# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 101 | 0 | 1.0000 | The encapsulated strain TIGR4 of Streptococcus pneumoniae is phagocytosed but is resistant to intracellular killing by mouse microglia. The polysaccharide capsule is a major virulence factor of Streptococcus pneumoniae as it confers resistance to phagocytosis. The encapsulated serotype 4 TIGR4 strain was shown to be efficiently phagocytosed by the mouse microglial cell line BV2, whereas the type 3 HB565 strain resisted phagocytosis. Comparing survival after uptake of TIGR4 or its unencapsulated derivative FP23 in gentamicin protection and phagolysosome maturation assays, it was shown that TIGR4 was protected from intracellular killing. Pneumococcal capsular genes were up-regulated in intracellular TIGR4 bacteria recovered from microglial cells. Actual presence of bacteria inside BV2 cells was confirmed by transmission electron microscopy (TEM) for both TIGR4 and FP23 strains, but typical phagosomes/phagolysosomes were detected only in cells infected with the unencapsulated strain. In a mouse model of meningitis based on intracranic inoculation of pneumococci, TIGR4 caused lethal meningitis with an LD(50) of 2 × 10² CFU, whereas the LD(50) for the unencapsulated FP23 was greater than 10⁷ CFU. Phagocytosis of TIGR4 by microglia was also demonstrated by TEM and immunohistochemistry on brain samples from infected mice. The results indicate that encapsulation does not protect the TIGR4 strain from phagocytosis by microglia, while it affords resistance to intracellular killing. | 2010 | 20615478 |
| 6224 | 1 | 0.9959 | Bacteriophage-resistant Staphylococcus aureus mutant confers broad immunity against staphylococcal infection in mice. In the presence of a bacteriophage (a bacteria-attacking virus) resistance is clearly beneficial to the bacteria. As expected in such conditions, resistant bacteria emerge rapidly. However, in the absence of the phage, resistant bacteria often display reduced fitness, compared to their sensitive counterparts. The present study explored the fitness cost associated with phage-resistance as an opportunity to isolate an attenuated strain of S. aureus. The phage-resistant strain A172 was isolated from the phage-sensitive strain A170 in the presence of the M(Sa) phage. Acquisition of phage-resistance altered several properties of A172, causing reduced growth rate, under-expression of numerous genes and production of capsular polysaccharide. In vivo, A172 modulated the transcription of the TNF-alpha, IFN-gamma and Il-1beta genes and, given intramuscularly, protected mice from a lethal dose of A170 (18/20). The heat-killed vaccine also afforded protection from heterologous methicillin-resistant S. aureus (MRSA) (8/10 mice) or vancomycin-intermediate S. aureus (VISA) (9/10 mice). The same vaccine was also effective when administered as an aerosol. Anti-A172 mouse antibodies, in the dose of 10 microl/mouse, protected the animals (10/10, in two independent experiments) from a lethal dose of A170. Consisting predominantly of the sugars glucose and galactose, the capsular polysaccharide of A172, given in the dose of 25 microg/mouse, also protected the mice (20/20) from a lethal dose of A170. The above results demonstrate that selection for phage-resistance can facilitate bacterial vaccine preparation. | 2010 | 20661301 |
| 6166 | 2 | 0.9958 | Intraperitoneal infection with Salmonella abortusovis is partially controlled by a gene closely linked with the Ity gene. The aim of the present study was to determine whether the Ity gene, which controls the resistance to S. typhimurium infection in mice, also governs the resistance to S. abortusovis, a serotype specific for goat and sheep. During either i.v. or i.p. infection, BALB/c mice (Itys) were not able to control the growth of S. abortusovis and eventually died from infection. In contrast CBA (Ityr) or (C.CB)F1 (Ityr/s) mice were able to control the growth of these bacteria. Using congenic C.D2 Ityr mice, we found that the gene controlling resistance to S. abortusovis was tightly linked to the Ity gene on chromosome 1. Furthermore, in the spleen and the liver of backcross BALB/c x (CBA x BALB/c) mice, the S. abortusovis resistance phenotype cosegregated with the two alleles of the Len-1 gene, a gene tightly linked to the Ity gene. By contrast, in these backcross mice, the level of infection of the peritoneal cavity, the site of inoculation, did not correlated with the Len-1 phenotype of the animal. These results provide evidence that after i.p. inoculation the control of S. abortusovis growth in the spleen and the liver is controlled by the Ity gene, but also suggest that additional gene(s) regulate the number of bacteria at the site of inoculation. | 1992 | 1544222 |
