# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1013 | 0 | 1.0000 | Molecular detection and antimicrobial resistance profiles of Extended-Spectrum Beta-Lactamase (ESBL) producing Escherichia coli in broiler chicken farms in Malaysia. Antimicrobial resistance is one of the major public health threats globally. This challenge has been aggravated with the overuse and misuse of antibiotics in food animals and humans. The present study aimed to investigate the prevalence of Extended-Spectrum β-lactamase (ESBL) genes in Escherichia coli (E. coli) isolated from broiler chickens in Kelantan, Malaysia. A total of 320 cloacal swabs were collected from farms in different districts of Kelantan and were analyzed using routine bacteriology, antimicrobial susceptibility test, and molecular techniques for further identification and characterization of ESBL encoding genes. Based on PCR detection for the E. coli species-specific Pho gene, 30.3% (97/320) of isolates were confirmed as E. coli, and 84.5% (82/97) of the isolates were positive for at least one ESBL gene. Majority of the isolates, 62.9% (61/97) were harboring blaCTX-M followed by 45.4% (44/97) of blaTEM genes, while 16.5% (16/97) of the isolates were positive for both mcr-1 and ESBL genes. Overall, 93.8% (90/97) of the E. coli were resistant to three or more antimicrobials; indicating that the isolates were multi-drug resistance. 90.7% of multiple antibiotic resistance (MAR) index value greater than 0.2, would also suggest the isolates were from high-risk sources of contamination. The MLST result shows that the isolates are widely diverse. Our findings provide insight into the alarmingly high distribution of antimicrobial resistant bacteria, mainly ESBL producing E. coli in apparently healthy chickens indicating the role of food animals in the emergence and spread of antimicrobial resistance, and the potential public health threats it may pose. | 2023 | 37205716 |
| 1012 | 1 | 0.9999 | Antimicrobial resistance profile and prevalence of extended-spectrum beta-lactamases (ESBL), AmpC beta-lactamases and colistin resistance (mcr) genes in Escherichia coli from swine between 1999 and 2018. The frequent usage of antibiotics in livestock has led to the spread of resistant bacteria within animals and their products, with a global warning in public health and veterinarians to monitor such resistances. This study aimed to determine antibiotic resistance patterns and genes in pig farms from Spain during the last twenty years. Susceptibility to six antibiotics commonly used in pig production was tested by qualitative (disk diffusion) and quantitative (minimum inhibitory concentration, MIC) methods in 200 strains of Escherichia coli which had been isolated between 1999 and 2018 from clinical cases of diarrhoea in neonatal and post-weaned piglets. Results showed resistance around 100% for amoxicillin and tetracycline since 1999, and a progressive increase in ceftiofur resistance throughout the studied period. For colistin, it was detected a resistance peak (17.5% of the strains) in the 2011-2014 period. Concerning gentamicin, 11 of 30 strains with intermediate susceptibility by the disk diffusion method were resistant by MIC. Besides, the most frequent antimicrobial resistance genes were the extended-spectrum beta-lactamase (ESBL) bla (CTX-M) (13.5% of strains, being CTX-M-14, CTX-M-1 and CTX-M-32 the most prevalent genomes, followed by CTX-M-27, CTX-M-9 and CTX-M-3), AmpC-type beta-lactamase (AmpC) bla (CMY-2) (3%) and colistin resistance genes mcr-4 (13%), mcr-1 (7%) and in less proportion mcr-5 (3%). Interestingly, these mcr genes were already detected in strains isolated in 2000, more than a decade before their first description. However, poor concordance between the genotypic mcr profile and the phenotypical testing by MIC was found in this study. These results indicate that although being a current concern, resistance genes and therefore antimicrobial resistant phenotypes were already present in pig farms at the beginning of the century. | 2020 | 32266079 |
| 1146 | 2 | 0.9999 | Molecular detection and prevalence of colistin-resistant Escherichia coli in poultry and humans: a one health perspective. Multidrug-resistant (MDR) bacteria significantly threaten humans and animals worldwide. Colistin is the last resort of antibiotics against gram-negative bacterial infections. Its irrational use in poultry is a major factor in transmitting MDR bacteria to humans. The present study investigated the risk factors, prevalence, and molecular detection of colistin resistance associated with poultry and humans. A total of (n = 140) cloacal swabs from chickens and human stool samples (n = 140) were processed to identify E. coli using conventional methods, followed by genotypic confirmation. Phenotypic and genotypic confirmation of antibiotic resistance genes