amoxicillin-clavulanic acid-ampicillin-cefoxitin-ceftiofur-ceftriaxone-chloramphenicol-streptomycin-sulfisoxazole-tetracycline-trimethoprim-sulfamethoxazole. The genomes of 18 selected isolates were then sequenced and compared to 14 selected human pathogenic E. coli reference genomes obtained from public repositories using different bioinformatics approaches. As expected, all 18 sequenced isolates carried at least one β-lactamase bla gene: TEM-1, TEM-81, CTX-M115, CTX-M15, OXA-1, or CMY-2. Several other antibiotic resistance genes (ARGs) and virulence determinants were detected in the sequenced isolates and all of them harbored antimicrobial resistance plasmids belonging to classic Inc groups. Our results confirm the presence of diverse ESBL producing E. coli isolates in dairy cow manure stored for a short period of time. Such manure might constitute a reservoir of resistance and virulence genes for other bacteria that share the same environment.201729149094
1094160.9998Detection of plasmid-mediated quinolone resistance genes in β-lactamase-producing Escherichia coli isolates from layer hens. This study was conducted to investigate the presence of plasmid-mediated quinolone resistance (PMQR) genes in β-lactamase-producing Escherichia coli isolates from layer hens and to characterize their molecular background. Among 142 E. coli isolates, 86 (60.6%) showed multidrug resistance and 15 (10.6%) were found to be β-lactamase-producing E. coli. Extended-spectrum β-lactamase (ESBL) and plasmid-mediated AmpC (pAmpC) β-lactamase genes, blaCTX-M-14 and blaCMY-2, were identified in three and six E. coli isolates, respectively. The non-ESBL or pAmpC gene, blaTEM-1, was found in eight of the isolates. Two isolates had both genes, blaCTX-M-14 and blaTEM-1. Among the 15 β-lactamase-producing E. coli, six PMQR genes, qnrS1 (n = 3) and qnrB4 (n = 3), were identified. Among the six PMQR-positive E. coli isolates, four exhibited double amino acid exchanges at both gyrA and parC with ciprofloxacin and enrofloxacin minimum inhibitory concentrations of ≥32 and ≥16 μg/mL, respectively. Additionally, five transconjugants (33.3%) showed a transferability of β-lactamase and PMQR genes. Pulsed-field gel electrophoresis (PFGE) analysis was conducted to investigate the 15 β-lactamase-producing E. coli isolates. In PFGE, E. coli included three PFGE patterns showing the same farms and in accordance with both β-lactamase and PMQR genes and the antimicrobial resistance pattern. Layer hens may act as a reservoir of antibiotic-resistant bacteria, and the PMQR gene in β-lactamase-producing E. coli isolates from layer hens has the potential to enter the food chain. Therefore, our findings suggest that comprehensive surveillance of antimicrobial use in laying operation systems is necessary.201930496543
1016170.9998Investigation of CTX-M Type Extended-Spectrum β-Lactamase, Carbapenem and Colistin Resistance in Enterobacterales Isolated From Dairy Cattle in Turkey. BACKGROUND: The increasing prevalence of antimicrobial resistance in animals, particularly the spread of multidrug-resistant Enterobacterales, poses a significant zoonotic and public health risk. OBJECTIVE: The aim of this study was to investigate extended-spectrum β-lactamase (ESBL), carbapenem and colistin resistance among Enterobacterales in faecal swabs of dairy cattle. METHODS: A total of 400 samples were cultured on Mac Conkey screening media for ESBL, carbapenem and colistin resistance. The grown Enterobacterales were identified by MALDI-TOF-MS, followed by ceftriaxone, cefotaxime and ceftazidime resistance and double disk synergy. ESBL resistance genes were identified by polymerase chain reaction (PCR) and Sanger sequencing. Bacteria grown on colistin screening media were investigated for colistin resistance by EUCAST microbroth dilution method. RESULTS: A total of 89 (22.25%) of the bacteria grown from 400 samples were identified as potential ESBL-producing Enterobacterales members. A number