| 436 | 3 | 0.9957 | The capsule is a virulence determinant in the pathogenesis of Pasteurella multocida M1404 (B:2). Capsules from a range of pathogenic bacteria are key virulence determinants, and the capsule has been implicated in virulence in Pasteurella multocida. We have previously identified and determined the nucleotide sequence of the P. multocida M1404 (B:2) capsule biosynthetic locus (J. D. Boyce, J. Y. Chung, and B. Adler, Vet. Microbiol. 72:121-134, 2000). The cap locus consists of 15 genes, which can be grouped into three functional regions. Regions 1 and 3 contain genes proposed to encode proteins involved in capsule export, and region 2 contains genes proposed to encode proteins involved in polysaccharide biosynthesis. In order to construct a mutant impaired in capsule export, the final gene of region 1, cexA, was disrupted by insertion of a tetracycline resistance cassette by allelic replacement. The genotype of the tet(M) OmegacexA mutant was confirmed by Southern hybridization and PCR. The acapsular phenotype was confirmed by immunofluorescence, and the strain could be complemented and returned to capsule production by the presence of a cloned uninterrupted copy of cexA. Wild-type, mutant, and complemented strains were tested for virulence by intraperitoneal challenge of mice; the presence of the capsule was shown to be a crucial virulence determinant. Following intraperitoneal challenge of mice, the acapsular bacteria were removed efficiently from the blood, spleen, and liver, while wild-type bacteria multiplied rapidly. Acapsular bacteria were readily taken up by murine peritoneal macrophages, but wild-type bacteria were significantly resistant to phagocytosis. Both wild-type and acapsular bacteria were resistant to complement in bovine and murine serum. | 2000 | 10816499 |
| 6172 | 4 | 0.9957 | Resistance and susceptibility of mice to bacterial infection. IV. Genetic and cellular basis of resistance to chronic infection with Brucella abortus. The number of Brucella abortus strain 19 organisms in the spleens of CBA/H mice peaked two weeks after intravenous injection of 5 X 10(6) organisms. With the onset of specific cell-mediated immunity, 90% of the bacteria were killed, but approximately 10(6) bacteria persisted up to seven weeks after infection. In contrast, in BALB/c, C57BL/10, and B10Br mice, bacterial numbers peaked at two weeks but decreased steadily with the onset of bactericidal activity. In all strains, clearance of bacteria from the liver was relatively efficient. The course of infection in (CBA/H X BALB/c) F1 mice was similar to that in CBA/H mice, indicating that the mechanism(s) leading to slower recovery from infection was dominant. The H-2 haplotype of the mice did not influence the rate of recovery from infection. The use of backcross mice showed that multiple genes were involved. In bone marrow-chimeric mice, resistance was determined by the genome of the bone marrow donor, not that of the host. | 1982 | 6809847 |
| 6158 | 5 | 0.9956 | Nitric oxide stress resistance in Porphyromonas gingivalis is mediated by a putative hydroxylamine reductase. Porphyromonas gingivalis, the causative agent of adult periodontitis, must maintain nitric oxide (NO) homeostasis and surmount nitric oxide stress from host immune responses or other oral bacteria to survive in the periodontal pocket. To determine the involvement of a putative hydroxylamine reductase (PG0893) and a putative nitrite reductase-related protein (PG2213) in P. gingivalis W83 NO stress resistance, genes encoding those proteins were inactivated by allelic exchange mutagenesis. The isogenic mutants P. gingivalis FLL455 (PG0893ermF) and FLL456 (PG2213ermF) were black pigmented and showed growth rates and gingipain and hemolytic activities similar to those of the wild-type strain. P. gingivalis FLL455 was more sensitive to NO than the wild type. Complementation of P. gingivalis FLL455 with the wild-type gene restored the level of NO sensitivity to a level similar to that of the parent strain. P. gingivalis FLL455 and FLL456 showed sensitivity to oxidative stress similar to that of the wild-type strain. DNA microarray analysis showed that PG0893 and PG2213 were upregulated 1.4- and 2-fold, respectively, in cells exposed to NO. In addition, 178 genes were upregulated and 201 genes downregulated more than 2-fold. The majority of these modulated genes were hypothetical or of unknown function. PG1181, predicted to encode a transcriptional regulator, was upregulated 76-fold. Transcriptome in silico analysis of the microarray data showed major metabolomic variations in key pathways. Collectively, these findings indicate that PG0893 and several other genes may play an important role in P. gingivalis NO stress resistance. | 2012 | 22247513 |