qnrA, blaTEM, tetA, aadA, and mcr genes was performed on these E. coli isolates. These isolates were confirmed at 69.3% and 62.8% in chickens and humans, respectively. Limited education and poor hygiene significantly increased the infection rate (p = 0.0001). The E. coli isolates from commercial poultry showed 100% resistance to amoxicillin/clavulanic acid, 98.9% to ampicillin, and 93.8% to tetracycline. The E. coli isolates from humans exhibited 90% resistance to ciprofloxacin, 88% to ampicillin, and 85% to ceftriaxone. Among these, MDR E. coli isolates of both commercial poultry and humans, colistin resistance was found in 78.6% and 48.1%, respectively. Genotypic confirmation of mcr genes such as mcr-1 (42%), mcr-2 (19.6%), mcr-3 (15.1%), mcr-4 (7.6%), and mcr-5 (4.5%) in commercial poultry. However, only the mcr-1 (15.6%) gene was found in human isolates. The current study findings highlight the prevalence of mcr genes in E. coli, potentially contributing to broader antibiotic resistance concerns. | 2025 | 40956559 |
| 1014 | 3 | 0.9999 | Contamination of retail market meat with extended-spectrum beta-lactamase genes in Vietnam. The contamination of retail meat with antibiotic-resistant bacteria poses a substantial public health risk because of the potential spread of these bacteria within communities. The contamination of retail meat with extended-spectrum beta-lactamase (ESBL)-producing bacteria was investigated in four cities in Vietnam using real-time PCR, employing ESBL marker genes. This method provides a more comprehensive assessment of ESBL-producing bacterial contamination in meat samples than culture-based methods because it directly detects resistance genes from the extracted sample DNA. Retail meats in Vietnam were substantially contaminated with ESBL genes [54 % (n = 46) and 48 % (n = 49) of chicken and pork samples, respectively]. No significant differences in ESBL gene detection rates were observed between chicken and pork. The most frequently detected ESBL gene was blaTEM, followed by blaSHV, whereas blaCTX-M was found in only 4-8 % of the samples. Ho Chi Minh City showed significantly higher contamination rates for both chicken and pork than those in other cities. ESBL-producing Escherichia coli strains were isolated from contaminated meat samples and genomically analyzed. All isolated strains carried blaCTX-M, with some harboring blaTEM, whereas blaSHV was not detected. Although IncFIB plasmids were prevalent among the ESBL-producing E. coli strains, the variability in resistance gene profiles suggested that the endemic spread of specific resistance gene-carrying plasmids was unlikely. Overall, these findings highlight the effectiveness of the ESBL gene detection method and the high levels of ESBL-producing E. coli in retail meat. | 2025 | 39827751 |
| 1153 | 4 | 0.9999 | Antimicrobial resistance, virulence factors and genetic diversity of Escherichia coli isolates from household water supply in Dhaka, Bangladesh. BACKGROUND: Unsafe water supplies continue to raise public health concerns, especially in urban areas in low resource countries. To understand the extent of public health risk attributed to supply water in Dhaka city, Bangladesh, Escherichia coli isolated from tap water samples collected from different locations of the city were characterized for their antibiotic resistance, pathogenic properties and genetic diversity. METHODOLOGY/PRINCIPAL FINDINGS: A total of 233 E. coli isolates obtained from 175 tap water samples were analysed for susceptibility to 16 different antibiotics and for the presence of genes associated with virulence and antibiotic resistance. Nearly 36% (n = 84) of the isolates were multi-drug(≥ 3 classes of antibiotics) resistant (MDR) and 26% (n = 22) of these were positive for extended spectrum β-lactamase (ESBL). Of the 22 ESBL-producers, 20 were positive for bla CTX-M-15, 7 for bla OXA-1-group (all had bla OXA-47) and 2 for bla CMY-2. Quinolone resistance genes, qnrS and qnrB were detected in 6 and 2 isolates, respectively. Around 7% (n = 16) of the isolates carried virulence gene(s) characteristic of pathogenic E. coli; 11 of these contained lt and/or st and thus belonged to enterotoxigenic E. coli and 5 contained bfp and eae and thus belonged to enteropathogenic E. coli. All MDR isolates carried multiple plasmids (2 to 8) of varying sizes ranging from 1.2 to >120 MDa. Ampicillin and ceftriaxone resistance were co-transferred in conjugative plasmids of 70 to 100 MDa in size, while ampicillin, trimethoprim-sulfamethoxazole and tetracycline resistance were co-transferred in conjugative plasmids of 50 to 90 MDa. Pulsed-field gel electrophoresis analysis revealed diverse genetic fingerprints of pathogenic isolates. SIGNIFICANCE: Multi-drug resistant E. coli are wide spread in public water supply in Dhaka city, Bangladesh. Transmission of resistant bacteria and plasmids through supply water pose serious threats to public health in urban areas. | 2013 | 23573295 |