of 53 (59.5%) of them were identified as ESBL blaCTX-M as a result of PCR, and 10 of them were identified as blaCTX-M-15/28/36/66 as a result of sequencing. None of the samples cultured on carbapenem medium grew. A total of 18 samples grown in colistin medium were found to be colistin sensitive by broth microdilution. Genotypes were not included in the study. All isolated bacteria were identified as Escherichia coli. SOLUTION: In this study, blaCTX-M-15 and its derivatives, which are common in humans, were also found to be the predominant ESBL type in animals. Monitoring resistance in animals together with resistance in human infections may provide more important data on the spread of resistance.202540704983
2638180.9998Prevalence and mechanisms of extended-spectrum cephalosporin resistance in clinical and fecal Enterobacteriaceae isolates from dogs in Ontario, Canada. There is little information on the genetic basis of resistance to the critically important extended-spectrum cephalosporins (ESCs) in Enterobacteriaceae from dogs in Canada. This study assessed the frequency of ESC resistance in Enterobacteriaceae isolated from dogs in Ontario and the distribution of major ESC resistance genes in these bacteria. A total of 542 Enterobacteriaceae were isolated from 506 clinical samples from two diagnostic laboratories in Ontario. Eighty-eight ESC-resistant Enterobacteriaceae and 217 Escherichia coli were isolated from 234 fecal samples from dogs collected at leash-free dog parks. These fecal isolates were tested for ESC resistance along with the clinical isolates. Isolates with reduced ESC susceptibility were screened for bla(CMY), bla(CTX-M), and bla(SHV), and all CTX-M-positive isolates underwent whole-genome sequencing. The prevalence of ESC resistance in clinical Enterobacteriaceae was 10.4%. The average frequency of fecal carriage of ESC-resistant Enterobacteriaceae in healthy dogs was 26.5%. The majority of ESC-resistant isolates were E. coli and the other major Enterobacteriaceae carrying ESC resistance genes were Klebsiella pneumoniae and Proteus mirabilis. The results show that the same ESC resistance genes can be found in clinical and fecal Enterobacteriaceae in dogs. The identified E. coli sequence types (including ST131 and ST648) and CTX-M variants (including CTX-M-14, -15, and -27) support the hypothesis of transfer of resistant bacteria between humans and dogs. CTX-M-1 was frequently found in canine fecal Enterobacteriaceae, while it is still rare in human Enterobacteriaceae in Canada, thus suggesting transfer of resistant bacteria to dogs from food animals or other sources.201829292008
1078190.9998Prevalence of integrons, blaCTX-M and blaTEM resistance markers among ESBL-producing uropathogenic Escherichia coli isolates: first report of genomic blaCTX-M from India. Integrons have been observed to be frequently associated with uropathogenic bacteria. This study aimed at 1) determining the prevalence of class 1 integrons among ESBLl-producing uropathogenic Escherichia coli, and 2) analyzing resistance genes associated with different phylogenetic groups of the integron-positive isolates with special reference to bla(CTX-M) and bla(TEM). Twenty-three ESBL-producing E. coli were studied. Enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) displayed 14 major patterns. Pulse field Gel electrophoresis-typing of 8 randomly selected integron-positive strains ruled out any correlation between genotype and antibiotype. Genomic DNA from 14 strains was PCR-positive for class 1 integrons, bla(CTX-M-15) and bla(TEM-1)-like genes. Integron-sequencing revealed "aadA5-dfrA17-dfrA7" as the most prevalent gene cassette. Our findings unveil the increasing role of the bla(CTX-M) genes in antibiotic resistance and emphasize on the significance of appropriate empirical treatment for Urinary tract infections. Moreover, this is the first study which reports bla(CTX-M) located on genomic DNA of bacteria from India.201121742580