| 6212 | 6 | 0.9956 | Strain differences in the susceptibility and resistance of Pasteurella multocida to phagocytosis and killing by rabbit polymorphonuclear neutrophils. The interactions of 2 capsular serotype A and 4 serotype D strains of Pasteurella multocida with rabbit polymorphonuclear neutrophils (PMN) were compared in vitro, using a PMN phagocytic and bactericidal assay. Bacteria and rabbit PMN were incubated for 15 minutes. The suspensions were subjected to differential centrifugation and the percentage of phagocytosis (cell association) was determined from the number of viable noncell-associated bacteria. The cell pellets and the associated bacteria were resuspended and PMN bactericidal activity was calculated from the number of remaining viable cell-associated bacteria at 45 and 75 minutes after the start of the assay. Test bacteria were not opsonized or were opsonized with immune serum containing active complement. One type A strain was ingested and killed by PMN in the presence and absence of opsonins. The 5 remaining strains were resistant to PMN killing, but only the type A strain resisted phagocytosis. Resistance of the type A strain was attributed to the hyaluronic acid capsule, since pretreatment of the bacteria with hyaluronidase rendered opsonized bacteria susceptible to ingestion and killing. The pattern of resistance of the 4 type D strains was different from that of the resistant type A strain. Both opsonized and nonopsonized type D bacteria became cell associated, but none were killed by PMN. The mechanism of resistance of these 4 strains to PMN bactericidal activity is currently unknown. | 1984 | 6742581 |
| 6170 | 7 | 0.9955 | Resistance and susceptibility of mice to bacterial infection. IV. Functional specificity in natural resistance to facultative intracellular bacteria. The effect of opsonic antibody on resistance of susceptibility of three strains of mice, C57Bl/10, BALB/c, and CBA to the intracellular bacteria Listeria monocytogenes, Salmonella typhimurium, and Brucella abortus was tested. Bacteria were opsonized by serum treatment before their injection into mice, or the mice were preimmunized by injection with alcohol killed bacteria which induces antibody without macrophage activation. Antibody did not increase the rate of clearance of Listeria from the bloodstream, nor did it affect the subsequent growth of that organism in the spleen and liver. Blood clearance of S. typhimurium and of B. abortus was increased by preopsonization with specific antibody, indicating that opsonins were a limiting factor in resistance to these two bacteria. However, neither opsonization before infection nor immunization with alcohol killed vaccines had any effect on the strain distribution of resistance/susceptibility, which differs for each of the three intracellular pathogens. Thus, even in the presence of adequate opsonization the three strains of mice showed different patterns of resistance/susceptibility to Listeria, S. typhimurium, and B. abortus. This implies that each has a unique cellular mechanism of early nonspecific resistance. | 1983 | 6413682 |
| 242 | 8 | 0.9954 | Ingestion of killed bacteria activates antimicrobial peptide genes in Drosophila melanogaster and protects flies from septic infection. Drosophila melanogaster possesses a sophisticated and effective immune system composed of humoral and cellular immune responses, and production of antimicrobial peptides (AMPs) is an important defense mechanism. Expression of AMPs is regulated by the Toll and IMD (immune deficiency) pathways. Production of AMPs can be systemic in the fat body or a local event in the midgut and epithelium. So far, most studies focus on systemic septic infection in adult flies and little is known about AMP gene activation after ingestion of killed bacteria. In this study, we investigated activation of AMP genes in the wild-type w(1118), MyD88 and Imd mutant flies after ingestion of heat-killed Escherichia coli and Staphylococcus aureus. We showed that ingestion of E. coli activated most AMP genes, including drosomycin and diptericin, in the first to third instar larvae and pupae, while ingestion of S. aureus induced only some AMP genes in some larval stages or in pupae. In adult flies, ingestion of killed bacteria activated AMP genes differently in males and females. Interestingly, ingestion of killed E. coli and S. aureus in females conferred resistance to septic infection by both live pathogenic Enterococcus faecalis and Pseudomonas aeruginosa, and ingestion of E. coli in males conferred resistance to P. aeruginosa infection. Our results indicated that E. coli and S. aureus can activate both the Toll and IMD pathways, and systemic and local immune responses work together to provide Drosophila more effective protection against infection. | 2019 | 30731096 |