| 1145 | 5 | 0.9999 | Abundance of Mobilized Colistin Resistance Gene (mcr-1) in Commensal Escherichia coli from Diverse Sources. Aims: Antimicrobial resistance (AMR) spreads not only by pathogenic but also by commensal bacteria, and the latter can become a reservoir for resistance genes. This study was aimed to investigate the AMR patterns along with the presence of mobilized colistin resistance (mcr) genes in commensal Escherichia coli circulating in chickens, farm environments, street foods, and human patients. Materials and Methods: By a cross-sectional survey, isolates obtained from 530 samples were tested for their AMR profiles against 9 antimicrobials. Minimum inhibitory concentration (MIC) of the phenotypically colistin-resistant isolates was determined and screened for a set of mcr genes followed by sequencing of mcr-1 gene in the multidrug-resistant (MDR) isolates. Results: A total of 313 E. coli strains were isolated and confirmed by polymerase chain reaction. Antimicrobial susceptibility testing revealed that about 98% (confidence interval [95% CI] 95-99) of the isolates were MDR, and 58% (95% CI 52-63) isolates exhibited resistance to colistin. MIC values of colistin against the isolates ranged from 4 to 64 mg/L. Except for human patients, 20.4% colistin-resistant isolates from other sources of isolation had mcr-1 gene. Conclusions: There is abundance of commensal MDR E. coli strains with the acquisition of mcr-1 gene circulating in chickens and farm environments in Bangladesh. | 2021 | 33909471 |
| 980 | 6 | 0.9999 | Phenotypic and Molecular Characterization of Extended-Spectrum β-Lactamase, Plasmid-Mediated- AmpC, and Carbapenemase-Producing Enterobacteriaceae Isolated from Companion and Production Animals in Brazil. The crisis of bacterial resistance is an emerging One Health challenge, driven by the overuse of antimicrobials in medical and agricultural settings. This study aimed to investigate extended-spectrum β-lactamase (ESBL), Ampicillinase (AmpC), and carbapenemase production, and the presence of genes encoding these enzymes in Escherichia coli, Klebsiella spp., and Proteus spp., major contributors to infections and resistance isolates from animals. From 2016 to 2021, 130 multidrug-resistant (MDR) or extensively drug-resistant (XDR) isolates were recovered from the secretions, excretions, and organs of companion and production animals with active infections. Antibacterial sensitivity tests, along with phenotypic and genotypic detection of resistance enzymes, were performed. To the best of our knowledge, this is the first study in Brazil to estimate the prevalence of XDR Enterobacteriales isolated from companion and production animals, which accounted for 13.8% of the strains. Statistically significant differences (P < 0.05) in resistant bacteria between different classes and within the same class of antibacterial bacteria were found. The statistical probability between genotypic detection of ESBL (OR = 3.1) and phenotypic tests for AmpC (OR = 2.3) was also established. Approximately 32.3%, 17.6%, and 16.8% of the strains had positive phenotypic tests for ESBL, AmpC, and carbapenemases, respectively. Genetic analysis revealed the presence of bla(CTX-M) (60.0%), bla(AmpC) (9.18%), bla(KPC-2) (0.76%), and bla(NDM) (1.52%). AmpC genes were identified in 8.46% of the samples, with bla(CMY) being the most frequent (6.92%), followed by bla(DHA) (0.77%), and bla(FOX) (0.77%). The sequenced amplicons were deposited in NCBI. This study reveals critical data on Enterobacteriaceae with antibacterial resistance genes isolated from animals and may pose a significant threat to One health. | 2025 | 39903315 |
| 1019 | 7 | 0.9999 | First Report of OXA-48 and IMP Genes Among Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolates from Diarrheic Calves in Tunisia. Antimicrobial resistance is one of the most serious threats to human and animal health. Evidence suggests that the overuse of antimicrobial agents in animal production has led to the emergence and dissemination of multidrug-resistant isolates. The objective of this study was to assess the rate of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in calf feces and to characterize their resistance genes for antibiotics like beta-lactams and colistin, but also to determine their virulence genes. Fecal samples were collected from 100 diarrheic calves in the region of Bizerte, Tunisia. After isolation, E. coli isolates were screened for antimicrobial resistance against 21 antibiotics by the disc diffusion method. Characterization of β-lactamase genes and determination of associated resistance genes were performed by polymerase chain reaction. Among 71 E. coli isolates, 26 (36.6%) strains were ESBL-producing. Most of these isolates were multidrug-resistant (92.3%) and the most prevalent beta-lactamase genes detected were bla(CTX-M) (n = 26), bla(SHV) (n = 11), and bla(TEM) (n = 8), whereas only 1 isolate carried the bla(CMY) gene. In addition, resistance to carbapenems was detected in two isolates; one of them harbored both bla(OXA-48) and bla(IMP) genes and the other isolate carried only the bla(IMP) gene. Several resistance genes were identified for the first time in Tunisia from cases of diarrheic calves. Furthermore, to the best of our knowledge, this is the first report of detection and identification of carbapenem resistance genes and virulence genes from calves in North Africa. A high occurrence of antimicrobial resistance of E. coli recovered from fecal samples of calves with diarrhea was observed, highlighting the need for prudent use of antimicrobial agents in veterinary medicine to decrease the incidence of multidrug-resistant bacteria for both animals and humans. | 2023 | 36695709 |
| 1059 | 8 | 0.9999 | Dissemination and phenotypic characterization of ESBL-producing Escherichia coli in Indonesia. BACKGROUND: The alarming rise in infections caused by extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in animals and humans poses a serious threat due to its escalating antibiotic resistance. Unveiling this problematic bacteria's prevalence and resistance patterns in animals is crucial for formulating effective control strategies and safeguarding public health. AIM: The purpose of this study was to analyze the expression of three main genes: blaCTX-M, blaSHV, and blaTEM, in ESBL-producing E. coli isolates from The Research Center for Veterinary Science and the National Research and Innovation Agency. Moreover, their resistance profiles against various antibiotics should be systematically evaluated. METHODS: Ninety-seven E. coli isolates from the bacteriology laboratory of The Research Center for Veterinary Science were identified on MacConkey medium supplemented with cefotaxime. The isolates were verified for the existence of the blaCTX-M, blaSHV, and blaTEM genes using PCR. Antimicrobial susceptibility testing was conducted using antibiotic discs following the CLSI standards. RESULTS: The prevalence of ESBL-producing E. coli in chicken ceca, eggs, and fish intestines was 16.5% (16/97). The specific genes detected were blaCTX-M gene at 93.75% (15/16), followed by the blaTEM gene, at 81.25% (13/16), and blaSHV at 25% (4/16). The antimicrobial sensitivity test results revealed that all ESBL-producing E. coli isolates had multidrug resistance 81.25% to 1-5 antibiotics and 18.75% to 6-7 antibiotics. The isolate exhibited 100% resistance to ampicillin and sulfamethoxazole, with exclusive sensitivity to chloramphenicol. CONCLUSION: The dominant gene in the ESBL-producing isolates was blaCTX-M. This bacterium is completely resistant to ampicillin and sulfamethoxazole, whereas it displays multidrug resistance to 1-7 different types of antibiotics. | 2025 | 40276175 |
| 1015 | 9 | 0.9999 | Antimicrobial-resistant and extended-spectrum β-lactamase-producing Escherichia coli in raw cow's milk. The occurrence of antimicrobial-resistant bacteria is an important public health issue. The aim of this study was the monitoring of resistant Escherichia coli in raw cow's milk with a focus on the detection of extended-spectrum β-lactamase (ESBL)-producing strains. In total, 263 samples of raw milk from 40 farms were collected and investigated in 2010 to 2013 in the Czech Republic. Detection of E. coli was performed and evaluated according to ISO 16649-2, and antibiotic resistance was screened by the disk diffusion method. The presence of E. coli was detected in 243 (92.4%) samples. In total, 270 isolates were obtained. Resistance to β-lactam (31.8%) and tetracycline (13.0%) antibiotics was detected most often and also multiresistant strains (5.5%) were observed. E. coli isolates found to be resistant to β-lactam, tetracycline, and quinolone antibiotics were assayed by PCR to detect selected genes encoding those resistance mechanisms. In isolates in which any bla genes were detected, a double-disk synergy test was performed. ESBL production was confirmed in 2 (0.7%) isolates. The genetic analysis identified the presence of the blaCTX-M gene and other resistance genes (tet(B) and qnrB). Both ESBL-positive isolates originated from the same farm and had an identical pulsed-field gel electrophoresis profile. The findings of our study indicate that milk can be a reservoir of bacteria carrying resistance genes with a potential for spreading through the food chain. | 2015 | 25581180 |