| 647 | 9 | 0.9954 | Expression of an additional cathelicidin antimicrobial peptide protects against bacterial skin infection. Cathelicidin antimicrobial peptides are effectors of innate immune defense in mammals. Humans and mice have only one cathelicidin gene, whereas domesticated mammals such as the pig, cow, and horse have multiple cathelicidin genes. We hypothesized that the evolution of multiple cathelicidin genes provides these animals with enhanced resistance to infection. To test this, we investigated the effects of the addition of cathelicidins by combining synthetic cathelicidin peptides in vitro, by producing human keratinocytes that overexpress cathelicidins in culture, or by producing transgenic mice that constitutively overexpress cathelicidins in vivo. The porcine cathelicidin peptide PR-39 acted additively with human cathelicidin LL-37 to kill group A Streptococcus (GAS). Lentiviral delivery of PR-39 enhanced killing of GAS by human keratinocytes. Finally, transgenic mice expressing PR-39 under the influence of a K14 promoter showed increased resistance to GAS skin infection (50% smaller necrotic ulcers and 60% fewer surviving bacteria). Similarly constructed transgenic mice designed to overexpress their native cathelicidin did not show increased resistance. These findings demonstrate that targeted gene transfer of a xenobiotic cathelicidin confers resistance against infection and suggests the benefit of duplication and divergence in the evolution of antimicrobial peptides. | 2005 | 15728389 |
| 6171 | 10 | 0.9954 | Host response to infection with a temperature-sensitive mutant of Salmonella typhimurium in a susceptible and a resistant strain of mice. The inoculation of a temperature-sensitive mutant of Salmonella typhimurium induced a long-lasting infection in susceptible (C57BL/6) and resistant (A/J) mice. During week 1 of infection, the number of bacteria in the spleens was similar in both mouse strains. Then, the decrease of bacteria was more rapid in the resistant strain. Splenomegaly and granulomatous hepatitis were more severe in the susceptible strain. The immune response induced by this infection was studied. In both mouse strains delayed-type hypersensitivity to Salmonella antigens was present, and resistance to reinfection with a virulent strain of S. typhimurium or with Listeria monocytogenes appeared with the same kinetics. Thus, it does not seem that the gene(s) controlling natural resistance to S. typhimurium act(s) on acquired immunity. | 1985 | 3897053 |
| 8875 | 11 | 0.9954 | Endotoxin, capsule, and bacterial attachment contribute to Neisseria meningitidis resistance to the human antimicrobial peptide LL-37. Pathogenic bacteria have evolved numerous mechanisms to evade the human immune system and have developed widespread resistance to traditional antibiotics. We studied the human pathogen Neisseria meningitidis and present evidence of novel mechanisms of resistance to the human antimicrobial peptide LL-37. We found that bacteria attached to host epithelial cells are resistant to 10 microM LL-37 whereas bacteria in solution or attached to plastic are killed, indicating that the cell microenvironment protects bacteria. The bacterial endotoxin lipooligosaccharide and the polysaccharide capsule contribute to LL-37 resistance, probably by preventing LL-37 from reaching the bacterial membrane, as more LL-37 reaches the bacterial membrane on both lipooligosaccharide-deficient and capsule-deficient mutants whereas both mutants are also more susceptible to LL-37 killing than the wild-type strain. N. meningitidis bacteria respond to sublethal doses of LL-37 and upregulate two of their capsule genes, siaC and siaD, which further results in upregulation of capsule biosynthesis. | 2009 | 19376861 |
| 235 | 12 | 0.9953 | Effect of Application of Probiotic Pollen Suspension on Immune Response and Gut Microbiota of Honey Bees (Apis mellifera). Although the use of probiotic bacteria in invertebrates is still rare, scientists have begun to look into their usage in honey bees. The probiotic preparation, based on the autochthonous strain Lactobacillus brevis B50 Biocenol™ (CCM 8618), which was isolated from the digestive tracts of healthy bees, was applied to the bee colonies in the form of a pollen suspension. Its influence on the immune response was determined by monitoring the expression of genes encoding immunologically important molecules in the honey bee intestines. Changes in the intestinal microbiota composition were also studied. The results showed that the probiotic Lact. brevis B50, on a pollen carrier, significantly increased the expression of genes encoding antimicrobial peptides (abaecin, defensin-1) as well as pattern recognition receptors (toll-like receptor, peptidoglycan recognition proteins). Gene expression for the other tested molecules included in Toll and Imd signaling pathways (dorsal, cactus, kenny, relish) significantly changed during the experiment. The positive effect on intestinal microbiota was manifested mainly by a significant increase in the ratio of lactic acid bacteria to enterobacteria. These findings confirm the potential of the tested probiotic preparation to enhance immunity in bee colonies and thus increase their resistance to infectious diseases and stress conditions. | 2020 | 31912341 |