| 2611 | 10 | 0.9999 | Prevalence of antimicrobial-resistant bacteria in conventional vs. organic livestock farms in Egypt: a cross-sectional comparative study. The silent pandemic of antimicrobial resistance (AR) has been on the rise for the past decades. It is essential to determine the burden of AR in animal farms that spreads leading to human exposure. A total of 100 samples including soil, litter, animal excreta, and wastewater were collected from seven conventional and one organic farm in Egypt. The prevalence of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-producing E. coli), fluoroquinolone-resistant E. coli, fluoroquinolone-resistant Salmonella, and vancomycin-resistant enterococci (VRE) was determined in studied farms. Conventional farms had a higher prevalence of antimicrobial-resistant bacteria than the organic farm (73.81% vs. 18.75%, P < .001). In conventional farms 21.43% of samples yielded mixed isolates; however, in the organic farm, only single isolates of ESBL-producing E. coli were detected. The most prevalent ESBL-production gene was blaTEM (82.14%), followed by blaCTX-M (48.22%), and blaSHV (19.64%), either alone or in combination with another gene. The most prevalent fluoroquinolone-resistance genes were qnrS (82.69%) and qnrB (42.30%), either alone or in combination with another gene(s). A total of five VRE isolates harbored vanA gene (83.33%), none carried vanB gene, and one isolate was negative for both genes. The studied conventional livestock farms had significantly higher rates of serious AR threats than the organic farm. | 2023 | 36688777 |
| 1611 | 11 | 0.9999 | Molecular Typing of Enterobacteriaceae from Pig Holdings in North-Western Germany Reveals Extended- Spectrum and AmpC β-Lactamases Producing but no Carbapenem Resistant Ones. The increase of extended- spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) in humans and in food-producing animals is of public health concern. The latter could contribute to spreading of these bacteria or their resistance genes to humans. Several studies have reported the isolation of third generation cephalosporin resistant bacteria in livestock animals. However, the number of samples and the methodology used differ considerably between studies limiting comparability and prevalence assessment. In the present study, a total of 564 manure and dust samples were collected from 47 pig farms in Northern Germany and analysed to determine the prevalence of ESBL-E. Molecular typing and characterization of resistance genes was performed for all ESBL-E isolates. ESBL-E isolates were found in 55.3% of the farms. ESBL-Escherichia coli was found in 18.8% of the samples, ESBL-Klebsiella pneumoniae in 0.35%. The most prevalent ESBL genes among E. coli were CTX-M-1 like (68.9%), CTX-M-15 like (16%) and CTX-M-9 group (14.2%). In 20% of the latter two, also the OXA-1 like gene was found resulting in a combination of genes typical for isolates from humans. Genetic relation was found between isolates not only from the same, but also from different farms, with multilocus sequence type (ST) 10 being predominant among the E. coli isolates. In conclusion, we showed possible spread of ESBL-E between farms and the presence of resistance genes and STs previously shown to be associated with human isolates. Follow-up studies are required to monitor the extent and pathways of ESBL-E transmission between farms, animals and humans. | 2015 | 26225428 |
| 1614 | 12 | 0.9999 | Dissemination of Multidrug-Resistant Commensal Escherichia coli in Feedlot Lambs in Southeastern Brazil. Antimicrobial resistance (AR) is a public health issue since it limits the choices to treat infections by Escherichia coli in humans and animals. In Brazil, the ovine meat market has grown in recent years, but studies about AR in sheep are still scarce. Thus, this study aims to investigate the presence of AR in E. coli isolated from lambs during feedlot. To this end, feces from 112 lambs with 2 months of age, after weaning, were collected on the first day of the animals in the feedlot (day 0), and on the last day before slaughtering (day 42). Isolates were selected in MacConkey agar supplemented with 4 mg/L of ceftiofur and identified by biochemical methods. Isolates were submitted to an antimicrobial susceptibility test by disc-diffusion and PCR to investigate genes for phylogenetic group, virulence determinants and resistance to the several antimicrobial classes tested. The genetic localization of the bla genes detected was elucidated by S1-PFGE followed by Southern blot-hybridizations. The isolates were typed by XbaI-PFGE and MLST methods. Seventy-eight E. coli were isolated from 8/112 (7.1%) animals on day 0, and from 55/112 (49.1%) animals on day 42. Since only fimH was present in almost all E. coli (97.4%) as a virulence gene, and also 88.5% belonged to phylogroups B1 or A, we consider that isolates represent intestinal commensal bacteria. The dendrogram separated the 78 non-virulent isolates in seven clusters, two of which comprised 50 E. coli belonging to ST/CC 1727/446 or ST 3994 recovered on day 42 commonly harboring the genotype bla (CMY -2)-aac(3)-IIa -tetA-sul1-sul2-floR-cmlA. Special attention should be given to the presence of bla (CTX-M-15), a worldwide gene spread, and bla (CTX-M-14), a hitherto undetected gene in Enterobacteriaceae from food-producing animals in Brazil. Importantly, E. coli lineages and plasmids carrying bla genes detected here have already been reported as sources of infection in humans either from animals, food, or the environment, which raises public health concerns. Hence, two types of commensal E. coli carrying important AR genes clearly prevailed during feedlot, but lambs are also reservoirs of bacteria carrying important AR genes such as bla (CTX-M-14) and bla (CTX-M-15), mostly related to antimicrobial treatment failure. | 2019 | 31293542 |
| 1005 | 13 | 0.9999 | Prevalence and Characterization of Beta-Lactam and Carbapenem-Resistant Bacteria Isolated from Organic Fresh Produce Retailed in Eastern Spain. Fresh fruits and vegetables are potential reservoirs for antimicrobial resistance determinants, but few studies have focused specifically on organic vegetables. The present study aimed to determine the presence of third-generation cephalosporin (3GC)- and carbapenem-resistant Gram-negative bacteria on fresh organic vegetables produced in the city of Valencia (Spain). Main expanded spectrum beta-lactamase (ESBL)- and carbapenemase-encoding genes were also detected in the isolates. One hundred and fifteen samples were analyzed using selective media supplemented with cefotaxime and meropenem. Resistance assays for twelve relevant antibiotics in medical use were performed using a disc diffusion test. A total of 161 isolates were tested. Overall, 33.5% presented multidrug resistance and 16.8% were resistant to all β-lactam antibiotics tested. Imipenem resistance was observed in 18% of isolates, and low resistance levels were found to ceftazidime and meropenem. Opportunistic pathogens such as Acinetobacter baumannii, Enterobacter spp., Raoultella sp., and Stenotrophomonas maltophilia were detected, all presenting high rates of resistance. PCR assays revealed bla(VIM) to be the most frequently isolated ESBL-encoding gene, followed by bla(TEM) and bla(OXA-48). These results confirm the potential of fresh vegetables to act as reservoirs for 3GC- and carbapenem-producing ARB. Further studies must be carried out to determine the impact of raw organic food on the spread of AMRs into the community. | 2023 | 36830297 |
| 1010 | 14 | 0.9999 | Prevalence of Antibiotic Resistance and Virulence Genes in Escherichia coli Carried by Migratory Birds on the Inner Mongolia Plateau of Northern China from 2018 to 2023. (1) Background: Antibiotic resistance in bacteria is an urgent global threat to public health. Migratory birds can acquire antibiotic-resistant and pathogenic bacteria from the environment or through contact with each other and spread them over long distances. The objectives of this study were to explore the relationship between migratory birds and the transmission of drug-resistant pathogenic Escherichia coli. (2) Methods: Faeces and swab samples from migratory birds were collected for isolating E. coli on the Inner Mongolia Plateau of northern China from 2018 to 2023. The resistant phenotypes and spectra of isolates were determined using a BD Phoenix 100 System. Conjugation assays were performed on extended-spectrum β-lactamase (ESBL)-producing strains, and the genomes of multidrug-resistant (MDR) and ESBL-producing isolates were sequenced and analysed. (3) Results: Overall, 179 isolates were antibiotic-resistant, with 49.7% MDR and 14.0% ESBL. Plasmids were successfully transferred from 32% of ESBL-producing strains. Genome sequencing analysis of 91 MDR E. coli strains identified 57 acquired resistance genes of 13 classes, and extraintestinal pathogenic E. coli and avian pathogenic E. coli accounted for 26.4% and 9.9%, respectively. There were 52 serotypes and 54 sequence types (STs), including ST48 (4.4%), ST69 (4.4%), ST131 (2.2%) and ST10 (2.2%). The international high-risk clonal strains ST131 and ST10 primarily carried bla(CTX-M-27) and bla(TEM-176). (4) Conclusions: There is a high prevalence of multidrug-resistant virulent E. coli in migratory birds on the Inner Mongolian Plateau. This indicates a risk of intercontinental transmission from migratory birds to livestock and humans. | 2024 | 38930458 |