| 8227 | 13 | 0.9953 | Role of the S-layer proteins of Campylobacter fetus in serum-resistance and antigenic variation: a model of bacterial pathogenesis. Campylobacter fetus are microaerophilic gram-negative bacteria that are pathogens of animals and humans. These organisms possess paracrystalline surface (S-) layers, composed of acidic high molecular weight proteins. C. fetus strains possessing S-layers are resistant to C3b binding, which explains both serum and phagocytosis-resistance. C. fetus strains also can vary the subunit protein size, crystalline structure, and antigenicity of the S-layer it expresses. Therefore, its S-layer permits C. fetus to resist complement and antibodies, two of the key defenses against extracellular pathogens. C. fetus possesses several full-length genes encoding S-layer proteins with both conserved and divergent sequences, which permits gene rearrangement and antigenic variation. | 1993 | 8238090 |
| 6219 | 14 | 0.9953 | Isolation and characterization of bacteriophage-resistant mutants of Vibrio cholerae O139. Vibrio cholerae O139 strains produce a capsule which is associated with complement resistance and is used as a receptor by bacteriophage JA1. Spontaneous JA1-resistant mutants were found to have several phenotypes, with loss of capsule and/or O-antigen from the cell surface. Determination of the residual complement resistance and infant mouse colonization potential of each mutant suggested that production of O-antigen is of much greater significance than the presence of capsular material for both of these properties. Two different in vitro assays of complement resistance were compared and the results of one shown to closely reflect the comparative recoveries of bacteria from the colonization experiments. Preliminary complementation studies implicated two rfb region genes, wzz and wbfP, as being essential for the biosynthesis of capsule but not O-antigen. | 2001 | 11312617 |
| 8230 | 15 | 0.9953 | Functional characterization and biological significance of Yersinia pestis lipopolysaccharide biosynthesis genes. In silico analysis of available bacterial genomes revealed the phylogenetic proximity levels of enzymes responsible for biosynthesis of lipopolysaccharide (LPS) of Yersinia pestis, the cause of plague, to homologous proteins of closely related Yersinia spp. and some other bacteria (Serratia proteamaculans, Erwinia carotovora, Burkholderia dolosa, Photorhabdus luminescens and others). Isogenic Y. pestis mutants with single or double mutations in 14 genes of LPS biosynthetic pathways were constructed by site-directed mutagenesis on the base of the virulent strain 231 and its attenuated derivative. Using high-resolution electrospray ionization mass spectrometry, the full LPS structures were elucidated in each mutant, and the sequence of monosaccharide transfers in the assembly of the LPS core was inferred. Truncation of the core decreased significantly the resistance of bacteria to normal human serum and polymyxin B, the latter probably as a result of a less efficient incorporation of 4-amino-4-deoxyarabinose into lipid A. Impairing of LPS biosynthesis resulted also in reduction of LPS-dependent enzymatic activities of plasminogen activator and elevation of LD(50) and average survival time in mice and guinea pigs infected with experimental plague. Unraveling correlations between biological properties of bacteria and particular LPS structures may help a better understanding of pathogenesis of plague and implication of appropriate genes as potential molecular targets for treatment of plague. | 2011 | 21999543 |
| 6220 | 16 | 0.9952 | Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa. Bacteria develop a broad range of phage resistance mechanisms, such as prevention of phage adsorption and CRISPR/Cas system, to survive phage predation. In this study, Pseudomonas aeruginosa PA1 strain was infected with lytic phage PaP1, and phage-resistant mutants were selected. A high percentage (~30%) of these mutants displayed red pigmentation phenotype (Red mutant). Through comparative genomic analysis, one Red mutant PA1r was found to have a 219.6 kb genomic fragment deletion, which contains two key genes hmgA and galU related to the observed phenotypes. Deletion of hmgA resulted in the accumulation of a red compound homogentisic acid; while A galU mutant is devoid of O-antigen, which is required for phage adsorption. Intriguingly, while the loss of galU conferred phage resistance, it significantly attenuated PA1r in a mouse infection experiment. Our study revealed a novel phage resistance mechanism via chromosomal DNA deletion in P. aeruginosa. | 2014 | 24770387 |