| 1143 | 15 | 0.9999 | Antimicrobial Resistance and Virulence Profiles of mcr-1-Positive Escherichia coli Isolated from Swine Farms in Heilongjiang Province of China. ABSTRACT: The emergence and global distribution of the mcr-1 gene for colistin resistance have become a public concern because of threats to the role of colistin as the last line of defense against some bacteria. Because of the prevalence of mcr-1-positive Escherichia coli isolates in food animals, production of these animals has been regarded as one of the major sources of amplification and spread of mcr-1. In this study, 249 E. coli isolates were recovered from 300 fecal samples collected from swine farms in Heilongjiang Province, People's Republic of China. Susceptibility testing revealed that 186 (74.70%) of these isolates were colistin resistant, and 86 were positive for mcr-1. The mcr-1-positive isolates had extensive antimicrobial resistance profiles and additional resistance genes, including blaTEM, blaCTX-M, aac3-IV, tet(A), floR, sul1, sul2, sul3, and oqxAB. No mutations in genes pmrAB and mgrB were associated with colistin resistance. Phylogenetic group analysis revealed that the mcr-1-positive E. coli isolates belonged to groups A (52.33% of isolates), B1 (33.72%), B2 (5.81%), and D (8.14%). The prevalence of the virulence-associated genes iutA, iroN, fimH, vat, ompA, and traT was moderate. Seven mcr-1-positive isolates were identified as extraintestinal pathogenic. Among 20 mcr-1-positive E. coli isolates, multilocus sequence typing revealed that sequence type 10 was the most common (five isolates). The conjugation assays revealed that the majority of mcr-1 genes were transferable at frequencies of 7.05 × 10-7 to 7.57 × 10-4. The results of this study indicate the need for monitoring and minimizing the further dissemination of mcr-1 among E. coli isolates in food animals, particularly swine. | 2020 | 32730609 |
| 1017 | 16 | 0.9999 | Evaluation of canine raw food products for the presence of extended-spectrum beta-lactamase- and carbapenemase-producing bacteria of the order Enterobacterales. OBJECTIVE: To assess the potential contamination of commercial raw dog food products with bacteria of the Enterobacterales order that produce extended spectrum beta-lactamase (ESBL) and carbapenemase enzymes, determine risk factors for contamination, and understand isolate genetic diversity. SAMPLES: A total of 200 canine raw food products. METHODS: Products were cultured on selective chromogenic agar following enrichment steps. Whole-genome sequencing was performed for isolates that were confirmed to produce an ESBL. Isolates were characterized by antimicrobial resistance genes, and multilocus sequences typing, and compared to other isolates in the NCBI database for clonality. Preservation method and protein sources were assessed as potential risk factors for contamination with ESBL and carbapenemase-producing bacteria of the Enterobacterales order. RESULTS: No carbapenemase-producing Enterobacterales (CPE) were identified, but ESBL-producing Enterobacterales bacteria were isolated from 20/200 products (10.0%; 95% CI, 7.3 to 16.5%), all of which were frozen. Pork-derived protein source products were 8.1 times (P = .001; 95% CI, 2.53 to 26.2) more likely to carry ESBL-producing Enterobacterales bacteria than other protein sources. WGS analysis confirmed the presence of ESBL genes in a total of 25 distinct isolates (19 Escherichia coli, 5 Klebsiella pneumoniae, and 1 Citrobacter braakii). Genes encoding CTX-M type ESBL enzymes were the most common (24/25 isolates, 96.0%) with blaCTX-M-27 being the most common allele (8/25, 32.0%). CLINICAL RELEVANCE: Frozen, raw food products may serve as a route of transmission of ESBL-producing Enterobacterales bacteria to companion animals. Veterinarians should advise owners about the risks of raw food diets, including potential exposure to antimicrobial-resistant bacteria. | 2022 | 35895774 |
| 1620 | 17 | 0.9999 | A survey of antimicrobial-resistant Escherichia coli prevalence in wild mammals in Japan using antimicrobial-containing media. The emergence and spread of antimicrobial-resistant bacteria and resistance genes pose serious human and animal health concerns. Therefore, to control antimicrobial-resistant bacteria in the environment, the status of antimicrobial resistance of Escherichia coli in a variety of wild mammals and their prevalence were examined using antimicrobial-containing media. In total, 750 isolates were obtained from 274/366 (74.9%) wild mammals, and antimicrobial-resistant E. coli was detected in 37/750 isolates (4.9%) from 7 animal species (26/366 [7.1%] individuals). Using antimicrobial-containing media, 14 cefotaxime (CTX)- and 35 nalidixic acid-resistant isolates were obtained from 5 (1.4%) and 17 (4.6%) individuals, respectively. CTX-resistant isolates carried bla(CTX-M-27), bla(CTX-M-55), bla(CTX-M-1), and bla(CMY-2), with multiple resistance genes. Fluoroquinolone-resistant isolates had multiple mutations in the quinolone-resistance determining regions of gyrA and parC or qnrB19. Most resistant isolates exhibited resistance to multiple antimicrobials. The prevalence of antimicrobial-resistant bacteria observed in wild mammals was low; however, it is essential to elucidate the causative factors related to the low prevalence and transmission route of antimicrobial-resistant bacteria/resistance genes released from human activities to wild animals and prevent an increase in their frequency. | 2022 | 36310042 |
| 1009 | 18 | 0.9999 | The resistance patterns and molecular characteristics of ESBL/AmpC-producing Escherichia coli from captive panda ecosystem in China. Escherichia coli (E. coli) plays an important ecological role, and is a useful bioindicator to recognize the evolution of resistance in human, animal and environment. Recently, extended-spectrum β-lactamases (ESBL) producing E.coli has posed a threat to public health. Generally, captive healthy giant pandas are not exposed to antibiotics; however, they still acquire antimicrobial resistant bacteria. In order to understand whether there is an exchange of resistance genes within the ecosystems of captive giant pandas, this study explored resistance characteristics of 330 commensal E. coli isolates from feces of giant pandas, the surroundings, and breeders. Isolates from different sources showed similar resistance phenotype, and ESBL/AmpC-producing isolates showed more profound resistance to antibiotics than non-ESBL/AmpC-producing isolates (P<0.05). Furthermore, the occurrence of broad-spectrum β-lactamase related resistance genes and colistin resistance genes was detected, and isolates phylogenetic typing and multilocus sequence typing (MLST) were applied in this study. Seven different β-lactamase resistance genes (bla(CTX-M-55), bla(CTX-M-15), bla(CTX-M-27), bla(CTX-M-65), bla(TEM-1), bla(OXA-1) and bla(CMY)) and mcr-1 were found in 68 ESBL/AmpC-producing isolates. bla(CTX-M-55) (48.53 %) was found the most predominant resistance genes, followed by bla(TEM-1) (19.12 %) and bla(CTX-M-27) (16.18 %). Nonetheless, bla(CTX-M-55) was commonly detected in the isolates from giant pandas (63.16 %), the surroundings (43.48 %), and breeders (33.33 %). However, there were no carbapenemase genes detected in this study. mcr-1 was harbored in only one isolate from giant panda. Forty-five tansconjugants were successfully obtained in the conjugation experiments. The presence of antimicrobial resistance and related resistance genes tested were observed in the transconjugants. The results indicated that 52.63 % of the isolates from giant panda 73.91 % of the isolates from surroundings, and 100 % of the isolates from breeders were phylogroup A. Total of 27 sequence types (ST) were recognized from the isolate by MLST and found that ST48 (19/68; 27.94 %) was the predominant ST type, especially in the isolates from giant pandas and the surroundings. In conclusion, commensal ESBL/AmpC-producing E. coli becomes a reservoir of ESBL resistance genes, which is a potential threaten to health of giant pandas. The interaction between giant pandas, surroundings and breeders contribute to development of resistant phenotypes and genotypes which might transfer across species or the surroundings easily; hence, strict monitoring based on a "One Health" approach is recommended. | 2024 | 38728939 |
| 1618 | 19 | 0.9999 | Molecular Characterization of Multidrug-Resistant Escherichia coli from Fecal Samples of Wild Animals. Antimicrobial resistance (AMR) surveillance in fecal Escherichia coli isolates from wildlife is crucial for monitoring the spread of this microorganism in the environment and for developing effective AMR control strategies. Wildlife can act as carriers of AMR bacteria and spread them to other wildlife, domestic animals, and humans; thus, they have public health implications. A total of 128 Escherichia coli isolates were obtained from 66 of 217 fecal samples obtained from different wild animals using media without antibiotic supplementation. Antibiograms were performed for 17 antibiotics to determine the phenotypic resistance profile in these isolates. Extended-spectrum β-lactamase (ESBL) production was tested using the double-disc synergy test, and 29 E. coli strains were selected for whole genome sequencing. In total, 22.1% of the wild animals tested carried multidrug-resistant E. coli isolates, and 0.93% (2/217) of these wild animals carried E. coli isolates with ESBL-encoding genes (bla(CTX-M-65), bla(CTX-M-55), and bla(EC-1982)). The E. coli isolates showed the highest resistance rates to ampicillin and were fully susceptible to amikacin, meropenem, ertapenem, and imipenem. Multiple resistance and virulence genes were detected, as well as different plasmids. The relatively high frequency of multidrug-resistant E. coli isolates in wildlife, with some of them being ESBL producers, raises some concern regarding the potential transmission of antibiotic-resistant bacteria among these animals. Gaining insights into antibiotic resistance patterns in wildlife can be vital in shaping conservation initiatives and developing effective strategies for responsible antibiotic use. | 2024 | 39453061 |