| 6209 | 17 | 0.9952 | Evaluation of Mycobacterium tuberculosis genes involved in resistance to killing by human macrophages. A coinfection assay was developed to examine Mycobacterium tuberculosis genes suspected to be involved in resistance to killing by human macrophages. THP-1 macrophages were infected with a mixture of equal numbers of recombinant Mycobacterium smegmatis LR222 bacteria expressing an M. tuberculosis gene and wild-type M. smegmatis LR222 bacteria expressing the xylE gene. At various times after infection, the infected macrophages were lysed and the bacteria were plated. The resulting colonies were sprayed with catechol to determine the number of recombinant colonies and the number of xylE-expressing colonies. M. smegmatis bacteria expressing the M. tuberculosis glutamine synthetase A (glnA) gene or open reading frame Rv2962c or Rv2958c demonstrated significantly increased survival rates in THP-1 macrophages relative to those of xylE-expressing bacteria. M. smegmatis bacteria expressing M. tuberculosis genes for phospholipase C (plcA and plcB) or for high temperature requirement A (htrA) did not. | 2000 | 10603413 |
| 6214 | 18 | 0.9952 | Central role of toll-like receptor 4 signaling and host defense in experimental pneumonia caused by Gram-negative bacteria. Toll-like receptor 4 (TLR4) has been identified as a receptor for lipopolysaccharide. However, the precise role of TLR4 in regulating gene expression in response to an infection caused by gram-negative bacteria has not been fully elucidated. The role of TLR4 signaling in coordinating gene expression was assessed by gene expression profiling in lung tissue in a mouse model of experimental pneumonia with a low-dose infection of Klebsiella pneumoniae. We analyzed four mouse strains: C57BL/6 mice, which are resistant to bacterial dissemination; 129/SvJ mice, which are susceptible; C3H/HeJ mice, which are susceptible and have defective TLR4 signaling; and their respective control strain, C3H/HeN (intermediate resistance). At 4 h after infection, C57BL/6 and C3H/HeN mice demonstrated the greatest number of genes, with 67 shared induced genes which were TLR4 dependent and highly associated with the resistance phenotype. These genes included cytokine and chemokine genes required for neutrophil activation or recruitment, growth factor receptors, MyD88 (a critical adaptor protein for TLR signaling), and adhesion molecules. TLR4 signaling accounted for over 74% of the gene expression in the C3H background. These data suggest that early TLR4 signaling controls the vast majority of gene expression in the lung in response to an infection caused by gram-negative bacteria and that this subsequent gene expression determines survival of the host. | 2005 | 15618193 |
| 8204 | 19 | 0.9952 | Cecropins contribute to Drosophila host defense against a subset of fungal and Gram-negative bacterial infection. Cecropins are small helical secreted peptides with antimicrobial activity that are widely distributed among insects. Genes encoding Cecropins are strongly induced upon infection, pointing to their role in host defense. In Drosophila, four cecropin genes clustered in the genome (CecA1, CecA2, CecB, and CecC) are expressed upon infection downstream of the Toll and Imd pathways. In this study, we generated a short deletion ΔCecA-C removing the whole cecropin locus. Using the ΔCecA-C deficiency alone or in combination with other antimicrobial peptide (AMP) mutations, we addressed the function of Cecropins in the systemic immune response. ΔCecA-C flies were viable and resisted challenge with various microbes as wild-type. However, removing ΔCecA-C in flies already lacking 10 other AMP genes revealed a role for Cecropins in defense against Gram-negative bacteria and fungi. Measurements of pathogen loads confirm that Cecropins contribute to the control of certain Gram-negative bacteria, notably Enterobacter cloacae and Providencia heimbachae. Collectively, our work provides the first genetic demonstration of a role for Cecropins in insect host defense and confirms their in vivo activity primarily against Gram-negative bacteria and fungi. Generation of a fly line (ΔAMP14) that lacks 14 immune inducible AMPs provides a powerful tool to address the function of these immune effectors in host-pathogen interactions and beyond. | 2022 | 34791204 |